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Abstract

In this work, a paradigm for drugs and addiction is put forth and examined. It is a given that the model took
the impact of governmental policies and the addict’s control into account. The designer’s solution’s availability,
uniqueness, and bounds should be first addressed. Second, we investigated each equilibrium pointe’s existence and
localized stability. Additionally, some of the prerequisites for the optimistic equilibrium’s global stability are identified.
Finally, a computational domain is used to illustrate the theoretical result.
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1 Introduction

Drugs and alcoholic drinks behaviours have been considered as a critical problem in both health and social aspects
for a long time. It is well-known that drugs and alcoholic drinks can increase the risks of having serious diseases such
as cancer and cardiovascular disease [11]. The United Nations Office on Drugs and Crime (UNODC) just announced
its 2019 World Drug Assessment, which estimates that 271 thousand individuals, or 5.5% of the world’s population
between the ages of 15 and 64, took drugs in 2016 [15].

There are various ways to stop drinking, including personality, convincing family members and friends, using drugs,
or going through physiotherapy. However, despite receiving therapy, up to 70% or 80% of alcohol abusers return. As a
result, the study of how to stop drinking has gained attention from academics [3]. The use of compartmental dynamic
models has been expanded over the years to various additional research areas, such as characteristics of alcoholism,
smoking, online viruses, rumours, or drug use [13, 14]. Resmawan et al. investigated the study of a model structure
of how drug abuse spreads among educated people [12]. A model for the transmission of synthetic substances with
psychiatric addicts and the frequency of generalized communication was put up by Liu et al. [10].

The impact of coverage in the media on the dynamic behaviour of the smoking model with and without spatial
diffusion was investigated by A. A. Mohsen et al. [8]. A non-linear SHTR mathematical model developed by I. K.
Adu et al. had been used to examine the characteristics of the drinking epidemic [1]. In South Africa, particularly in
the Western Cape area, there are also Orwa and Nyabadza. To simulate the dynamics of co-using methamphetamine
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and alcohol, a mathematical model was developed [9]. A study by Grasman et al. compared self-control to addictive
behaviours and cravings [6]. Ramirez and Miranda investigated the connection between teenage alcohol craving and
the environmental [5].

According to the epidemiological concepts used in the model [7] provided to F. L. Matonya et al., the effectiveness
to deliver is viewed as a social contact process between susceptible persons and drug users. A mathematical model
that concentrates on illegal OUD and has a classification for former users was suggested by S. Cole et al. [2]. The
structure of this essay is as follows. We provide the pharmacological model and demonstrate its validity in Section 2.
We focused on the presence of equilibrium position in Sections 3 and 4, and these sections also provide the stability
of the system for all equilibrium points. To validate our analytical findings, in Section 5 we present some quantitative
simulation results. The findings are discussed in Section 6.

2 Model Formulation

In the following section, we develop a mathematical model of drug addicts who are afraid of the consequences. The
following are the underlying presumptions for drug addict mathematical equations:

1. Population numbers that have either received instruction on drug misuse but have not received instruction on
drug addiction may be more susceptible to mild drug addiction.

2. There cannot be moderate drug users among the community of strong drug users.

3. Neither moderate nor extreme drug addicts could be found among those who give up using drugs.

Tables 1 and 2 provide descriptions of the variables and parameters used in the model.

Table 1: Details of the variables

Variable Details

Su(t)
the susceptible population at the momentt to be

drug-addicts, and do not have information about the dangers of the drugs

Sa(t)
the affected population first at moment t to be drug-addicts, and have

information about the dangers of the drugs
L(t) the mild drugs addicts’ population at the moment
H(t) the heavy drugs addicts’ population at the moment t

R(t)
represents the rehabilitated drug addict’s population at

the moment due to treatment in rehabilitation

All characteristics are thought to be consistent and positive. Figure 1 can display a transmission that denotes the
presumptions and definitions of variables in the model. The system of ordinary differential equations shown in Figure
1 is computed as follows:

dSu

dt
= (1− b)A− β1SuL

1 + nL
− β2SuH

1 + nH
− αSuSa − µSu

dSa

dt
= bA+ αSuSa − µSa

dL

dt
=

β1SuL

1 + nL
+

β2SuH

1 + nH
− (µ+ γ + r1 + d1)L (2.1)

dH

dt
= γL− (µ+ r2 + d2)H

dR

dt
= r1L+ r2H − µR.

Considering preliminary conditions Su(0) > 0, Sa > 0, L(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0.

Theorem 2.1. The following paragraphs discuss how any solution is uniformly bounded.
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Table 2: Details of the variables

Parameter Details
β1 the frequency of interaction between mild drug users and susceptible
β2 Is the occurrence rate between highly dependent drug users and susceptible.
A the recruitment rate of population
d1 The deaths among mild drug addicts
d2 Death rates among strong drug addicts
µ Natural human death rate
γ The transition rate from mild drug addicts to heavy drug users addicts
n Fear rate from the penalties
α Drug awareness percentage
r1 The recovery rate of the mild drug addiction
r2 The recovery rate of the heavy drug addiction

Figure 1: Model of a drug addict’s transmission.

Proof . Let (Su(t), Sa(t), L(t), H(t), R(t)) is the solution of the system (1) with positive initial condition (Su(0), Sa(0), L(0), H(0), R(0))
which defines the function N(t) = Su(t) + Sa(t) +L(t) +H(t) +R(t) Then take the time derivative of N(t) along the
solution of the system (2.1); this gives

dN

dt
=(1− b)A− β1SuL

1 + nL
− β2SuH

1 + nH
− αSuSa − µSu + bA+ αSuSa − µSa

+
β1SuL

1 + nL
+

β2SuH

1 + nH
− µL− γL− r1L− d1L+ γL− µH − r2H − d2H

+ r1L+ r2H − µR

dN

dt
=A− µSu − µSa − (µ+ d1)L− (µ+ d2)H − µR

dN

dt
≤A− qN ; q = min {µ, µ+ d1, µ+ d2} = µ

dN

dt
+qN ≤ A.

Without a doubt, by resolving the aforementioned equation, we have

N(t) ≤ A

q
+

(
N0 −

A

q

)
e−qt.

Therefore , N(t) ≤ A
q , as t → ∞ Thus, the proof is successful since these solutions are uniformly bounded. □

3 Existence of the equilibrium points

One can solve various systems instead of system (2.1) by substituting the solution values of L and H in the fifth
equation of the system (2.1) and solving it individually as a system of differential equations with regards to the variable



2976 Arif, Al-Husseiny

R. It should be noted that this is because the variable R, which also represents the recovered drug, is not available in
the first four equations of the system (2.1).

R(t) =
r1L̃+ r2H̃

µ
. (3.1)

In which (L̃, H̃) stands for the system (3.2) bellow’s solution values. Therefore, in place of the system, the following
system will be studied (2.1)

dSu

dt
= (1− b)A− β1SuL

1 + nL
− β2SuH

1 + nH
− αSuSa − µSu

dSa

dt
= bA+ αSuSa − µSa

dL

dt
=

β1SuL

1 + nL
+

β2SuH

1 + nH
− (µ+ γ + r1 + d1)L (3.2)

dH

dt
= γL− (µ+ r2 + d2)H

The system (3.2) contains seven equilibrium points, which is obvious. The first equilibrium point (when b = 0 ) that
denoted by E1 =

( ...
S u, 0, 0, 0

)
, here

...
S u =

A

µ
. (3.3)

The second equilibrium point (when b = 1 ) which is denoted by E2 = (0, S∗
2 , 0, 0), here

S∗
a =

A

µ
. (3.4)

The third equilibrium point E3 =
(
Šu, Ša, 0, 0

)
, here

Šu =
(1− b)A

αŠa + µ
. (3.5)

While Ša is a significant real root of the quadratic equation that follows.

C1S
2
a + C2Sa + C3 = 0 (3.6)

here

Ša =
−C2 +

√
C2

2 − 4C1C3

2C1

C1 = −αµ

C2 = αA− µ2

C3 = bAµ.

The fourth equilibrium point (when b = 0, γ = 0 ) which is denoted by E4 =
(
S̃u, 0, L̃, 0

)
, where

S̃u =
A(1 + nL̃)

β1L+ µ(1 + nL̃)
(3.7)

while L̃ is a significant real root of the quadratic equation that follows:

N1L
2 +N2L+N3 = 0 (3.8)
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here

L̃ =
−N2 +

√
N2

2 − 4N1N3

2N1

N1 = − (µ+ r1 + d1)n
2A

N2 = β2
1 + β1n− 2 (µ+ r1 + d1)nA

N3 = β1µ− (µ+ r1 + d1)A.

Clearly, E4 exists only in R4, interior if the following conditions are met.

β1µ > (µ+ r1 + d1)A. (3.9)

The fifth equilibrium point (when b = 0 ) denoted by E5 =
(
Ŝu, 0, L̂, Ĥ

)
, where

Ĥ =
γL̂

µ+ r2 + d2
, Ŝu =

A(1 + nL̂)
(
µ+ r2 + d2 + nL̂γ

)
Q

, (3.10)

while L̂ the following five-order polynomial equation’s positive root

R1L
5 +R2L

4 +R3L
3 +R4L

2 +R5L+R6 = 0 (3.11)

here

R1 = −n2γ (µ+ γ + r1 + d1)
(
β1nγ + β2nγ + µn2γ

)
, R2 = An3γ2β2

R3 =
(
βn2γ + β2γ

)
An2γ +An2β2γ (µ+ r2 + d2 + γ)

R4 = An2γβ1 (µ+ r2 + d2) +An (β1nγ + β2γ) (µ+ r2 + d2 + γ) +Aβ2nγ (µ+ r2 + d2)

R5 = Anβ1 (µ+ r2 + d2) +A (β1nγ + β2γ) (µ+ r2 + d2) , R6 = Aβ1 (µ+ r2 + d2)
2

where

Q = β1L (µ+ r2 + d2 + nγL) + β2γL(1 + nL) + µ(1 + nL) (µ+ r2 + d2 + nγL) .

Clearly, E5 exists only in the interior of R4 if one of the following circumstances is true.{
R2 > 0;R3 > 0;R4 > 0
R3 > 0;R4 > 0;R5 > 0

(3.12)

The sixth equilibrium point denoted by E6 =
(
S̈u, S̈a, L̈, 0

)
, (where γ = 0)

S̈u =
(µ+ r1 + d1) (1 + nL̈)

β1
, S̈a =

−bAβ1

α (µ+ r1 + d1) (1 + nL̈) + µβ1

(3.13)

While L̈ the following second order polynomial equation’s positive root

B1L
2 +B2L+B3 = 0 (3.14)

here

B1 = (1− b)Aβn2D −Dn

B2 = ((1− b)Aβ1Dn+ (1− b)AβDn−D −AbDnα+ µDn)

B3 = (1− b)Aβ1D + µβ1 −AbDα+ µD

with D = (µ+ r1 + d1). Clearly, E6 exists uniquely in interior of R4, assuming one of the following situations occurs

B1 > 0;B3 < 0
B1 < 0;B3 > 0

}
(3.15)
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The seventh equilibrium point which is denoted by E7 =
(
S̄u, S̄a, L̄, H̄

)
, where

H̄ =
γL̄

µ+ r2 + d2
, S̄a =

µS̄u − bA

αS̄u

, S̄u =
−m1L̄

2
−m3L̄+m5

m2L̄+m4

(3.16)

while L̄ the four possible polynomial equation’s positive root

A1L
4 +A2L

3 +A3L
2 +A4L+A5 = 0 (3.17)

here

A1 = −n2m1

A2 = −n2m3 − n3m1

A3 = n1m4 + n4m2 − n2m5 − n3m3 − n5m1 (3.18)

A4 = n4m4 + n6m2 − n3m5 − n5m3

A5 = n6m4 − n5m5.

Simple math clearly demonstrates that E7 exists, but only if and only if one set of the conditions listed below are
true

or
A3 < 0, A5 > 0

A4 > 0, A5 > 0
(3.19)

4 Local stability analysis

This section addresses the linearization method to examine the local stability around each equilibrium point before
establishing the system’s persistence criteria. System (3.2)’s general Jacobian matrix at the location (Su, Sa, L,H),
can be written

J =


− β1L

1+nL − β2H
1+nH − αSa − µ −αSu − β1Su

(1+nL)2 − β2Su

(1+nH)2

αSa αSu − µ 0 0
β1L
1+nL + β2H

1+nH 0 β1Su

(1+nL)2 − (µ+ γ + r1 + d1)
β2Su

(1+nH)2

0 0 γ − (µ+ r2 + d2)

 .

So that at the equilibrium position, the Jacobian matrix E1 =
( ...
S u, 0, 0, 0

)
is determined as

J (E1) = (äij)4×4 ; i, j = 1, 2, 3, 4 (4.1)

here

...
a 11 = −µ ,

...
a 12 = −α

A

µ
,
...
a 13 = −β1

...
S u, ,

...
a 14 = −β2

...
S u,

...
a 22 = α

A

µ
− µ

...
a 33 = β1

...
S u − (µ+ γ + r1 + d1) ,

...
a 34 = β2

...
S u,

...
a 43 = γ,

...
a 44 = − (µ+ r2 + d2)

...
a 21 = a23 =

...
a 24 =

...
a 31 =

...
a 32 =

...
a 41 =

...
a 42 = 0.

Because of this, the characteristic equation of the Jacobian matrix of system (3.2) at the E1 is

(
...
a 22 − λ)

[
λ3 +

...
A 1λ

2 +
...
A 2λ+

...
A 3

]
= 0 (4.2)

where

...
A 1 = − (

...
a 11 +

...
a 22 +

...
a 33)

...
A 2 =

...
a 11

...
a 22 −

...
a 12

...
a 21 +

...
a 11

...
a 33 −

...
a 13

...
a 31 +

...
a 22

...
a 33 −

...
a 23

...
a 32

Ä3 = − ...
a 11

...
a 22

...
a 33 −

...
a 12

...
a 23

...
a 31 −

...
a 13

...
a 21

...
a 32 +

...
a 13

...
a 22

...
a 31 +

...
a 11

...
a 23

...
a 32 +

...
a 12

...
a 21

...
a 33.
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Whichever way (
...
a 22 − λ) = 0, that also provides eigenvalues in the X-direction by

...
λ x =

...
a 22 or[

λ3 +
...
A 1λ

2 +
...
A 2λ+

...
A 3

]
= 0. (4.3)

Therefore, all of the eigenvalues are determined by the Routh-Hawirtiz Criterion of E1 include real roots that are
detrimental simply if and when if Äi(i = 1, 3) > 0 and ∆ =

...
A 1

...
A 2−

...
A 3 > 0. So, E1 =

( ...
S u, 0, 0, 0

)
if and only if the

essential requirements are met is a locally asymptotically stable equilibrium.

...
S u < min

{
(µ+ γ + r1 + d1) (µ+ r2 + d2)

γβ2 + β1 (µ+ r2 + d2)
,
(µ+ γ + r1 + d1)

β1

}
. (4.4)

The equilibrium point’s evaluation of the Jacobain matrix E2 = (0, S∗
a , 0, 0) can be written as

J (E2) =


−αA

µ − µ 0 0 0

−αA
µ −µ 0 0

0 0 − (µ+ γ + r1 + d1) 0
0 0 γ − (µ+ r2 + d2)

 (4.5)

λ∗
1 = −α

A

µ
− µ, λ∗

2 = −µ, λ∗
3 = − (µ+ γ + r1 + d1) , λ

∗
4 = − (µ+ r2 + d2) . (4.6)

So, E2 = (0, S∗
a , 0, 0) is an equilibrium that is locally asymptotically stable? The Jacobian matrix at E3 =(

Šu, Ša, 0, 0
)
, can always be expressed in writing as:

J (E3) = (ăij)4×4 ; i, j = 1, 2, 3, 4 (4.7)

where

ă11 = αŠa − µ, ă12 = −αŠu, ă13 = −β1Šu, ǎ14 = −β2Šu, ă21 = −αŠa

ǎ22 = αŠu − µ , ă33 = β1Šu − (µ+ γ + r1 + d1) , ă34 = β2Šu, ă43 = γ

ă44 = − (µ+ r2 + d2) , ă23 = ă24 = ă31 = ă32 = ă41 = ă42 = 0.

The characteristic equation follows of J (E3) can be determined as follows[
λ2 + Ǎ1λ+ Ǎ2

] [
λ2 + B̌1λ+ B̌2

]
= 0 (4.8)

Ǎ1 = ă11 + ă22

Ǎ2 = ă11ă22 − ă12ǎ21

B̆1 = ă33 + ă44

B̆2 = ă33ă44 − ă34ǎ43.

Consequently, the eigenvalues are written as

λ̌1,2 = − Ǎ1

2
∓ 1

2

√
Ǎ2

1 − 4Ǎ2

λ̌3,4 = − B̌1

2
∓ 1

2

√
B̌2

1 − 4B̌2. (4.9)

Given that the following requirements are met, the E3 is locally asymptotically stable and all of the eigenvalues
have negative real portions.

(
Šu + Ša

)
< min

{
2µ

α
,
2α2ŠuŠa + µ2

µα

}
(4.10)
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Šu < min

{
(µ+ γ + r1 + d1) + (µ+ r2 + d2)

β1
,
(µ+ γ + r1 + d1) (µ+ r2 + d2)

β1 (µ+ r2 + d2) + γβ2

}
. (4.11)

Evaluation of the Jacobian matrix at the equilibrium position E4 =
(
S̃u, 0, L̃, 0

)
is given by

J (E4) =


− BL̃

1+nL̃
− µ −αS̃u − β1S̃u

(1+nL̃)2
−β1S̃u

0 αS̃u − µ 0 0
β1L̃

1+nL̃
0 β1S̃u

(1+nL̃)2
− (µ+ γ + r + d1) β2S̃u

0 0 0 − (µ+ r2 + d2)

 = [ãij ] . (4.12)

The equation for the characteristic of J (E4) is given by

(ã44 − λ) (ã22 − λ)
(
λ2 + Ã1λ+ Ã2

)
= 0 (4.13)

here

Ã1 = ã11 + ã33

Ã2 = ã11ã33 − ã13ã31.

Consequently, the eigenvalues are written as:

λ̃2 = αS̃u − µ

λ̃4 = − (µ+ r2 + d2)

λ̃1,3 = − Ã1

2 ∓ 1
2

√
Ã2

1 − 4Ã2

 . (4.14)

Given that the following requirements are met, the E4 is locally asymptotically stable but all of the eigenvalues
have negative real portions.

Su <
µ

α
(4.15)

β1s̃u

(1 + L̃)2
< min

{
β1L̃

1 + nL̃
+ µ+ (µ+ γ + r1 + d1) ,

(
β1L̃

µ(1 + nL̃)
(µ+ γ + r1 + d1) +

β2
1 S̃

2
u

µ(1 + nL̃)3

− β2
1 s̃uL̃

µ(1 + nL̃)2

)
+ (µ+ γ + r1 + d1)

}
. (4.16)

The Jacobian matrix of system (3.2) around E5 = (Ŝu, 0, L̂, Ĥ) is determined as

J (E5) = (âij)4×4 ; i, j = 1, 2, 3, 4 (4.17)

â11 = − β1L̂

1 + nL̂
− β2Ĥ

1 + nĤ
− µ, â12 = −αŜu, â13 = − β1ŝu

(1 + nL̂)2
, â14 = − β2ŝu

(1 + nĤ)2

â22 = αŜu − µ , â31 =
β1L̂

1 + nL̂
+

β2Ĥ

1 + nĤ
, â33 =

β1ŝu

(1 + nL̂)2
− (µ+ γ + r + d1) , â34 =

β2Ŝu

(1 + nĤ)2

â34 = γ, â44 = − (µ+ r2 + d2) , â21 = â23 = â24 = â32 = â41 = â42 = 0.

Consequently, the Jacobian matrix of the system’s characteristic equation is (3.2) at the E5 is given by

(â22 − λ)
[
λ3 + Â1λ

2 + Â2λ+ Â3

]
= 0 (4.18)



Dynamical study of addiction modelling under some control strategies 2981

here

Â1 = − (â11 + â22 + â33)

Â2 = â11â22 − â12â21 + â11â33 − â13â31 + â22â33 − â23â32

Â3 = −â11â22â33 − â12â23â31 − â13â21â32 + â13â22â31 + â11â23â32 + â12â21â33.

Whichever way (â22 − λ) = 0, it provides the X-direction eigenvalues by λ̂x = â22 or λ3 + Â1λ
2 + Â2λ + Â3 = 0.

Now, if and only if all of the eigenvalues of E5 have roots with negative real portions, then the Routh-Hawirtiz Criterion

is satisfied if Âi(i = 1, 3) > 0 and ∆ = Â1Â2 − Â3 > 0. So, E5 =
(
Ŝu, 0, L̂, Ĥ

)
is a locally asymptotically stable

equilibrium if

Ŝu <min

−β2γ(1 + nĤ)2
[
−β1L̂(1 + nĤ)− β2Ĥ(1 + nL̂)− µ(1 + nL̂)(1 + nĤ)

]
β1L̂(1 + nĤ) + β2Ĥ(1 + nL̂)

,

(µ+ γ + r1 + d1) (1 + nL̂)2

β1

}
. (4.19)

The system’s variational matrix (3.2) at E6 =
(
S̈u, S̈a, L̈, 0

)
be expressed as

J (E6) = (äij)4×4 ; i, j = 1, 2, 3, 4 (4.20)

where

ä11 = − β1L̈

1 + nL̈
− αS̈a − µ, ä12 = −αS̈u, ä13 = − β1S̈u

(1 + nL̃)2
, ä14 = −β2S̈u, ä21 = −αS̈a

ä22 = αS̈u − µ, ä31 =
β1L̈

1 + nL̈
, ä33 =

β1S̈u

(1 + n)̈)2
− (µ+ γ + r1 + d1) , ä34 = β2S̈u

ä44 = − (µ+ r2 + d2) , ä23 = ä24 = ä32 = ä41 = ä42 = 0.

Then eigenvalues are given by

(ä44 − λ)
[
λ3 + Ä1λ

2 + Ä2λ+ Ä3

]
= 0 (4.21)

here

Ä1 = − (ä11 + ä22 + ä33)

Ä2 = ä11ä22 − ä12ä21 + ä11ä33 − ä13ä31 + ä22ä33 − ä23ä32

Ä3 = −ä11ä22ä33 − ä12ä23ä31 − ä13ä21ä32 + ä13ä22ä31 + ä11ä23 + ä12ä21ä33.

Whichever way (ä44 − λ) = 0, it provides the X-direction eigenvalues by λ̈x = ä44 or[
λ3 + Ä1λ

2 + Ä2λ+ Ä3

]
= 0.

Now, if and only if all of the eigenvalues of E6 have roots with negative real portions, then the Routh-Hawirtiz

Criterion is satisfied if Äi(i = 1, 3) > 0 and ∆ = Ä1Ä2 − Ä3 > 0. So, E6 =
(
S̈u, S̈a, L̈, 0

)
is a locally asymptotically

stable equilibrium if

µ > αS̈u (4.22)

(µ+ γ + r + d1) >
β1s̈u

(1 + nL̈)2
(4.23)

ä11ä22ä33 + ä13ä22ä31 > ä12ä21ä33. (4.24)
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The system’s variational matrix (3) at E7 =
(
¯̄Su,

¯̄Sa,
¯̄L, ¯̄H

)
is given by

J (E7) = (¯̄aij)4×4 ; i, j = 1, 2, 3, 4 (4.25)

here,

¯̄a11 = − β1
¯̄L

1 + n ¯̄L
− β2

¯̄H

1 + n ¯̄H
− α ¯̄Sa − µ, ¯̄a12 = −α ¯̄Su, ¯̄a13 = − β1

¯̄Su

(1 + n ¯̄S)2
, ¯̄a14 = − β2

¯̄Su

(1 + n ¯̄H)2

¯̄a21 = α ¯̄Sa, ¯̄a22 = −α ¯̄Su − µ, ¯̄a31 =
β1

¯̄L

1 + n ¯̄L
+

β2
¯̄H

1 + n ¯̄H
, ¯̄a33 =

β1
¯̄Su

(1 + n ¯̄L)2
− (µ+ γ + r + d1)

¯̄a34 =
β2

¯̄Su

(1 + n ¯̄H)2
, ¯̄a43 = γ, ¯̄a44 = − (µ+ r2 + d2) , ¯̄a23 = ¯̄a24 = ¯̄a32 = ¯̄a41 = ¯̄a42 = 0.

Applying the Gersgorin theorem’s condition now [4]

|dii| >
4∑

i=1
i ̸=j

|dij | . (4.26)

Consequently, the sub reign Ω contains all of the eigenvalues of the Jacobian matrix at (E7).

Ω = ∪

u∗ ∈ C : |u∗ − dii| <
4∑

i=1
i̸=j

|dij |

 .

As a result, the disc centered at dii contains all of the eigenvalues of J (E7). Thus, all of the eigenvalues would exist
in the left half plane as well as the E7 is locally asymptotically stable if and only if the following necessary criterion
is fulfilled if the diagonal elements are negative and requirement (57) holds.

¯̄Su < min

{
(1 + n ¯̄L)2 (µ+ γ + r1 + d1)

2β1
,
(1 + n ¯̄H)2 (µ+ r2 + d2)

2β1

}
(4.27)

5 Global stability analysis:

The equilibrium points of system (3.2), which are provided as mentioned in the previous theorems, have a basin
of attraction that we may identify in this part by discussing the global stability conditions.

Theorem 5.1. The equilibrium point E1 is assumed to be locally asymptotically stable in the range ℜ4
+. If the

following criteria are met holds, it is a globally asymptotically stable.

...
S u < min {(Su − 1) , β1A+ µ (µ+ r1 + d1) , β2A+ µ (µ+ r2 + d2)} . (5.1)

Proof . Take into account the subsequent positive definite function.

V1 (Su, Sa, L,H) =
1

2

(
Su −

...
S u

)2
+ Sa + L+H.

It is easy to see that V1 = (Su, Sa, L,H) ∈ C1
(
R4

+, R
)
in addition V1

( ...
S u, 0, 0, 0

)
= 0 while V1 (Su, Sa, L,H) > 0,

for all (Su, Sa, L,H) ∈ R4
+ and (Su, Sa, L,H) ̸=

( ...
S u, 0, 0, 0

)
.

dV1

dt
=
(
Su −

...
S u

) dSu

dt
+

dSa

dt
+

dL

dt
+

dH

dt
.
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Additionally, we obtain that by taking the derivative and simplifying the resulting terms:

dV1

dt
=
(
Su −

...
S u

) [
A− β1SuL

1 + nL
− β2SuH

1 + nH
− αSuSa − µSu

]
+ [αSuSa − µSa]

+

[
β1SuL

1 + nL
+

β2SuH

1 + nH
− (µ+ γ + r1 + d1)L

]
+ [γL− (µ+ r2 + d2)H].

By using the above condition (49), we obtain that

dV1

dt
≤− µ

(
Su −

...
S u

)2 − α
[
Su −

( ...
S u + 1

)]
SuSa − µSa

−
[
(µ++r1 + d1)− β1

( ...
S u + 1

) A
µ

]
L−

[
(µ++r2 + d2)− β2

( ...
S u + 1

) A
µ

]
H.

As a result of the aforementioned circumstance dV1

dt ≤ 0 is unambiguously negative and hence the proof is finished
since E1 is a globally asymptotically stable function V1 is the Lyapunov function in relation to in the area where the
specified criterion is met. The proof is finished since E1 is a globally asymptotically stable function. □

Theorem 5.2. Suppose that E2 be locally asymptotically stable. Then it’s a globally asymptotically stable assuming
the following sufficient conditions hold

Sa < 1 + S∗
a . (5.2)

Proof . Take into consideration the following real valued positive definite function.

V2 (Su, Sa, L,H) = Su +
1

2
(Sa − S∗

a)
2
+ L+H.

It is easy to see that V2 = (Su, Sa, L,H) ∈ C1
(
R4

+, R
)
in addition V2 (0, S

∗
a , 0, 0) = 0 while V2 (Su, Sa, L,H) > 0,

for all (Su, Sa, L,H) ∈ R4
+ and (Su, Sa, L,H) ̸= (0, S∗

a , 0, 0)

dV2

dt
=

dSu

dt
+
(
Sa − Ṡa

) dSa

dt
+

dL

dt
+

dH

dt
.

Then the derivative of this function with respect to time can be written as

dV2

dt
=

[
− β1SuL

1 + nL
− β2SuH

1 + nH
− αSuSa − µSu

]
+ (Sa − S∗

a) [A+ αSuSa − µSa] +[
β1SuL

1 + nL
+

β2SuH

1 + nH
− (µ+ γ + r1 + d1)L

]
+ [γL− (µ+ r2 + d2)H] .

By using the above condition (50), we obtain that

dV2

dt
≤− µ (Sa − S∗

a)
2 − α [1− (Sa − S∗

a)]SuSa − µSu

− (µ++r1 + d1)L− [(µ++r2 + d2)]H

As a result of the aforementioned circumstance dV2

dt ≤ 0 is unambiguously negative and hence V2 is Lyapunov
function with respect to E2 in the area where the specified criterion is met. Thus E2 is a globally asymptotically
stable and the evidence is conclusive □

Theorem 5.3. Assume that the equilibrium point E3 is asymptotically stable locally. If the following sufficient
condition applies, it is then globally asymptotically stable.

Su < min
{
Šu + 1,

µ

α

}
(5.3)

P 2
12 < 4P11P22. (5.4)

Symbol locations pij , i, j = 1, 2 are provided as evidence.
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Proof . Think about the subsequent function

V3 (Su, Sa, L,H) =
1

2

(
Su − Šu

)2
+

1

2

(
Sa − Ša

)2
+ L+H.

It is easy to see that V3 = (Su, Sa, L,H) ∈ C1
(
R4

+, R
)
in addition V3

(
Šu, Ša, 0, 0

)
= 0 while V3 (Su, Sa, L,H) > 0,

for all (Su, Sa, L,H) ∈ R4
+ and (Su, Sa, L,H) ̸=

(
Šu, Ša, 0, 0

)
.

dV3

dt
=
(
Su − Šu

) dSu

dt
+
(
Sa − Ša

) dSa

dt
+

dL

dt
+

dH

dt
.

Furthermore, by the derivative and simplifying the

dV3

dt
=
(
Su − Šu

) [
(1− b)A− β1SuL

1 + nL
− β2SuH

1 + nH
− αSuSa − µSu

]
+
(
Sa − Ša

)
[bA+ αSuSa − µSa]

+

[
β1SuL

1 + nL
+

β2SuH

1 + nH
− (µ+ γ + r1 + d1)L

]
+ [γL− (µ+ r2 + d2)H] .

By using the above condition (51), we obtain that

dV3

dt
=−

[
P11

(
Su − Šu

)2
+ P12

(
Su − Šu

) (
Sa − Ša

)
+ P22

(
Sa − Ša

)2]− β1SuL

1 + nL

[(
Su − Šu

)
− 1
]

− β2SuH

1 + nH

[(
Su − Šu

)
− 1
]
− (µ+ r1 + d1)L− (µ+ r2 + d2)H

where

P11 = αŠa + µ

P12 = α
(
Su + Ša

)
P22 = µ− αSu.

Therefore, V3 is a Lyapunov function with respect to E3 in the region that fulfills the stated constraints since dV3

dt ≤ 0
is negative definite according to the criterion previously. Thus, the evidence that E3 is a globally asymptotically stable
is complete. □

Theorem 5.4. Let the equilibrium point E4 be locally asymptotically stable. If the following necessary condition
applies, it is then globally asymptotically stable.

(µ+ r1 + d1) >
β1su
K1

(5.5)

Su > max
{(

S̃u + 1
)
,
(
S̃u + L− L̃

)
, (L̃+ nL̃L)

}
(5.6)

L̃ > L (5.7)

R2
12 < 4R11R22. (5.8)

Symbol locations Rij , i, j = 1, 2 are provided as evidence.

Proof . Think about the subsequent function

V4 (Su, Sa, L,H) =
1

2

(
Su − S̃u

)2
+ Sa +

1

2
(L− L̃)2 +H.

It is easy to see that V4 = (Su, Sa, L,H) ∈ C1
(
R4

+, R
)
in addition V4

(
S̃u, 0, L̃, 0

)
= 0 while V4 (Su, Sa, L,H) > 0,

for all (Su, Sa, L,H) ∈ R4
+ and (Su, Sa, L,H) ̸=

(
S̃u, 0, L̃, 0

)
.

dV4

dt
=
(
Su − S̃u

) dSu

dt
+

dSa

dt
+ (L− L̃)

dL

dt
+

dH

dt
.
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Furthermore, by the derivative and simplifying the

dE4

dt
=
(
Su − S̃u

)[
A− β1SuL

1 + nL
− β2SuH

1 + nH
− αSuSa − µSu

]
+ [αSuSa − µSa] +

(L− L̃)

[
β1SuL

1 + nL
+

β2SuH

1 + nH
− (µ+ r1 + d1)L

]
+ [γL− (µ+ r2 + d2)H] .

By using the above condition (52a)-(52b), we obtain that

dV4

dt
=−

[
R11

(
Su − S̃u

)2
+R12

(
Su − S̃u

)(
Sa − S̃a

)
+R22

(
Sa − S̃a

)2]
− β2SuH

1 + nH[(
Su − Šu

)
− (L− L̃)

]
− αSuSa

[(
Su − S̃u

)
− 1
]
− (µ+ r2 + d2)H − µSa

where

R11 =
β1L

K1
+

β1nLL

K1
+ µ

R12 =
β1su
K1

− β1L

K1
− β1nLL

K1

R22 = (µ+ r1 + d1)−
β1su
K1

with K1 = (1 + nL)(1 + nL̃).

Therefore, V4 is a Lyapunov function with respect to E4 in the region that fulfills the stated constraints since dV4

dt ≤ 0
is negative definite according to the criterion previously. Thus, the evidence that E4 is a globally asymptotically stable
is complete. □

Theorem 5.5. Let the equilibrium point E5 be locally asymptotically stable. Then it’s a globally asymptotically
stable provided that the following sufficient condition holds

d212 < d11d22

d213 < d11d33 (5.9)

d213 < d11d33

(µ+ γ + r1 + d1) >
β1su
K1

(5.10)

Su > Ŝu + 1. (5.11)

Symbol locations dij , i, j = 1, 2, 3 are provided as evidence.

Proof . Think about the subsequent function

V5 (Su, Sa, L,H) =
1

2

(
Su − Ŝu

)2
+ Sa +

1

2
(L− L̂)2 +

1

2
(H − Ĥ)2.

It is easy to see that V5 = (Su, Sa, L,H) ∈ C1
(
R4

+, R
)
in addition V5

(
Ŝu, 0, L̂, Ĥ

)
= 0 while V5 (Su, Sa, L,H) > 0

for all (Su, Sa, L,H) ∈ R4
+ and (Su, Sa, L,H) ̸=

(
Ŝu, 0, L̂, Ĥ

)
.

dV5

dt
=
(
Su − Ŝu

) dSu

dt
+

dSa

dt
+ (L− L̂)

dL

dt
+ (H − Ĥ)

dH

dt
.

Furthermore, by the derivative and simplifying the

dV5

dt
=
(
Su − Ŝu

)[
A− β1SuL

1 + nL
− β2SuH

1 + nH
− αSuSa − µSu

]
+ [αSuSa − µSa] + (L− L̂)[

β1SuL

1 + nL
+

β2SuH

1 + nH
− (µ+ γ + r1 + d1)L

]
+ (H − Ĥ) [γL− (µ+ r2 + d2)H] .
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By using the above condition(51a)-(51c), we obtain that

dV5

dt
≤−

[√
d11
2

(
Su − Ŝu

)
+

√
d22
2

(L− L̂)

]2
−

[√
d11
2

(
Su − Ŝu

)
+

√
d33
2

(H − Ĥ)

]2

−

[√
d22
2

(L− L̂) +

√
d33
2

(H − Ĥ)

]2
− αSuSa

[(
Su − Ŝu

)
− 1
]

where

d11 =
β1L̂

K1
+

β1nLL̂

K1
+

β2Ĥ

K2
+

β2nHĤ

K2
+ µ

d22 = (µ+ γ + r1 + d1)−
β1su
K1

d33 = (µ+ r2 + d2) .

Therefore, V5 is a Lyapunov function with respect to E5 in the region that fulfills the stated constraints since dV5

dt ≤ 0
is negative definite according to the criterion previously. Thus, the evidence that E5 is a globally asymptotically stable
is complete. □

Theorem 5.6. Let the equilibrium point E6 be locally asymptotically stable. Then it’s a globally asymptotically
stable provided that the following sufficient condition holds

C2
12 < 2C11C22 (5.12)

C2
13 < 2C11C33

β2S̈uSu
1 + nH

+
β2 SuL

1 + nH
< (µ+ r2 + d2) . (5.13)

Symbol locations cij , i, j = 1, 2, 3 are provided as evidence.

Proof . Think about the subsequent function

V6 (Su, Sa, L,H) =
1

2

(
Su − S̈u

)2
+

1

2

(
Sa − S̈a

)2
+

1

2
(L− L̈)2 +H.

It is easy to see that V6 = (Su, Sa, L,H) ∈ C1
(
R4

+, R
)
in addition V6

(
S̈u, S̈a, L̈, 0

)
= 0 while V6 (Su, Sa, L,H) > 0,

for all (Su, Sa, L,H) ∈ R4
+ and (Su, Sa, L,H) ̸=

(
S̈u, S̈a, L̈, 0

)
.

dV5

dt
=
(
Su − S̈u

) dSu

dt
+
(
Sa − S̈a

) dSa

dt
+ (L− L̈)

dL

dt
+

dH

dt
.

Furthermore, by the derivative and simplifying the

dV6

dt
=
(
Su − S̈u

)[
(1− b)A− β1 SuL

1 + nL
− β2 SuH

1 + nH
− αSuSa − µSu

]
+
(
Sa − S̈a

)
[bA + αSuSa

−µSa] + (L− L̈)

[
β1 SuL

1 + nL
+

β2 SuH

1 + nH
− (µ+ γ + r1 + d1) L

]
− (µ+ r2 + d2)H.

By using the above condition, we obtain that

dV6

dt
≤−

[√
C11

2

(
Su − S̈u

)
+
√

C22

(
Sa − S̈a

)]2
−

[√
C11

2

(
Su − S̈u

)
+
√
C33(L− L̈)

]2

−

[
(µ+ r2 + d2)−

(
β2S̈uSu
1 + nH

+
β2 SuL

1 + nH

)]
H
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where

C11 =
β1L

K1
+

β1nLZ

K1
+ αS̈a + µ,C13 =

β1Su

K1
− β1L

K1
− β1nLZ

K1

C22 = µ− αSu, C12 = αSu − αS̈a, C33 = (µ+ r1 + d1)−
β1Su

K1
.

Therefore, V6 is a Lyapunov function with respect to E6 in the region that fulfills the stated constraints since dV6

dt ≤ 0
is negative definite according to the criterion previously. Thus, the evidence that E6 is a globally asymptotically stable
is complete. □

Theorem 5.7. Let the equilibrium point E7 be locally asymptotically stable. Then it’s a globally asymptotically
stable provided that the following sufficient condition holds

f2
12 <

4

3
f11f22

f2
13 <

4

6
f11f33 (5.14)

f2
14 <

4

6
f11f44

f2
34 < f33f44

Su < min

{
(µ+ γ + r1 + d1)

¯̄K1

β1
,
µ

α

}
. (5.15)

Symbol locations fij , i, j = 1, 2, 3, 4 are provided as evidence.

Proof . Think about the subsequent function

V7 (Su, Sa, L,H) =
1

2

(
Su − ¯̄Su

)2
+

1

2

(
Sa − ¯̄Sa

)2
+

1

2
(L− ¯̄L)2 +

1

2
(H − ¯̄H)2.

It is easy to see that V7 = (Su, Sa, L,H) ∈ C1
(
R4

+, R
)
in addition V7

(
S̄u, S̄a,

¯̄L, ¯̄H
)
= 0, while V7 (Su, Sa, L,H) >

0, for all (Su, Sa, L,H) ∈ R4
+ and (Su, Sa, L,H) ̸=

(
S̄u,

¯̄Sa,
¯̄L, ¯̄H

)
.

dV6

dt
=
(
Su − S̄u

) dSu

dt
+
(
Sa − S̄a

) dSa

dt
+ (L− L̄)

dL

dt
+ (H − H̄)

dH

dt
.

Furthermore, by the derivative and simplifying the

dV6

dt
=
(
Su − S̄u

)[
(1− b)A− β1SuL

1 + nL
− β2SuH

1 + nH
− αSuSa − µSu

]
+
(
Sa − S̄a

)
[bA+ αSuSa − µSa]

+ (L− L̄)

[
β1SuL

1 + nL
+

β2SuH

1 + nH
− (µ+ γ + r1 + d1)L

]
+ (H − H̄) [γL− (µ+ r2 + d2)]H.

By using the above conditions, we obtain that

dV7

dt
≤−

[√
f11
3

(
Su − S̄u

)
+
√

f22
(
Sa − S̄a

)]2
−

[√
f11
3

(
Su − S̄u

)
+

√
f33
2

(L− L̄)

]2

−

[√
f11
3

(
Su − S̄u

)
+

√
f44
2

(H − H̄)

]2
−

[√
f33
2

(L− L̄) +

√
f44
2

(H − H̄)

]2
.

Therefore, V7 is a Lyapunov function with respect to E7 in the region that fulfills the stated constraints since dV7

dt ≤ 0
is negative definite according to the criterion previously. Thus, the evidence that E7 is a globally asymptotically stable
is complete. □
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6 Numerical Simulation

In this section, numerical simulation is carried out in order to visualize the aforementioned numerical solutions and
comprehend the impact of changing the parameters on the overall dynamics of the system (2.1). As a result, system
(2.1) is numerically solved for a variety of initial conditions and parameter sets. As can be shown in the following
figures, the system (2.1) exhibits a globally asymptotically stable equilibrium point for the following units of fictitious
parameters:

A = 500, b = 0.002, β1 = 0.002, β2 = 0.003 (6.1)

n = 0.004, α = 0.003, µ = 0.1, γ = 0.03 (6.2)

r1 = 0.004, d1 = 0.005, r2 = 0.003, d2 = 0.02 (6.3)

Figure 2: A timeline of eventsof system (2.1)’s trajectory for equation (54). a) Unaware susceptible user trajectory b)
Aware susceptible trajectory c) Light drug user trajectory d) Heavy drug user trajectory e) Recovery trajectory

Due to convergence from three distinct initial data, following figure clearly illustrates the presence of a globally
asymptotically stable seventh equilibrium point E7 = (331.04, 1455.02, 2312.19, 563.94, 109.40) for system (2.1). But
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for the information provided by Eq. (54) with θ = 0 and µ1 = 0.2, Solutions to system (2.1)’s resolution asymptotically
to the first equilibrium point E1 = (5000, 0, 0, 0, 0) as representative examples in the following, Figure(3)

Figure 3: A timeline of events of the trajectory of system (2.1) for the Eq.(54). (a) Trajectories of Unaware susceptible
user (b) Trajectories of aware susceptible (c) Trajectories of light drug user, (d) Trajectories of heavy drug user (e)
Trajectories of recovery.

Obviously, Figure 3. However, for the data given in Eq.(54) with b = 0 and β1 = 0.00002, β2 = 0.00003, α =
0.000003 the system’s solution (2.1) approaches asymptotically to the second equilibrium point E2 = (0, 5000, 0, 0, 0)
as representative examples in the following, Figure (4)

Additionally, the settings for the parameters listed in Eq.(54) with b = 1 the system’s solution (2.1) approaches
asymptotically E3 = (332.619, 4667.38, 0, 0, 0) as representative examples in the following, Figure (5)
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Figure 4: A timeline of events of the trajectory of system (2.1) for the Eq.(54). (a) Trajectories of Unaware susceptible
user (b) Trajectories of aware susceptible (c) Trajectories of light drug user, (d) Trajectories of heavy drug user (e)
Trajectories of recovery.

Additionally, the settings for the parameters listed in Eq. (54) with different β1 = 0.0002, β2 = 0.0003 the system’s
solution (2.1) approach asymptotically to the E4 = (878.75, 0, 3780.96, 0, 151.239) as representative examples in the
following, Figure (6)

We select the values b = 0, γ = 0, α = 0.00003 leaving other parameters constant as shown in Eq.(54), we obtain the
system (2.1) trajectories still makes its way toward the point of equilibrium to E5 = (440.124, 0, 328049, 800.119, 155223),
as representative examples in the following Figure (7)

Additionally, the settings for the parameters listed in Eq.(54) with b = 0, α = 0.00003 the system’s (2.1) solution
approaches asymptotically to E6 = (332.317, 3278.6, 1274.39, 0, 50.9755) as representative examples in the following
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Figure 5: A timeline of events of the trajectory of system (2.1) for the Eq.(54). (a) Trajectories of Unaware susceptible
user (b) Trajectories of aware susceptible (c) Trajectories of light drug user, (d) Trajectories of heavy drug user (e)
Trajectories of recovery.

,Figure (8)

It should be noted that the system is numerically computed for the data provided in Eq. (54), with one parameter
being changed every time, in attempt to explore the impact of the parameter values of system (2.1) on the dynamical
behavior of system (2.1).

The system’s solution(2.1) clearly approaches the seventh equilibrium point asymptotically, as shown by Figure (8).
Let’s choose a mild drug interaction rate addicts and susceptible from asymptomatic β1 = 0.002 and 0.02 respectively,
keeping other parameter fixed as given in equation (54), get the trajectories of system (2.1) still approaches to the
seventh equilibrium point but the number of an aware susceptible and aware susceptible decreases while the light
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Figure 6: A timeline of events of the trajectory of system (2.1) for the Eq.(54). (a) Trajectories of Unaware susceptible
user (b) Trajectories of aware susceptible (c) Trajectories of light drug user, (d) Trajectories of heavy drug user (e)
Trajectories of recovery.

drugs user increases as shown in Figure(9).

The system’s solution(2.1) is clearly shown to asymptotically approach the seventh equilibrium point in Figure
(9). Let’s choose the rate of contact between strong drugs. addicts and susceptible from asymptomatic β2 = 0.003
and 0.03 The trajectory of system (2.1) continuously approaching the seventh equilibrium point while maintaining
the other parameters fixed as stated in equation (54), however the proportion of unaware (susceptible) and conscious
susceptible individuals falls and the proportion of mild drug users increases as depicted in Figure (10).

Figure (10), which makes it evident how the system’s solution (2.1) works asymptotically to the seventh equilibrium
pointe except if α = 0.003 the system’s solution (2.1) approaches asymptotically stable to the second equilibrium pointe
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Figure 7: A timeline of events of the trajectory of system (2.1) for the Eq.(54). (a) Trajectories of Unaware susceptible
user (b) Trajectories of aware susceptible (c) Trajectories of light drug user, (d) Trajectories of heavy drug user (e)
Trajectories of recovery.

as shown in Figure(11).

Figure (11), which makes it evident how the system’s solution (1) works asymptotically to the seventh equilibrium
point except if n = 0.4 the system’s solution (1) approaches asymptotically stable to the third equilibrium point as
shown in Figure (12).
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Figure 8: A timeline of events of the trajectory of system (2.1) for the Eq. (54). (a) Trajectories of Unaware susceptible
user (b) Trajectories of aware susceptible (c) Trajectories of light drug user, (d) Trajectories of heavy drug user (e)
Trajectories of recovery.

7 Conclusions and Discussion

In this essay, we created and examined an eco-epidemiological model that explained drug and alcohol addiction
as well as the effects of the legal system and social stratification on addicts. Five non-linear autonomous ordinary
differential equations were included in model to capture the dynamics of five distinct species: ignorant Susceptible
(Su), aware Susceptible (Sa), light drugs (L), strong drugs (H), and recovery rate (R). System (2.1)’s roundness has
been debated.

All potential equilibrium points’ existence conditions are discovered. These points had their local and global
stability evaluations done. The control set of factors that affect the dynamics of the system is finally specified by
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Figure 9: A timeline of events of the trajectory of system (2.1). The system approaches asymptotically to the seventh
equilibrium point when (a) β1 = 0.002. (b) β1 = 0.02.

Figure 10: A timeline of events of the trajectory of system (2.1). The system approaches asymptotically to the seventh
equilibrium point when (a) β2 = 0.003. (b) β2 = 0.03

Figure 11: A timeline of events of the trajectory of system (1) for the data (54) different in value of α. The system
approaches asymptotically to the seventh equilibrium point when (a) α = 0.0003. (b) The system approaches asymp-
totically to the second equilibrium point when α = 0.003

numerical simulation, which also serves to validate the conclusions drawn from our analytical work. As a result,
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Figure 12: A timeline of events of the system’s solution (1), for the data given by Eq. (54) with different values of n.
(a) Globally asymptotically stable seventh equilibrium point for n = 0.004 (b) globally asymptotically stable for third
equilibrium point for n = 0.4

starting with the hypothetical set of data provided by Eq. (54), system (2.1) has been solved numerically for various
sets of initial points and various sets of parameters, and the following observations are obtained.

1- System (2.1) lacks periodic dynamics; instead, one of its equilibrium points is approached asymptotically by the
system’s solution (2.1).

2- The system (2.1) approached the global stable seventh equilibrium point E7 asymptotically for the hypothetical
parameter values provided by Eq. (54).

3- The seventh equilibrium point E7 becomes unstable when the value rises while maintaining the other parameters
as in eq. (54), and the trajectory of the system (1) moves toward the second equilibrium point E2.

4- The system’s solution (1) approaches asymptotically to the third equilibrium point E3 as the value of n increases
while maintaining the other parameters as in equation (54).

5- The dynamical behaviour of the system (1) is unaffected qualitatively by changing the parameter values β1 and
β2, and the system continues to move toward the seventh equilibrium point E7.

With the aforementioned in mind, each of these results is dependent on the fictitious set of parameter values
provided by Eq. (54), and various results may be reached for various sets of data.
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