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Abstract

In this paper, we prove some theorems about the Hyers-Ulam-Rassias stability of linear isometries. In particular, this
paper will address the stability of the orthogonality equation, ⟨f(x), f(y)⟩ = ⟨x, y⟩, on the restricted domains.
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1 Introduction

Throughout the paper, we will use (E, ∥ · ∥) and (F, ∥ · ∥) to denote normed spaces over K, unless specifically
mentioned about them, where K denotes either R or C. A mapping f : E → F is called an isometry if it satisfies

∥f(x) − f(y)∥ = ∥x− y∥ (1.1)

for all x, y ∈ E.

Taking into account the definition of Hyers and Ulam [18], for any fixed ε ≥ 0, a function f : E → F is called an
ε-isometry if f satisfies the inequality∣∣∥f(x) − f(y)∥ − ∥x− y∥

∣∣ ≤ ε (1.2)

for all x, y ∈ E. If there exists a constant K > 0 such that for any ε-isometry f : E → F , there exists an isometry
U : E → F satisfying ∥f(x) − U(x)∥ ≤ Kε for all x ∈ E, then we say that the functional equation (1.1) has the
Hyers-Ulam stability in the class of functions of E into F .

If we weaken the conditions associated with Hyers-Ulam stability, we will be able to study more diverse topics:
Assume that φ,Φ : E × E → [0,∞) satisfy some ‘mild’ conditions. Let K be a special class of functions of E into F .
If for any function f ∈ K that satisfies the inequality∣∣∥f(x) − f(y)∥ − ∥x− y∥

∣∣ ≤ φ(x, y),
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there exists a function U ∈ K such that ∥U(x) − U(y)∥ = ∥x− y∥ and ∥f(x) − U(x)∥ ≤ Φ(x, x) for all x, y ∈ E, then
we say that the functional equation (1.1) has the Hyers-Ulam-Rassias stability in the class K. (The term generalized
Hyers-Ulam stability has been sometimes used for the same concept.) These terminologies also apply to other types
of functional equations.

As far as we know, Hyers and Ulam are recognized as the first mathematicians who studied the Hyers-Ulam stability
of isometries (see [18]). They indeed used the properties of the inner product to prove the stability of isometries of a
real Hilbert space E onto E: For any surjective ε-isometry f : E → E with f(0) = 0, there exists a surjective isometry
U : E → E such that ∥f(x) − U(x)∥ ≤ 10ε for all x ∈ E.

This result of Hyers and Ulam was generalized by Bourgin [2]: Assume that E is a real Banach space and that F
belongs to the class of uniformly convex real Banach spaces which includes the spaces Lp(0, 1) for 1 < p < ∞. For
any ε-isometry f : E → F with f(0) = 0, there exists a linear isometry U : E → F such that ∥f(x) −U(x)∥ ≤ 12ε for
every x ∈ E.

After that, Hyers and Ulam [19] studied the stability problem for the Banach spaces of continuous functions:
Assume that S1 and S2 are compact metric spaces and C(Si) is the Banach space of real-valued continuous functions
on Si equipped with the supremum norm ∥ · ∥∞. If a homeomorphism T : C(S1) → C(S2) satisfies the inequality∣∣∥T (f) − T (g)∥∞ − ∥f − g∥∞

∣∣ ≤ ε (1.3)

for some ε ≥ 0 and for all f, g ∈ C(S1), then there is an isometry U : C(S1) → C(S2) such that ∥T (f)−U(f)∥∞ ≤ 21ε
for any f ∈ C(S1).

This very result of Hyers and Ulam was once again widely generalized by Bourgin (see [4]): Suppose that S1

and S2 are completely regular Hausdorff spaces and T : C(S1) → C(S2) is a surjective function that satisfies the
inequality (1.3) for some ε ≥ 0 and for all f, g ∈ C(S1). Then there is a linear isometry U : C(S1) → C(S2) with
∥T (f) − U(f)∥∞ ≤ 10ε for any f ∈ C(S1). After that, Bourgin [5] continued to study the stability of isometries in
finite-dimensional Banach space.

In 1978, Gruber [16] proved the following elaborate theorem: Let E and F be real normed spaces. Assume that
f : E → F is a surjective ε-isometry. Moreover, suppose U : E → F is an isometry with f(p) = U(p) for a p ∈ E. If
∥f(x) − U(x)∥ = o(∥x∥) as ∥x∥ → ∞ uniformly, then U is a surjective linear isometry and ∥f(x) − U(x)∥ ≤ 5ε for all
x ∈ E. Furthermore, if f is continuous, then ∥f(x) − U(x)∥ ≤ 3ε for any x ∈ E.

Years later, Gevirtz [15] studied the stability of isometries defined between real Banach spaces: Let E and F be
real Banach spaces. For each surjective ε-isometry f : E → F , there exists a surjective isometry U : E → F that
satisfies ∥f(x)−U(x)∥ ≤ 5ε for any x ∈ E. After that, the upper bound 5ε was improved to a sharper 2ε by Omladič
and Šemrl [24].

Due to [13, 29], we say that a function f : E → F is an (ε, p)-isometry when f satisfies∣∣∥f(x) − f(y)∥ − ∥x− y∥
∣∣ ≤ ε∥x− y∥p

for some constants p ≥ 0 and ε ≥ 0 and for all x, y ∈ E. Dolinar [13] demonstrated the superstability of (ε, p)-
isometries: If p is larger than 1, then every surjective (ε, p)-isometry f : E → F between finite-dimensional real
Banach spaces is an isometry.

There are many other papers related to the stability of isometries, but it is unfortunate that we cannot quote them
all in this paper due to page limitations. Nevertheless, see [1, 3, 14, 20, 21, 23, 26, 27, 28, 30, 31, 32, 33] for more
general information on the stability of isometries and related topics.

The orthogonality equation

⟨f(x), f(y)⟩ = ⟨x, y⟩ (1.4)

is well known to characterize linear isometries that map a Hilbert space into another one. It would be interesting and
meaningful to study the stability of the orthogonality equation in order to shed new light on the characteristics of
linear isometries as well as to study the stability of the equation (1.1).

In this paper, the Hyers-Ulam-Rassias stability problems for linear isometries are studied in several different
perspectives. More precisely, we prove some theorems about the Hyers-Ulam-Rassias stability of the orthogonality
equation on the restricted domains.
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2 Preliminaries

From now on, we use E and F to denote Hilbert spaces over K, where K is either R or C. A function f : E → F is
said to be inner product preserving if and only if f is a solution to the orthogonality equation (1.4) for any x, y ∈ E.
It is to be noted that a function f : E → F is a solution to the orthogonality equation (1.4) if and only if it is a linear
isometry.

On the other hand, a function f : E → F is a solution to the functional equation

⟨f(x), f(y)⟩ = ⟨y, x⟩

for any x, y ∈ E if and only if it is a conjugate-linear isometry, i.e., f is an isometry that satisfies f(λx + µy) =
λf(x) + µf(y) for all x, y ∈ E and λ, µ ∈ K.

We define S = {z ∈ K : |z| = 1}. Any two functions f, g : E → F are said to be phase-equivalent if and only if
there exists a function σ : E → S such that g(x) = σ(x)f(x) for any x ∈ E.

The functional equation

|⟨f(x), f(y)⟩| = |⟨x, y⟩| (2.1)

is called the Wigner equation or the generalized orthogonality equation. The following theorem was introduced in [34].

Theorem 2.1. If a function f : E → F satisfies the Wigner equation (2.1) for all x, y ∈ E, then f is phase-equivalent
to a linear isometry or a conjugate-linear isometry.

Let (E, ⟨·, ·⟩) be a Hilbert space with the associated norm defined as ∥x∥ =
√

|⟨x, x⟩|. For any fixed d ≥ 0, we
define either D = {x ∈ E : ∥x∥ ≥ d} or D = {x ∈ E : ∥x∥ ≤ d}. (In the latter case, we will exclude the trivial case of
D = {0}). Now we choose an appropriate constant c that satisfies the following condition:{

0 < c < 1 (for D = {x ∈ E : ∥x∥ ≥ d}),

c > 1 (for D = {x ∈ E : ∥x∥ ≤ d}).
(2.2)

In practice, we will either choose an arbitrary constant c that satisfies the conditions (2.2) and (2.3), or an arbitrary
constant c that satisfies the conditions (2.2) and (2.5) as we see in several theorems and corollaries below. The following
theorem was proved in [11, Theorem 1] (or see [12, Theorem 3]).

Theorem 2.2. Let E and F be Hilbert spaces over K. Assume that a function φ : E × E → [0,∞) satisfies the
following condition

lim
m+n→∞

cm+nφ

(
1

cm
x,

1

cn
y

)
= 0 (2.3)

for all x, y ∈ D. If a function f : E → F satisfies the inequality∣∣|⟨f(x), f(y)⟩| − |⟨x, y⟩|
∣∣ ≤ φ(x, y) (2.4)

for all x, y ∈ D, then there exists a unique function I : E → F (up to a phase-equivalent function) that satisfies the
Wigner equation (2.1) for all x, y ∈ E as well as

∥f(x) − I(x)∥ ≤
√

φ(x, x)

for all x ∈ D.

It follows from Theorem 2.1 that if E and F are real Hilbert spaces, then the function I : E → F in Theorem 2.2
has to be phase-equivalent to a linear isometry as we see in the following corollary.
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Corollary 2.3. Let E and F be real Hilbert spaces. Assume that a function φ : E×E → [0,∞) satisfies the condition
(2.3) for all x, y ∈ D. If a function f : E → F satisfies the inequality (2.4) for all x, y ∈ D, then there exist a function
σ : E → {−1, 1} and a linear isometry U : E → F that satisfy ∥f(x) − σ(x)U(x)∥ ≤

√
φ(x, x) for all x ∈ D.

Proof . According to Theorem 2.2, there exists a unique function I : E → F (up to a phase-equivalent function) that
satisfies the Wigner equation (2.1) for all x, y ∈ E as well as

∥f(x) − I(x)∥ ≤
√
φ(x, x)

for all x ∈ D. Due to Theorem 2.1, the function I : E → F is phase-equivalent to a linear isometry, since E and F
are real Hilbert spaces. That is, there exist a function σ : E → {−1, 1} and a linear isometry U : E → F such that
I(x) = σ(x)U(x) for any x ∈ E. □

The Hyers-Ulam-Rassias stability of the orthogonality equation was proved in [11, Theorem 2] using a similar
method used to prove Theorem 2.2. The result mentioned above is introduced in the following theorem, omitting the
proof.

Theorem 2.4. Let E and F be Hilbert spaces over K. Assume that a function φ : E × E → [0,∞) satisfies the
condition (2.3) for all x, y ∈ D. If a function f : E → F satisfies the inequality∣∣⟨f(x), f(y)⟩ − ⟨x, y⟩

∣∣ ≤ φ(x, y)

for all x, y ∈ D, then there exists a unique linear isometry U : E → F that satisfies

∥f(x) − U(x)∥ ≤
√
φ(x, x)

for all x ∈ D.

In the following theorem, the upper bound of the inequality (2.7) may be larger than the upper bound given in
Theorem 2.4. This is an obvious drawback of the following theorem. However, it is an advantage of the following
theorem to weaken the condition (2.3) so that the next theorem has a more broad application than Theorem 2.4.
Indeed, the new condition (2.5) may not look much different from the old condition (2.3), but the various theorems
introduced in the next section will show that the new condition has significantly weakened the old one. That is,
Theorem 2.5 is an improved version of Theorem 2.4 and the former will play a central role in this paper. We will see
in the next section that the limit values included in the inequality (2.7) below become nonnegative constants in the
usual application environment.

The proof of the following theorem is based strongly on the well known properties of the inner product of Hilbert
spaces and the direct method that was first conceived by Hyers [17]. Since the following theorem has been proved in
detail in [12, Theorem 5], the proof will be omitted here.

Theorem 2.5. Let E and F be Hilbert spaces over K and assume that a function φ : E × E → [0,∞) satisfies the
condition

lim
m,n→∞

cm+nφ

(
1

cm
x,

1

cn
y

)
= 0 (2.5)

for all x, y ∈ D. If a function f : E → F satisfies the inequality∣∣⟨f(x), f(y)⟩ − ⟨x, y⟩
∣∣ ≤ φ(x, y) (2.6)

for all x, y ∈ D, then there exists a unique linear isometry U : E → F that satisfies

∥f(x) − U(x)∥ ≤

√
φ(x, x) + lim

n→∞
cnφ

(
1

cn
x, x

)
+ lim

n→∞
cnφ

(
x,

1

cn
x

)
(2.7)

for all x ∈ D.
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3 Stability of linear isometries

In this section, we will use E and F to denote some Hilbert spaces over K, unless specifically mentioned about
them, where K denotes either R or C.

When the control function has the form of φ(x, y) = θ∥x∥p∥y∥q which was first suggested by Rassias [25] for
approximate additive functions, it would be quite interesting to study the stability problem of the orthogonality
equation, depending on the form of D.

Theorem 3.1. Assume that d, p, q, and θ are constants with d ≥ 0, p ≥ 1, q ≥ 1 (excepting the case of p = q = 1),
and θ > 0. Furthermore, let D = {x ∈ E : ∥x∥ ≤ d}. If a function f : E → F satisfies the inequality∣∣⟨f(x), f(y)⟩ − ⟨x, y⟩

∣∣ ≤ θ∥x∥p∥y∥q (3.1)

for all x, y ∈ D, then there exists a unique linear isometry U : E → F that satisfies

∥f(x) − U(x)∥ ≤

{ √
θ∥x∥p+q (for p > 1 and q > 1),√
2θ∥x∥p+q (for either p = 1 or q = 1)

for all x ∈ D.

Proof . Due to the condition (2.2), we select a constant c satisfying c > 1. Let us define a function φ : E×E → [0,∞)
by φ(x, y) = θ∥x∥p∥y∥q for all x, y ∈ E. Since one of p and q has to be larger that 1, we show that

lim
m,n→∞

cm+nφ

(
1

cm
x,

1

cn
y

)
= lim

m,n→∞
θ

cm+n

cpm+qn
∥x∥p∥y∥q = 0

for all x, y ∈ D, which states that φ satisfies the condition (2.5) for all x, y ∈ D.

We know that

lim
n→∞

cnφ

(
1

cn
x, x

)
= lim

n→∞
θ
cn

cpn
∥x∥p+q =

{
θ∥x∥p+q (for p = 1),

0 (for p > 1)

and

lim
n→∞

cnφ

(
x,

1

cn
x

)
= lim

n→∞
θ
cn

cqn
∥x∥p+q =

{
θ∥x∥p+q (for q = 1),

0 (for q > 1).

Since either p > 1 and q > 1, or p = 1 and q > 1, or p > 1 and q = 1, according to Theorem 2.5, there exists a unique
linear isometry U : E → F that satisfies the given inequality for all x ∈ D. □

Theorem 3.2. Assume that d, p, q, and θ are constants with d > 0, p ≤ 1, q ≤ 1 (excepting the case of p = q = 1),
and θ > 0. Moreover, let D = {x ∈ E : ∥x∥ ≥ d}. If a function f : E → F satisfies the inequality (3.1) for all x, y ∈ D,
then there exists a unique linear isometry U : E → F such that

∥f(x) − U(x)∥ ≤

{ √
θ∥x∥p+q (for p < 1 and q < 1),√
2θ∥x∥p+q (for either p = 1 or q = 1)

for all x ∈ D.

Proof . Considering the condition (2.2), we fix a constant c with 0 < c < 1. We define a function φ : E×E → [0,∞)
by φ(x, y) = θ∥x∥p∥y∥q for all x, y ∈ E. Since 0 < c < 1 and one of p and q is smaller than 1, we have

lim
m,n→∞

cm+nφ

(
1

cm
x,

1

cn
y

)
= lim

m,n→∞
θ

cm+n

cpm+qn
∥x∥p∥y∥q = 0
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for all x, y ∈ D. Thus, φ satisfies the condition (2.5) for any x, y ∈ D.

Moreover, it holds that

lim
n→∞

cnφ

(
1

cn
x, x

)
= lim

n→∞
θ
cn

cpn
∥x∥p+q =

{
0 (for p < 1),

θ∥x∥p+q (for p = 1)

and

lim
n→∞

cnφ

(
x,

1

cn
x

)
= lim

n→∞
θ
cn

cqn
∥x∥p+q =

{
0 (for q < 1),

θ∥x∥p+q (for q = 1).

Since either p < 1 and q < 1, or p = 1 and q < 1, or p < 1 and q = 1, due to Theorem 2.5, there exists a unique linear
isometry U : E → F that satisfies the given inequality for all x ∈ D. □

If 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 but not p = q = 1, then we can assume that d ≥ 0 in Theorem 3.2. It would be
interesting to compare our Theorem 3.1 and Theorem 3.2 with [9, Theorem 2]. We note that [9, Theorem 2] is the
result on the case when the function f satisfies inequality (3.1) for all x, y ∈ E, at most excluding the origin, and
p = q ̸= 1, while the function f satisfies inequality (3.1) for all x, y ∈ D in our theorems. In particular, for the case
when E is finite-dimensional and p = q = 1, Chmielinski [10, Theorem 2] proved a similar theorem as [9, Theorem 2].

When D = {x ∈ E : ∥x∥ ≥ d}, we can prove the Hyers-Ulam stability of the orthogonality equation on the
restricted domain D.

Theorem 3.3. Assume that d and ε are constants satisfying d ≥ 0 and ε > 0, and let D = {x ∈ E : ∥x∥ ≥ d}. If a
function f : E → F satisfies the following inequality∣∣⟨f(x), f(y)⟩ − ⟨x, y⟩

∣∣ ≤ ε (3.2)

for all x, y ∈ D, then there exists a unique linear isometry U : E → F that satisfies

∥f(x) − U(x)∥ ≤
√
ε

for all x ∈ D.

Proof . First, we consider the condition (2.2) and select a constant c satisfying 0 < c < 1. In addition, we set
φ(x, y) = ε for all x, y ∈ E. Then, we easily verify that

lim
m,n→∞

cm+nφ

(
1

cm
x,

1

cn
y

)
= lim

m,n→∞
εcm+n = 0

for all x, y ∈ D, i.e., φ satisfies the condition (2.5) for all x, y ∈ D.

Since

lim
n→∞

cnφ

(
1

cn
x, x

)
= lim

n→∞
εcn = 0

and

lim
n→∞

cnφ

(
x,

1

cn
x

)
= lim

n→∞
εcn = 0,

by Theorem 2.5, there exists a unique linear isometry U : E → F satisfying the given inequality for all x ∈ D. □

In the case of D = {x ∈ E : ∥x∥ ≤ d}, we are not able to prove Theorem 3.3 by applying Theorem 2.5 because
we have to select a constant c larger than 1 and φ(x, y) = ε in this case, and hence the condition (2.5) is not satisfied
unfortunately.
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We remark that Chmielinski [6] proved the superstability of the orthogonality equation for the class of functions
f : Rn → Rn, where n is an integer larger than 1. More precisely, if a function f : Rn → Rn satisfies the inequality
(3.2) for all x, y ∈ Rn, then f is a solution to the orthogonality equation, i.e., f is a linear isometry.

It would be interesting to study Theorem 2.5 when the control function has the form of φ(x, y) = θ(∥x∥p + ∥y∥q).
We would like to point out that we cannot prove the following theorem by using Theorem 2.4. From this fact we can
be sure that Theorem 2.5 is more useful than Theorem 2.4.

Theorem 3.4. Assume that d, p, q, and θ are constants with d > 0, p ≤ 1, q ≤ 1, and θ > 0. Moreover, let
D = {x ∈ E : ∥x∥ ≥ d}. If a function f : E → F satisfies the inequality∣∣⟨f(x), f(y)⟩ − ⟨x, y⟩

∣∣ ≤ θ
(
∥x∥p + ∥y∥q

)
(3.3)

for all x, y ∈ D, then there exists a unique linear isometry U : E → F such that

∥f(x) − U(x)∥ ≤



√
θ(∥x∥p + ∥x∥q) (for p < 1 and q < 1),√
θ(2∥x∥ + ∥x∥q) (for p = 1 and q < 1),√
θ(∥x∥p + 2∥x∥) (for p < 1 and q = 1),

2
√

θ∥x∥ (for p = 1 and q = 1)

for all x ∈ D.

Proof . Due to (2.2), we choose a constant c with 0 < c < 1 and let φ : E × E → [0,∞) be a function defined by
φ(x, y) = θ

(
∥x∥p + ∥y∥q

)
for all x, y ∈ E. Since p ≤ 1 and q ≤ 1, we have

lim
m,n→∞

cm+nφ

(
1

cm
x,

1

cn
y

)
= lim

m,n→∞
θ

(
cm+n

cpm
∥x∥p +

cm+n

cqn
∥y∥q

)
= 0

for all x, y ∈ D, which implies that φ satisfies the condition (2.5) for all x, y ∈ D.

Since

lim
n→∞

cnφ

(
1

cn
x, x

)
= lim

n→∞
θ

(
cn

cpn
∥x∥p + cn∥x∥q

)
=

{
0 (for p < 1),

θ∥x∥ (for p = 1)

and

lim
n→∞

cnφ

(
x,

1

cn
x

)
= lim

n→∞
θ

(
cn∥x∥p +

cn

cqn
∥x∥q

)
=

{
0 (for q < 1),

θ∥x∥ (for q = 1),

Theorem 2.5 implies that there exists a unique linear isometry U : E → F that satisfies the given inequality for all
x ∈ D. □

If 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1, then we can assume that d ≥ 0 in Theorem 3.4. When D = {x ∈ E : ∥x∥ ≤ d}, we
are not able to prove Theorem 3.4 by using Theorem 2.5 because we should select some c > 1 and the condition (2.5)
does not seem to be satisfied under any selection of the values of p and q.

It would also be interesting to introduce the following theorem dealing with the case of φ(x, y) = ε∥x − y∥p in
connection with (ε, p)-isometries.

Theorem 3.5. Assume that d, p, and ε are constants with d ≥ 0, 0 < p ≤ 1, and ε > 0. Moreover, define
D = {x ∈ E : ∥x∥ ≥ d}. If a function f : E → F satisfies the inequality∣∣⟨f(x), f(y)⟩ − ⟨x, y⟩

∣∣ ≤ ε∥x− y∥p

for all x, y ∈ D, then there exists a unique linear isometry U : E → F that satisfies

∥f(x) − U(x)∥ ≤

{
0 (for 0 < p < 1),√

2ε∥x∥ (for p = 1)
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for all x ∈ D.

Proof . First, we refer to the condition (2.2) and select an appropriate constant c satisfying 0 < c < 1. Assume that
a function φ : E × E → [0,∞) is defined by φ(x, y) = ε∥x − y∥p for all x, y ∈ E. Since 0 < c < 1 and 0 < p ≤ 1, we
have

lim
m,n→∞

cm+nφ

(
1

cm
x,

1

cn
y

)
= lim

m,n→∞
εc(1−p)(m+n)∥cnx− cmy∥p = 0

for all x, y ∈ D, which implies that φ satisfies the condition (2.5) for all x, y ∈ D.

We know that

lim
n→∞

cnφ

(
1

cn
x, x

)
= lim

n→∞
ε
cn

cpn
∥x− cnx∥p =

{
0 (for 0 < p < 1),

ε∥x∥ (for p = 1)

and

lim
n→∞

cnφ

(
x,

1

cn
x

)
= lim

n→∞
ε
cn

cpn
∥cnx− x∥p =

{
0 (for 0 < p < 1),

ε∥x∥ (for p = 1).

Hence, our assertion immediately follows from Theorem 2.5. □

Unfortunately, we do not yet know if Theorem 3.5 holds for the case where D = {x ∈ E : ∥x∥ ≤ d} and p > 1.

We may compare Theorem 3.5 with [22, Theorem 5], in which the stability of the equation (1.1) instead of (1.4)
was proved under the assumptions that D = {x ∈ E : ∥x∥ ≤ d} and p > 1.

4 Discussion

It is widely known that the orthogonality equation is an equation that determines the linear isometries between the
Hilbert spaces over K. Therefore, it would be very interesting and meaningful to study the stability of the orthogonality
equation in order to shed new light on the characteristics of linear isometric as well as to study the stability of the
equation (1.1).

As far as we know, Chmielinski was the first mathematician to study the stability of the orthogonality equation.
Indeed, he mainly studied the Hyers-Ulam stability of the orthogonality equation on the whole space, not the restricted
domain (see [7, 8]).

It is an important difference from Chmielinski’s papers that the present paper deals with the stability problems of
the orthogonality equation by specially focusing on the stability on the restricted domains.

By using the fact that the function y =
√
x is concave on x ≥ 0, we can easily prove the following inequality.

Hence, we omit the proof.

Lemma 4.1. For all real numbers a, b ≥ 0, it holds that

(i)
√
a + b ≤

√
a +

√
b ;

(ii)
∣∣√a−

√
b
∣∣ ≤ √

|a− b|;

(iii) |a− b| ≤ 2 max
{√

a,
√
b
}∣∣√a−

√
b
∣∣.

Using [22, Theorem 3], we can prove the Hyers-Ulam stability of the orthogonality equation on a restricted domain.

Theorem 4.2. Let E be a real Hilbert space, d ≥ 1, and 0 < ε ≤ 1
20d be fixed, and define D◦

0 = {x ∈ E : ∥x∥ >
d} ∪ {0}. If a function f : E → E satisfies the inequality∣∣⟨f(x), f(y)⟩ − ⟨x, y⟩

∣∣ ≤ ε
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for all x, y ∈ D◦
0 , then there exists a unique linear isometry U : E → E such that

∥f(x) − U(x) − f(0)∥ ≤ 5
(
2 +

√
2
)√

ε

for all x ∈ D◦
0 .

Proof . If we set a = ⟨f(x) − f(y), f(x) − f(y)⟩ and b = ⟨x − y, x − y⟩, then it follows from Lemma 4.1 (i) and (ii)
and (3.2) that∣∣∥f(x) − f(y)∥ − ∥x− y∥

∣∣
=

∣∣∣√⟨f(x) − f(y), f(x) − f(y)⟩ −
√
⟨x− y, x− y⟩

∣∣∣
≤

√
|⟨f(x) − f(y), f(x) − f(y)⟩ − ⟨x− y, x− y⟩|

=
√
|(⟨f(x), f(x)⟩ − ⟨x, x⟩) − 2(⟨f(x), f(y)⟩ − ⟨x, y⟩) + (⟨f(y), f(y)⟩ − ⟨y, y⟩)|

≤
√
|⟨f(x), f(x)⟩ − ⟨x, x⟩| +

√
2 |⟨f(x), f(y)⟩ − ⟨x, y⟩| +

√
|⟨f(y), f(y)⟩ − ⟨y, y⟩|

≤
(
2 +

√
2
)√

ε

for all x, y ∈ D◦
0 . According to [22, Theorem 3], there exists a unique linear isometry U : E → E such that

∥f(x) − U(x) − f(0)∥ ≤ 5
(
2 +

√
2
)√

ε

for all x ∈ D◦
0 . □

As we can see, the result of Theorem 4.2 is not better than that of Theorem 3.3. Taking this into account, we can
see that Theorem 2.5 is very useful.

Acknowledgments

This work was supported by 2022 Hongik University Research Fund. This work was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1A01049560).

References

[1] J.A. Baker, Isometries in normed spaces, Amer. Math. Month. 78 (1971), no. 6, 655–658.

[2] D.G. Bourgin, Approximate isometries, Bull. Amer. Math. Soc. 52 (1946), 704–714.
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