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Abstract

In this paper, we consider some new classes of general bivariational inclusions. It is shown that the general bivari-
ational inclusions are equivalent to the fixed point problems, resolvent equations and dynamical systems. We have
discussed the existence of a solution of the general bivariational inequalities. Some new iterative methods for solving
general bivariational inclusions and related optimization problems are suggested by using resolvent methods, resolvent
equations and dynamical systems coupled with finite difference technique. Convergence analysis of these methods is
investigated under monotonicity. Some special cases are also discussed as applications of the main results.
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1 Introduction

Variational inclusion theory contains a wealth of new ideas and techniques. which can be viewed as a novel
extension and generalization of the variational inequalities. It is amazing that a wide class of unrelated problems can
be studied in the unified framework of variational inclusions. The resolvent equations were introduced and studied
by Noor [25, 26]. Noor [25, 26] proved that the variational inclusions are equivalent to the resolvent equations using
the resolvent operator technique. This equivalent alternative formulation has been used to study the existence of a
solution as well as to develop various iterative methods for solving the variational inclusions. One of the most difficult
and important problems in variational inequality theory is the development of efficient numerical methods. In this
direction, several numerical methods have been developed for solving the variational inclusions and their variant forms.
Noor [21, 24] suggested and analyzed some three-step forward-backward splitting algorithms for solving variational
inequalities and quasi variational inclusions by using the updating techniques of the solution. These forward-backward
splitting algorithms are similar to those of Glowinski et al. [9], which they suggested by using the Lagrangian technique.
It is known that three-step schemes are versatile and efficient. These three-step schemes are a natural generalization
of the splitting methods for solving partial differential equations. For applications of the splitting techniques to partial
differential equations, see Ames [2] and the references therein. For novel applications of the three-step methods, see
Ashish et al [3]. These methods include the Mann and Ishikawa iterative schemes and modified forward-backward
splitting methods of Tseng [47], Noor [21, 24] and Noor et al.[26] as special cases.

Related to variational inclusions, we have problem of dynamical systems. Dynamical systems arise naturally in
numerous applied and theoretical fields including celestial mechanics, financial forecasting, environmental applications,
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neuroscience, brain modeling. It is known that the variational inequalities are equivalent to the fixed point problems.
Dupuis et al.[8] suggested the projected dynamical system using the fixed point technique. This approach is used to
study the asymptotic stability of the solution of the variational inequalities. Noor et al, [39] used this technique to
suggest some efficient iterative schemes for solving variational inequalities. Noor et al. [33] has proved that variational
inclusions are equivalent to the dynamically systems. This equivalence has been used to study the existence and
stability of the solution of variational inclusions. For the applications and numerical methods of the dynamical
systems, see [7, 15, 22, 23, 24, 27, 36, 39] and the references therein.

Alvarez [1] used the inertial type projection methods for solving variational inequalities, the origin of which can be
traced back to Polyak [43]. Noor [24] suggested and investigated inertial type projection methods for solving general
variational inequalities. These inertial type methods have been modified in various directions for solving variational
inequalities and related optimization problems. Recently Shehu et al [45], Noor et al [41, 43, 44, 45] and Jabeen et al
[11] analyzed some inertial projection methods for some classes of general quasi variational inequalities. Convergence
analysis of these inertial type methods has been considered under some mild conditions.

In this paper, we consider some new classes of general bivariational inclusions. It have been shown that the system
of absolute value equations, complementarity problems, general variational inequalities, difference of two monotone
operators and sum of two monotone operators can be obtained as special cases of general bivariational inclusions. We
prove that the general bivariational inclusions are equivalent to fixed point problems. This alternative formulation is
used to suggest and investigate some new three step implicit and explicit iterative methods for solving general bivari-
ational inclusions. These new iterative methods can be viewed as significant generalization of the three-step methods
of Noor [21, 24] and Tseng [47]. We have also used the dynamical systems technique coupled with finite difference
schemes to propose some new iterative methods for solving the general bidirectional inclusions. The convergence
criteria of the proposed implicit methods is discussed under some mild conditions. Several important special cases are
discussed as applications of our results. We have only considered the theoretical aspects of the proposed methods. It
is still an open problem to implement these methods and compare with other techniques. It is expected the techniques
and ideas of this paper may be starting point for further research.

2 Formulations and basic facts

Let H be a real Hilbert space whose inner product and norm are denoted by ⟨., .⟩ and ∥.∥ respectively. Let
T ,B, A, g : H → H be nonlinear operators. Let Φ(., .) : H×H → H be a continuous bifunction.
We consider the problem of finding µ ∈ H such that

0 ∈ Φ(T u,B(µ)) +A(g(µ)). (2.1)

Inclusion of the type (2.1) is called the general bivariational inclusion. We would like to emphasize that the operator
T is strongly monotone, the operator B is Lipschitz continuous and A(.) is a maximal monotone operator. Several
important problems arising in pure and applied sciences can be studied in the frame work of the form (2.1).

We now discuss several interesting problems, which are special cases of the general bivariational inclusions (2.1).

(I). If g = I, the identity operator, then problem (2.1) reduces to finding µ ∈ H such that

0 ∈ Φ(T u,B(µ)) +A(µ), (2.2)

which is known bidirectional inclusion.
(II). If Φ(T ,B) = T , the problem (2.1) collapses to finding µ ∈ H such that

0 ∈ T u+A(g(µ)), (2.3)

is known as finding the zeros of the sum of two composite monotone operators.

(III). If A(g(µ)) = 0, and Φ(T u,B(µ)) = T u+ B(µ), , then problem (2.1) collapses to finding µ ∈ H such that

0 ∈ T u+ B(µ), (2.4)

which can be considered as finding the zeros of the sum of two monotone operators. Problem (2.4) can be interpreted
as variational inclusion involving difference of two monotone operators, which is itself a very difficult problem. This
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problem can be viewed as a problem of finding the minimum of two difference of convex functions, known DC-
problem. Such type of problems have applications in optimization theory and imaging process in medical sciences and
earthquake.

(IV). We note that if A(g(.)) = ∂φ(g(.)), where ∂φ(.) is the subdifferential of a proper, general convex and lower-
semicontinuous function φ(.) : H → R∪ {+∞, } then problem (2.1) is equivalent to finding µ ∈ H such that.

⟨Φ(T u,B(µ)), g(ν)− g(µ)⟩+ φ(g(ν))− φ(g(µ)) ≥ 0, ∀µ ∈ H. (2.5)

The problem of the type (2.5) is called the mixed general variational inequality problem, which has many important
and significant applications in regional, physical, mathematical, pure and applied sciences.

(V). If φ(g(.)) is the indicator function of a closed convex set Ω in H, then problem (2.5) is equivalent to finding
µ ∈ Ω such that

⟨Φ(T u,B(µ)), g(ν)− g(µ)⟩ ≥ 0, ∀ν ∈ Ω, (2.6)

which is called the general bidirectional inequality.

(VI). If g = I is identity operator and Φ(T u,B(µ)) = T µ + B(µ), then problem (2.6) reduces to finding µ ∈ Ω
such that

⟨T u+ B(µ), ν − µ⟩ ≥ 0, ∀ν ∈ Ω, (2.7)

which is called the mildly nonlinear variational inequalities, see Noor [17].

(VII). If Ω = H, Φ(T u,B(µ)) = T u+ B|µ|), then the general variational inequality (2.6) reduces to finding µ ∈ H
such that

⟨T u+ B|µ|, g(ν)⟩ = 0, ∀ν ∈ H, (2.8)

is known as the system of general absolute values equations.

(VIII). For g = I, problem (2.8) reduces to find µ ∈ H such that

T u+ B|µ| = b, ∀ν ∈ H, (2.9)

which is known as the system of absolute value equations, introduced and studied by Mangasarian [14]. It is worth
mentioning that problem (2.9) is a special case of mildly nonlinear variational inequalities, which was introduced and
studied by Noor [17] in 1975.

(IX). If Ω∗ = {µ ∈ H : ⟨µ, ν⟩ ≥ 0, ∀ν ∈} is a polar (dual) cone of a cone Ω in H, then problem (2.6) is equivalent
to finding µ ∈ H such that

g(µ) ∈ Ω, Φ(T u,B(µ)) ∈ Ω∗ and ⟨Φ(T u,B(µ)), g(µ)⟩ = 0, (2.10)

which is known as the general bicomplementarity problems. Obviously general bicomplementarity problems include
the complementarity problems. See also Noor [20], Cottle [4], and Cottle et al. [5] for applications in mathematical
and engineering sciences.

(X). If Φ(T u,B(µ)) = T µ, then problem (2.7) collapses to finding µ ∈ Ω such that

⟨T µ, ν − µ⟩ ≥ 0, ∀ν ∈ Ω, (2.11)

which is called the classical variational inequalities, introduced and studied by Stampacchia [46]. We would like to
emphasize that the variational inequalities are the natural and novel extension of the variational principles. For
the applications, formulations, generalizations, numerical methods, sensitivity analysis, dynamical systems and other
aspects of variational inequalities, complementarity problems, see [1, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 44, 45, 47] and the references therein.
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Remark 2.1. It is worth mentioning that for appropriate and suitable choices of the bifunction Φ(., .), operators
T , B, g, A, convex set Ω and the spaces, one can obtain several classes of variational inclusions, variational in-
equalities, complementarity problems and optimization problems as special cases of the general bivariational inclusion
(2.1). This shows that the problem (2.1) is quite general and unifying one. It is interesting problem to develop efficient
and implementable numerical methods for solving the general bivariational inclusions and their variant forms.

Definition 2.2. The bifunction Φ(., .) : H×H → H is said to be:

(i) Strongly monotone with respect to the first argument , if there exist a constant α > 0, such that

⟨Φ(T µ, .)− Φ(T ν, .), µ− ν⟩ ≥ α∥µ− ν∥2, ∀µ, ν ∈ H.

(ii) Lipschitz continuous with respect to the first argument, if there exist a constant β > 0, such that

Φ(T µ, .)− Φ(T ν, .) ≤ β∥µ− ν∥, ∀µ, ν ∈ H.

(iii) Monotone with respect to the first argument, if

⟨Φ(T µ, .)− Φ(T ν, .), µ− ν⟩ ≥ 0, ∀µ, ν ∈ H.

(iv) Pseudo monotone with respect to the first argument, if

⟨Φ(T µ, .), ν − µ⟩ ≥ 0 ⇒ ⟨Φ(T ν, .), ν − µ⟩ ≥ 0, ∀µ, ν,∈ H.

Remark 2.3. Every strongly monotone bifunction Φ(., .) is a monotone bifunction Φ(., .) and monotone bifunction
Φ(., .) is a pseudo monotone bifunction Φ(., .), but the converse is not true.

3 Iterative resolvent methods

In this section, we prove that the problem (2.1) is equivalent to the fixed point problem using the resolvent operator
technique. we use this alternative fixed point formulation to study the existences of solution as well as to suggest and
analyze some new implicit methods for solving the general bivariational inclusions (2.1).

Lemma 3.1. The function µ ∈ H is a solution of the general bivariational inclusion (2.1), if and only if, µ ∈ H
satisfies the relation

g(µ) = JA[g(µ)− ρΦ(T µ,B(µ))], (3.1)

where JA is the resolvent operator and ρ > 0 is a constant.

Proof . Let µ ∈ H be a solution of (2.1), then, for a constant ρ > 0,

ρΦ(T µ,Φ(B)(µ)) + ρA(µ) ∋ 0.

⇐⇒
−g(µ) + ρΦ(T µ,B(µ)) + (I + ρA)(g(µ)) ∋ 0

⇐⇒
g(µ) = JA[g(µ)− ρΦ(T µ, ρB(µ))].

the required (3.1). □ Lemma 3.1 implies that the general bivariational inclusion (2.1) is equivalent to the fixed point
problem (3.1).

We use this fixed point formulation to study the existence of a solution of the problem (2.1). We define the mapping
Φ associated with (3.1) as:

Φ(µ) = µ− g(µ) + JA[g(µ)− ρΦ)(T µ,B(µ))], (3.2)

To prove the existence of the solution of problem (2.1), it is enough that the mapping Φ defined by (3.2) is a contraction
mapping.
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Theorem 3.2. Let the bifunction Φ(T ,B) be strongly monotone with respect to the first argument with constant
α > 0 and Lipschitz continuous with constant β > 0, respectively. If the operator Φ(T ,B) is Lipschitz continuous
with respect to second argument with constant γ > 0 and there exists a constant ρ > 0, such that∥∥∥∥ρ− α− γ(1− k)

β2 − γ2

∥∥∥∥ <

√
(α− γ(1− k))2 − (β2 − γ2)k(2− k)

β2 − γ2
, k < 1, (3.3)

α > γ(1− k) +
√
(β2 − γ2)k(2− k), ρ <

1− k

γ
,

where

k = 2
√
(1− 2δ + σ2) + η, (3.4)

then there exists a solution µ ∈ H satisfying problem (2.1).

Proof . Let ν ̸= µ ∈ H be two solutions of problem (2.1). Then, from (3.2), we have

∥Φ(ν)− Φ(µ)∥ ≤ ∥ν − µ− (g(ν)− g(µ))∥
+∥JA[g(ν)− ρΦ(T ν,B(ν))]− JA[g(µ)− ρΦ(T µ,B(µ)))]∥

≤ 2∥ν − µ− (g(ν)− g(µ))∥
+∥ν − µ− ρΦ(T ν,B(ν))− ρΦ(T µ,B(µ))∥

≤ 2∥ν − µ− (g(ν)− g(µ))∥+ ∥µ− ν − ρ(Φ(T µ,B(µ))− Φ(T ν,B(µ)))∥
+ρ∥Φ(T ν,B(µ))− Φ(T ν,B(ν))∥

≤ 2∥ν − µ− (g(ν)− g(µ))∥
+∥µ− ν − ρ(Φ(T µ,B(µ))− Φ(T ν,B(µ)))∥+ ργ∥ν)− µ∥, (3.5)

where γ > 0 is the Lipschitz continuity constant of the operator B.

Since bifunction Φ(T ,B) is strongly monotone with respect to the first argument with
constant α > 0 and Lipschitz continuous with constant β > 0, so

∥µ− ν − ρ(Φ(T µ,B(µ))− Φ(T ν,B(µ)))∥2 = ∥µ− ν∥2

−ρ⟨Φ(T µ,B(µ))− Φ(T ν,B(µ)), µ− ν⟩
+ρ2∥Φ(T µ,B(µ))− Φ(T ν,B(µ)))∥2,

≤ (1− 2αρ+ β2ρ2)∥µ− ν∥2. (3.6)

In a similar way, using the strongly monotonicity and Lipschitz continuity of the operator g with constants δ > 0 and
σ > 0, respectively, we have

∥µ− ν − ρ(g(µ)− g(ν))∥2 ≤
√
1− 2δ + σ2∥µ− ν∥2. (3.7)

Combining (3.3), (3.6) and (3.7), we have

∥Φ(v)− Φ(u)∥ ≤ {
√
(1− 2αρ+ β2ρ2) + ργ + 2

√
1− 2δ + σ2}∥µ− ν∥

= θ∥µ− ν∥, (3.8)

where

θ = {
√
(1− 2αρ+ β2ρ2) + ργ + 2

√
1− 2δ + σ2}

= {
√
(1− 2αρ+ β2ρ2) + ργ + k}, (3.9)

and k is defined by (3.4). From (3.3). it follows that θ < 1. Thus it follows that the mapping Φ(µ) defined (3.2)
is a contraction mapping and consequently, the mapping Φ(µ) has a fixed point
Φ(µ) = µ ∈ H satisfying (2.1), the required result. □
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This alternative equivalent formulation (3.1) is used to suggest the following iterative methods for solving the
problem (2.1).

Algorithm 3.1. For a given µ0 ∈ H, compute the approximate solutions {µn}, {wn} and {yn} by the iterative
schemes

g(yn) = JA[g(µn)− ρΦ(T µn,B(µn))]

g(wn) = JA[g(yn)− ρΦ(T yn,B(yn))]
g(µn+1) = JA[g(wn)− ρΦ(T wn,B(wn))], n = 0, 1, 2, .. . . .

Algorithm 3.1 is a three step forward-backward splitting algorithm for solving general bivariational inclusions (2.1).
This method is very much similar to that of Glowinski and Le Tallec [7], which they suggested by using the Lagrangian
technique.

We now suggested another three step scheme for solving the general bivariational inclusion (2.1).

Algorithm 3.2. For a given µ0 ∈ H, compute the approximate solution {µn+1} by the iterative schemes

yn = (1− γn)µn + γn{µn − g(µn) + JA[g(µn)− ρΦ(T µn,B(µn))]} (3.10)

wn = (1− βn)µn + βn{yn − g(yn) + JA[g(yn)− ρΦ(T yn,B(yn))} (3.11)

µn+1 = (1− αn)µn + αn{wn − g(wn) + JA[g(wn)− ρΦ(T wn,B(wn))]}. (3.12)

For γn = 0, Algorithm 3.2 reduces to:

Algorithm 3.3. For a given µ0 ∈ H, compute {µn+1} by the iterative schemes

wn = (1− βn)µn + βn{µn − g(µn) + JA[g(µn)− ρΦ(T µn,B(µn))}
µn+1 = (1− αn)un + αn{wn − g(wn) + JA[g(wn)− ρΦ(T wn,B(wn))},

which is known as the Ishikawa iterative scheme for the general bivariational inclusion (2.1). Note that for γn =
0 and βn = 0, Algorithm 3.1 collapses to:

Algorithm 3.4. For a given µ0 ∈ H, compute {µn+1} by the iterative schemes

µn+1 = (1− αn)µn + αn{µn − g(µn) + JA[g(µn)− ρΦ(T µn,B(µn))},

is called the Mann iterative method. Now we suggest a perturbed iterative scheme for solving the general bivariational
inclusion (2.1).

Algorithm 3.5. For a given µo ∈ H, compute the approximate solution {µn} by the iterative schemes

yn = (1− γn)µn + γn{µn − g(µn) + JAn
[g(µn)− ρΦ(T µn,B(µn))]}+ γnhn

wn = (1− βn)un + βn{yn − g(yn) + JAn
[g(yn)− ρΦ(T yn, ρB(yn))]}+ βnfn

µn+1 = (1− αn)un + αn{wn − g(wn)JAn
[g(wn)− ρΦ(T wn,B(wn))]}+ αnen,

where {en}, {fn}, and {hn} are the sequences of the elements of H introduced to take into account possible inexact
computations and JAn is the corresponding perturbed resolvent operator; and the sequences {αn}, {βn} and {γn}
satisfy 0 ≤ αn, βn, γn ≤ 1; ∀n ≥ 0 and

∑∞
n=0 αn = ∞.

For γn = 0, we obtain the perturbed Ishikawa iterative method and for γn = 0 and βn = 0, we obtain the perturbed
Mann iterative schemes for solving general bivariational inclusion (2.1).

We now study the convergence analysis of Algorithm 3.2, which is the main motivation of our next result.

Theorem 3.3. Let the operators T , g satisfy all the assumptions of Theorem 3.1. If the condition (3.20) holds,
then the approximate solution {un} obtained from Algorithm 3.2 converges to the exact solution u of the general
bivariational inclusion (2.1) strongly in H.
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Proof . From Theorem 3.2, we see that there exists a unique solution u ∈ H of the general bivariational inclusion
(2.1). Let µ ∈ H be the unique solution of (2.1). Then, using Lemma 3.1, we have

µ = (1− αn)µ+ αn{µ− g(µ) + JA[g(µ)− ρΦ(T µ,B(µ))]} (3.13)

= (1− βn)µ+ βn{µ− g(µ) + JA[g(µ)− ρΦ(T µ,B(µ))]} (3.14)

= (1− γn)µ+ γn{µ− g(µ) + JA[g(µ)− ρΦ(T µ,B(µ))]}. (3.15)

From (3.12),(3.13) and (3.9), we have

∥µn+1 − µ∥ = ∥(1− αn)(µn − µ) + αn(wn − µ− (g(wn)− g(µ)))

+ αn{JA[g(wn)− ρΦ(T wn,B(wn))]− JA[g(µ)− ρΦ(T µ,B(µ))]}∥
≤ (1− αn)∥µn − µ∥+ 2αn∥wn − µ− (g(wn)− g(µ))∥
+ αn∥wn − µ− ρ(Φ(T wn,B(wn))− Φ(T µ,B((wn)))∥

+αnρ∥Φ(T µ,B(wn))− Φ(T µ,B(µ))∥
≤ (1− αn)||µn − µ||+ αn(k + ργ + t(ρ))||wn − µ||+ αnγ∥wn − µ∥,
= (1− αn)∥un − µ∥+ αnθ∥wn − µ∥. (3.16)

In a similar way, from (3.10),(3.14) and (3.9), we have

∥wn − µ∥ ≤ (1− βn)∥µn − µ∥+ 2βnθ∥yn − µ− (g(yn)− g(µ))∥
+ βn∥yn − µ− ρ(Φ(T yn,B(yn))− Φ(T µ,B(yn)))∥

+βnρ∥Φ(T µ,B(yn))− Φ(T µ,B(µ))∥
≤ (1− βn)∥µn − µ∥+ βn(k + ργ + t(ρ))∥yn − µ∥,
≤ (1− βn)∥µn − µ||+ βnθ∥yn − µ∥ (3.17)

Also from (3.10), (3.15) and (3.9), we obtain

∥yn − µ∥ ≤ (1− γn)∥µn − µ∥+ γnθ∥µn − µ∥, using (3.9).

≤ (1− (1− θ)γn)∥µn − µ∥
≤ ||µn − µ||. (3.18)

From (3.17) and (3.18), we obtain

∥wn − µ∥ ≤ (1− βn)∥µn − µ∥+ βnθ∥µn − µ∥
= (1− (1− θ)βn)∥µn − µ∥
≤ ||µn − µ||. (3.19)

Form the above equations, have

∥µn+1 − µ∥ ≤ (1− αn)∥µn − µ∥+ αnθ∥µn − µ∥
= [1− (1− θ)αn]∥µn − µ∥

≤
n∏

i=0

[1− (1− θ)α1]∥µ0 − µ∥.

Since
∑∞

n=0 αn diverges and 1 − θ > 0, we have
∏n

i=0[1 − (1 − θ)αi] = 0. Consequently the sequence {un} converges
strongly to µ. From (3.18), and (3.19), it follows that the sequences {yn} and {wn} also converge to µ strongly in H.
This completes the proof. □

We now suggest some new iterative methods for solving general bivariational inclusions of type (2.1).

Algorithm 3.6. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(µn+1) = JA[g(µn)− ρΦ(T µn,B(µn))], n = 0, 1, 2, ...
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which is known as the resolvent iterative method.

Algorithm 3.7. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(µn+1) = JA[g(µn)− ρΦ(T µn+1,B(µn+1)], n = 0, 1, 2, ...

which is known as the implicit resolvent method and is equivalent to the following two-step method.

Algorithm 3.8. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))]

g(µn+1) = JA[g(µn)− ρΦ(T ωn,B(ωn))], n = 0, 1, 2, ...

We can rewrite the equation (3.1) as:

g(µ) = JA[
g(µ) + g(µ)

2
− ρΦ(T µ,B(µ))].

This fixed point formulation was used to suggest the following implicit method.

Algorithm 3.9. [29]. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(µn+1) = JA
[g(µn) + g(µn+1)

2
− ρΦ(T µn+1,B(µn+1))

]
.

The predictor-corrector technique is applied to suggest the following inertial iterative method for solving the problem
(2.1).

Algorithm 3.10. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))]

g(µn+1) = JA[
g(ωn) + g(µn)

2
− ρΦ(T ωn,B(ωn))], λ ∈ [0, 1].

From equation (3.1), we have

g(µ) = JA[g(µ)− ρΦ(T (
µ+ µ

2
),B(µ+ µ

2
))]. (3.20)

This fixed point formulation (3.20) is used to suggest the implicit method for solving the problem (2.1) as

Algorithm 3.11. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(µn+1) = JA[g(µn)− ρΦ(T (
µn + µn+1

2
),B(µn + µn+1

2
))].

We can use the predictor-corrector technique to rewrite Algorithm 3.11 as:

Algorithm 3.12. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))],

g(µn+1) = JA[g(µn)− ρΦ(T (
µn + ωn

2
),B(µn + ωn

2
))], n = 0, 1, 2, ....
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is known as the mid-point implicit method for solving the problem (2.1).
We again use the above fixed formulation to suggest some following implicit iterative methods.

Algorithm 3.13. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(µn+1) = JA[g(µn+1)− ρΦ(T (
µn + µn+1

2
),B(µn + µn+1

2
))].

Using the predictor-corrector technique, Algorithm 3.13 can be written as:

Algorithm 3.14. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))],

g(µn+1) = JA[g(ωn)− ρΦ(T (
µn + ωn

2
),B(µn + ωn

2
))].

which appears to be new one. We now use the fixed point formulation to suggest a hybrid implicit method for solving
the problem (2.1) and related optimization problems, which is the main motivation of this paper. One can rewrite
(3.1) as

g(µ) = JA[g(
µ+ µ

2
)− ρΦ(T (

µ+ µ

2
),B(µ+ µ

2
))]. (3.21)

This equivalent fixed point formulation enables us to suggest the following implicit method for solving the problem
(2.1).

Algorithm 3.15. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(µn+1) = JA

[
g(

µn + µn+1

2
)− ρΦ(T (

µn + µn+1

2
),B(µn + µn+1

2
))

]
.

To implement the implicit method, one uses the predictor-corrector technique. We use Algorithm 3.11 as the predictor
and Algorithm 3.15 as corrector. Thus, we obtain a new two-step method for solving the problem (2.1).

Algorithm 3.16. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))]

g(µn+1) = JA

[
g
(ωn + µn

2

)
− ρΦ(T

(
ωn + µn

2

)
,B

(
ωn + µn

2
)

)]
.

which is a predictor-corrector two-step method. For a parameter ξ, one can rewrite the equation (3.1) as

g(µ) = JA[(1− ξ)g(µ) + ξg(µ)− ρΦ(T µ,B(µ))].

This equivalent fixed point formulation enables to suggest the following inertial method for solving the problem (2.1).

Algorithm 3.17. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(µn+1) = JA[(1− ξ)g(µn) + ξg(µn−1)− ρΦ(T µn,B(µn))], n = 0, 1, 2, ....

It is noted that Algorithm 3.17 is equivalent to the following two-step method.

Algorithm 3.18. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(ωn) = (1− ξ)un + ξun−1

g(µn+1) = JA[g(ωn)− ρΦ(T µn,B(µn))].
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Algorithm 3.18 is known as the inertial resolvent method.

Using this idea, we can suggest the following iterative methods for solving general bivariational inclusions.

Algorithm 3.19. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(ωn) = (1− ξ)un + ξun−1

g(µn+1) = JA[g(ωn)− ρΦ(T ωn,B(ωn))].

Using the technique of Noor et al. [34], Shehu et al.[45] and Jabeen et al [11], one can investigate the convergence
analysis of these inertial resolvent methods. One can again use the equation (3.1) to suggest a wide class of inertial
methods for solving the general bivariational inclusions. We have only conveyed the main ideas and the techniques.
To develop the efficient methods and comparison with other techniques is the open problem.

4 Resolvent equations technique

In this section, we discuss the resolvent equations associated with the general bivariational inclusions (2.1). It
is worth mentioning that the resolvent equations associated with variational inclusions were introduced and studied
by Noor [25, 26, 27] and Noor et al. [28] proved that the quasi variational inclusions are equivalent to the implicit
resolvent equations to study the sensitivity analysis.

Related to the general bidirectional inclusion (2.1), we consider the problem of finding
z, µ ∈ H such that

Φ(T JAz,BJAz, ) + ρ−1RAz = 0, (4.1)

where ρ > 0 is a constant and RA = I − JA. Here I is the identity operator and
J = (1 + ρA)−1 is the resolvent operator. The equation of the type (4.1) are called the implicit resolvent equations.

Lemma 4.1. The general bivariational inclusion (2.1) has a solution µ ∈ H, if and only if, the resolvent equations
(4.1) have a solution z, µ ∈ H, where

g(µ) = JAz (4.2)

and

z = g(µ)− ρΦ(T µ,B(µ)). (4.3)

Proof . Let µ ∈ H be a solution of (2.1), then, for a constant ρ,

ρΦ(T µ,B(µ)) + ρA(g(µ)) ∋ 0

⇐⇒
−g(µ) + ρΦ(T µ,B(µ)) + g(µ) + ρA(g(µ)) ∋ 0

⇐⇒
g(µ) = JA[g(µ)− ρΦ(T µ,B(µ))].

Take z = g(µ)− ρΦ(T µ,B(µ)), then z = JAz. Thus

z = JAz − ρΦ(TJA
z,BJA

z),

that is

Φ(T JA(z,BJAz) + ρ−1RAz = 0,
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the required (4.1). □ From Lemma 4.1, we see that the general bivariational inclusion (2.1) and the resolvent equations
(4.1) are equivalent. This alternative equivalent formulation has been used to suggest and analyze a wide class of
efficient and robust iterative methods for solving the general bivariational inclusions and related optimization problems.

We use the resolvent equations (4.1) to suggest some new iterative methods for solving the general bivariational
inclusions. From (4.2) and (4.3), we have

z = JAz − ρΦ(T JAz,B(JAz))

= JA[g(µ)− ρΦ(T µ,B(µ))]− ρT JA([g(µ)− ρΦ(T µ,JB(µ))].

Thus, we have

g(µ) = −ρΦ(T µ,B(µ)) +
[
JA([g(µ)− ρΦ(T µ,B(µ))]− ρT JA[g(µ)− ρΦ(T µ,B(µ))].

Consequently, for a constant αn > 0, we have

µ = (1− αn)µ+ αnJA{JA[g(µ)− ρΦ(T u,B(µ))] + ρΦ(T µ,B(µ))
−ρT JA[g(µ)− ρT µ− ρB(µ)]}

= (1− αn)µ+ αnJA{g(ω)− ρT ω − ρΦ(T µ,B(µ))}, (4.4)

where

g(ω) = JA[g(µ)− ρΦ(T µ,B(µ))]. (4.5)

Using (4.4) and (4.5), we can suggest the following new predictor-corrector method for solving the general bivariational

inclusion (2.1).

Algorithm 4.1. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))]

g(µn+1) = (1− αn)µn + αnJA

{
g(ω)− ρT ω − ρΦ(T µ,B(µ))

}
.

If αn = 1, then Algorithm 4.1 reduces to

Algorithm 4.2. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(ωn) = JA[g(µn)− ρΦ(T µn,B(µ))]
g(µn+1) = JA[g(ωn)− ρT ωn + ρΦ(T µn,B(µn))],

which appears to be a new one. In a similar way, we can suggest and analyse the predictor-corrector inertial method
for solving the general bivariational inclusion(2.1), which involve only one resolvent.

Algorithm 4.3. For given u0, u1 ∈ H, compute un+1 by the iterative scheme

g(ωn) = (1− ξ)g(µn) + ξg(µn−1)

g(µn+1) = JA[g(ωn)− ρT ωn + ρΦ(T µn,B(µn))].

One can study the convergence of the Algorithm 4.3 using the technique of Jabeen et al [11] and Noor et al. [34].

Remark 4.2. We have only given some glimpse of the technique of the resolvent equations for solving the general
bivariational inclusions. One can explore the applications of the resolvent equations in developing efficient numerical
methods for solving general bivariational inclusions and related nonlinear optimization problems.
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5 Dynamical Systems Technique

In this section, we consider the dynamical systems technique for solving general bivariational inclusions. The
dynamical systems associated with variational inequalities using the fixed point problems introduced and studied by
Dupuis and Nagurney [7]. Thus it is clear that the variational inequalities are equivalent to a first order initial value
problem. Variational inequalities, equilibrium and nonlinear problems arising in various branches in pure and applied
sciences can now be studied in the setting of dynamical systems. Noor et al. [33, 35, 39] have been shown that the
dynamical systems are useful in developing some efficient numerical techniques for solving variational inequalities and
related optimization problems. We consider some iterative methods for solving the general bivariational inclusions
using the dynamical system.

We now define the residue vector R(µ) by the relation

R(µ) = g(µ)− JA[g(µ)− ρΦ(T µ,B(µ))]. (5.1)

Invoking Lemma 3.1, one can easily conclude that µ ∈ H is a solution of the problem(2.1), if and only if, µ ∈ H is a
zero of the equation

R(µ) = 0. (5.2)

We now consider a dynamical system associated with the general bidirectional inclusions. Using the equivalent
formulation (3.1), we suggest a class of project dynamical systems as

dg(µ)

dt
= λ{JA[g(µ)− ρΦ(T u,B(µ)]− g(µ))}, g(µ(t0)) = α, (5.3)

where λ is a parameter. The system of type (5.3) is called the resolvent dynamical system associated with the problem
(2.1). Here the right hand is related to the resolvent and is discontinuous on the boundary. From the definition, it is
clear that the solution of the dynamical system always stays in H. This implies that the qualitative results such as
the existence, uniqueness and continuous dependence of the solution of the general bivariational inclusions (5.1) can
be studied.

We use the resolvent dynamical system (5.1) to suggest some iterative for solving the general bidirectional inclusion
(2.1). These methods can be viewed in the sense of Korpelevich [13] and Noor [24].

For simplicity, we take λ = 1. Thus the dynamical system (5.1) becomes

dg(µ)

dt
+ g(µ) = JA

[
g(µ)− ρΦ(T u,B(µ))

]
, g(µ(t0)) = α. (5.4)

The forward difference scheme is used to construct the implicit iterative method.
Discretizing (5.4), we have

g(µn+1)− g(µn)

h
+ g(µn) = JA[g(µn)− ρΦ(T µn+1,B(µn+1))], (5.5)

where h is the step size. For h = 1, we can suggest the following implicit iterative method for solving the general
bivariational inclusion (2.1).

Algorithm 5.1. For a given µ0,, compute µn+1 by the iterative scheme

g(µn+1) = JA

[
g(µn)− ρΦ(T µn+1,B(µn+1))

]
,

This is an implicit method, which is quite different from the implicit method of [4].
Algorithm 5.1 is equivalent to the following two-step method.

Algorithm 5.2. For a given µ0,, compute µn+1 by the iterative scheme

g(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))]

g(µn+1) = JA
[
g(µn)− ρΦ(T ωn,B(ωn))

]
.
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Discretizing (5.5), we now suggest an other implicit iterative method for solving (2.1).

g(µn+1)− g(µn)

h
+ g(µn) = JA)[g(µn+1)− ρΦ(T µn+1,B(µn+1))],

where h is the step size. For h = I, this formulation enables us to suggest the two-step iterative method.

Algorithm 5.3. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(ωn) = JA[g(µn)− ρT µn − ρB(µn)]

g(µn+1) = JA

[
(1− ζ)g(ωn) + ζg(µn)− ρΦ(T ωn,B(ωn)

]
,

where ζ ∈ [0, 1] is a constant. Again using the resolvent dynamical systems, we can suggest some iterative methods
for solving the general bivariational inclusion and related optimization problems.

Algorithm 5.4. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(µn+1) = JA

[
(1− λ)g(µn) + λg(µn+1)− ρΦ(T µn,B(µn))

]
, λ ∈ [0, 1]

or equivalently

Algorithm 5.5. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

g(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))]

g(µn+1) = JA

[
(1− λ)g(µn) + λg(ωn)− ρΦ(T un,B(µn))

]
.

In a similar way, we have

dg(µ)

dt
+ g(µ) = JA[g((1− α)µ+ αµ)− ρΦ(T ((1− α)µ+ αµ),B((1− α)µ+ αµ)))], (5.6)

where α ∈ [0, 1] is a constant. Discretizating (5.6) and taking h = 1, we have

g(µn+1) = JA
[
g(1− α)µn) + αµn−1)− ρΦ(T ((1− α)µn + αµn−1),B((1− α)µn + αµn−1))

]
,

which is an inertial type iterative method for solving the general bivariational inclusion (2.1). Using the predictor-
corrector techniques, we have

Algorithm 5.6. For a given µ0 ∈ H, compute µn+1 by the iterative schemes

ωn = (1− α)µn − αµn−1

g(µn+1) = JA
[
g(ωn)− ρΦ(T (ωn),B(ωn))

]
,

which is known as the inertial two-step iterative method.
One can study the convergence criteria of Algorithm (5.6) using essentially the technique of Jabeen et al. [11], Noor
et al. [34] and Shehu et al. [45].

Computational Aspects

In this paper, we have suggested several new iterative methods for solving general bivariational inclusions and
related problems using the techniques of are resolvent operators, resolvent equations and dynamical systems. The
inertial type iterations need one resolvent only as compared with known methods. Due to these facts, the newly
methods perform better than the other techniques. To the best of our knowledge, no implementable numerical
methods are available. This is a relatively new field and may be starting point for further applications in various
fields.
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Conclusion

In this paper, we have introduced and studied some new classes of general bivariational inclusions. Some interesting
and important known and new classes of variational inequalities and optimizations are discussed. We have proved
that the general bivariational inclusions are equivalent to this fixed point problems, resolvent equations and dynamical
systems. These alternative formulations are used to discuss the existence of a solution of the general bivariational
inclusions and suggest some new iterative methods for solving the general bivariational inclusions. These new methods
include extraresolvent method, modified double resolvent methods and inertial type are suggested using the techniques
of resolvent method, resolvent equations and dynamical systems. Convergence analysis of the proposed method is
discussed for monotone operators. We have given only the glimpse of the applications of the dynamical systems. This
technique is quite flexible and unified one. Using the ideas and techniques of this paper, one can suggest and investigate
several new implicit methods for solving various classes of general bivariational inclusions and related problems. The
implementation and comparison of these methods with other methods needs further efforts.
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