
Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 3261–3270
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.24646.2788

Optimality conditions for multi-objective interval-valued
E-convex functions with the use of gH-symmetrical
differentiation

Sachin Rastogia, Akhlad Iqbalb,∗, Sanjeev Rajana

aDepartment of Mathematics, Hindu college, M.J.P. Rohilkhand University, Bareilly-243003, UP, India

bDepartment of Mathematics, Aligarh Muslim University, Aligarh-202002, UP, India

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, we introduce and discuss multi-objective interval-valued E-convex programming using gH-symmetrical
differentiability. We prove nonlinear optimality conditions of Fritz John type for this context and construct an example
to verify our results. Furthermore, we define LU-sE-pseudo convexity and LU-sE-quasi convexity for interval-valued
functions and study some of their properties.
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1 Introduction

The main objective of multi criteria decision making is to find the best pareto optimal solutions. These solutions
have great importance in a multi-objective programming problem from a theoretical point of view. In simple words, we
can say that the pareto optimal solutions are those solutions which can not be dominated by the other solutions in the
entire search space. Multi objective programming (MOP) for interval-valued objective functions was firstly studied
by Ishibuchi and Tanaka [14] in 1990. They [14] proposed the ordering relation between the closed intervals for
comparing them. After that Wu[27] had developed a new theory of derivatives called H-derivative or weak derivative
and proved KKT optimality conditions under weak derivative concept for interval-valued optimization problems. Later
Stefanini and Bede [23] expanded the notion of weak derivative to gH-derivative while Chalco-cano et.al. [8] discussed
the optimality conditions of KKT type for gH-derivative. Afterwards, Guo et.al. [12] introduced the idea of gH-
symmetrical derivative, which is more general than of weak derivative and gH-derivative. For more on symmetric
differentiation, one can see: [16, 25].

Convexity plays an important role in optimization problems especially for interval-valued objective functions. In
the recent past very useful efforts have been done to generalize the convexity hypothesis and thus to explore the
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Fritz John and KKT type optimality conditions. E-convexity is one of the generalizations of convexity, introduced by
Youness [30]. He also discussed optimality criteria for E-convex programming problems [31].

Inspired by the above research work, we discuss the concept of gH-symmetrical derivative for multi objective
interval-valued functions under E-convexity assumptions and derive the Fritz John sufficient optimality conditions.

We divide this paper in four sections. In Section 2, we recollect some basic definitions and discuss several properties
of gH-symmetric derivative and E-convex functions for multi-objective interval-valued programming. Section 3 is
devoted to derive the optimality conditions for multi-objective interval-valued optimization under E-convexity and
gH-symmetrical derivative assumptions. We conclude this paper in Section 4.

2 Preliminaries

Assume that in the real line R, I(R) be the set of all closed and bounded intervals. i.e

IR = [pL, pU ] : pL, pU ∈ R and pL < pU ,

where, pL and pU represent the upper and lower limits of the interval.

If P = [pL, pU ] and Q = [qL, qU ], then P +Q = [pL + qL, pU + qU ].
αP = [αpL, αpU ] if α ≥ 0 and [αpU , αpL] if α < 0. For more on interval analysis, see [[2], [17], [18]].

Definition 2.1. Order-relation Let P = [pL, pU ], then

P ⪯LU Q iff pL ≤ qL and pU ≤ qU

and
P ≺LU Q iff P ⪯LU Q and P ̸= Q.

Equivalently,

P ≺LU Q iff pL < qL and pU ≤ qU OR pL ≤ qL and pU < qU OR pL < qL and pU < qU .

Definition 2.2. A function ϕI : Rn → IR is said to be an interval-valued function (IVF) if it has a form

ϕI(p) = [ϕL(p), ϕU (p)], such that ϕL(p) ≤ ϕU (p) ∀ p ∈ Rn,

where, ϕL(p) is the lower limit and ϕU (p) is the upper limit of ϕI(p).

The gH-difference (generalized Hukuhara difference) of two intervals P and Q is defined by Stefanini and Bede [23]
as follows:

P ⊖g Q = R ⇔

{
(1) P = Q+R

(2) Q = P + (−1)R

For any two intervals in IR, this definition always exists and it also written as the following equivalent form:

P ⊖g Q =

[
min{pL − qL, pU − qU},max{pL − qL, pU − qU}

]
.

To recall the concept of symmetric differentiation and its properties, one can see [18],[19].

Definition 2.3. [25] A real valued function ϕ : (p, q) → R is symmetrically differentiable (SD) at p0 ∈ (p, q) if ∃ a
real number A ∈ R, s.t.

lim
h→0

ϕ(p0 + h)− ϕ(p0 − h)

2h
= A = ϕs(p0)

Theorem 2.4. [16] If ϕ is differentiable at p0 then it is also SD and has same value.
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Theorem 2.5. [16] Let ϕ be SD on M ⊂ Rn. Then, ϕ convex on M iff

∇sϕ(q)T (p− q) ≤ ϕ(p)− ϕ(q) ∀ p, q ∈ M.

Definition 2.6. [23] Let ϕI : M ⊂ Rn → IR, then ϕI is gH-differentiable at p0 ∈ M , if ∃ ∇gϕI(p0) ∈ IR, such that

∇gϕI(p0) = lim
h→0

[ϕI(p0 + h)⊖g ϕI(p0)]

h
.

To generalize the concept of gH-differentiability, Guo et. al. [12] defined the gH-symmetric differentiabilty in IR.

Definition 2.7. Let ϕI : M ⊂ Rn → IR. ϕI is gH-symmetrically differentiable (gH-SD) at p0, if ∃ ∇s
gϕI(p0) ∈ IR,

such that

∇s
gϕI(p0) = lim

h→0

ϕI(p0 + h)⊖g ϕI(p0 − h)

2h
.

Next two theorems were given by Guo et. al. [12], which generalized the idea of gH-derivative for interval-valued
functions.

Theorem 2.8. [12] Let ϕI : M ⊆ Rn → IR be an IVF. If ϕI is gH-differentiable at p0, then ϕI is gH-SD at p0. But
the converse need not be true.

Theorem 2.9. [12] The function ϕI : M ⊆ Rn → IR is gH-SD iff ϕL and ϕU are SD.

Youness [30] extended the concept of convexity as follows:

Definition 2.10. [30] Set M ⊂ R is called E-convex if there is a map E : Rn → Rn such that

tE(p) + (1− t)E(q) ∈ M, for each p, q ∈ M, t ∈ [0, 1]

Definition 2.11. [30] A function ϕ : M ⊂ Rn → R is called E-convex on M , if there exist a map E : Rn → Rn s.t.
M is E-convex and

ϕ
(
tE(p) + (1− t)E(q)

)
≤ tϕ(E(p)) + (1− t)ϕ(E(q)),

for each p, q ∈ M, t ∈ [0, 1].

Recently, Sachin et. al. [20] defined the concept of E-convexity for IVF as follows:

Definition 2.12. [20] Let ϕI be an IVF defined on an E-convex set M ⊂ Rn w.r.t. a map E : Rn → Rn. We say
that ϕI is LU-E-convex at p0, if

ϕI

(
tE(p0) + (1− t)E(p)

)
⪯LU tϕI(E(p0)) + (1− t)ϕI(E(p)),

for each p ∈ M and t ∈ [0, 1].

Proposition 2.13. [20] Let ϕI be an IVF defined on an E-convex set M ⊂ Rn. ϕI is LU-E-convex at p0, iff ϕL and
ϕU are E-convex at p0.

Theorem 2.14. [20] Suppose ϕ : M ⊂ Rn → R and E : M ⊂ Rn → Rn be SD functions and M be an open E-convex
set, then ϕ is E-convex iff

ϕ(E(p))− ϕ(E(q)) ≥ ∇sϕ(E(q))T (E(p)− E(q)) ∀p, q ∈ M.
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3 Interval-valued Multi-objective E- convex Programming

In this section, we consider multi-valued interval function (MVIF):

ϕI(p) =
(
ϕ(I,1)(p), ϕ(I,2)(p), ......ϕ(I,r)(p)

)
defined on M ⊂ Rn, where each ϕ(I,l)(p) = [ϕL

l , ϕ
U
l ], l = 1, 2, ..r.

The interval-valued multi-objective programming problem (IV MP ) for LR-convex and gH-SD functions is defined
by Sachin et. al. [20] as follows:

minϕI(p) =
(
ϕ(I,1)(p), ϕ(I,2)(p), ......ϕ(I,r)(p)

)
subject to

ζ(I,i)(p) ⪯LR (0, 0), i = 1, 2, .., s.

Now, we generalize the above convexity concept to E-convexity and define multiobjective interval-valued E-convex
programming as follows

min(ϕIoE)(p) =
(
ϕ(I,1)oE(p), ϕ(I,2)oE(p).......ϕ(I,r)oE(p)

)
subject to

ζ(I,i)oE(p) ⪯LU [0, 0], i = 1, 2, ..., s,

where each ϕ(I,l) : M ⊆ Rn → IR and each ζ(I,i) : M ⊆ Rn → IR, l = 1, 2, ....r, i = 1, 2, ..s are interval-valued gH-SD
and LU − E − convex functions on an open E-convex set M w.r.t. a SD map E : Rn → Rn.

We can convert interval-valued inequality constraints as follows.

ζ(I,i)oE(p) ⪯LU [0, 0], i = 1, 2, ..s,

can be written as ζLi oE(p) ≤ 0 and ζUi oE(p) ≤ 0, i = 1, 2, ..s. Which can be combined as

ζioE(p) ≤ 0, i = i = 1, 2, ..2s.

Hence, the feasible set is
C

′
= {p : ζioE(p) ≤ 0, i = 1, 2, ..2s}.

Now, consider the E-convex problem (IV MP )E :

min(ϕIoE)(p)

subject to p ∈ C
′
,

where
C

′
= {p ∈ M : (ζioE)(p) ≤ 0, i = 1, 2, ..2s}.

If we take E as an identity map then (IV MP )E converts to (IVMP) as defined by Sachin et. al. [20].

Theorem 3.1. [20] Let ϕI : Rn → IR be MVIF, then ϕI is gH-SD at p0 ∈ M iff ϕL
l and ϕU

l are SD at p0 ∈ M .

Definition 3.2. [21] A feasible solution p0 is a pareto optimal solution (IVMP) if there exists no p
′ ∈ M s.t.

ϕ(I,l)(p
′
) ⪯LU ϕ(I,l)(p0), for all l = 1, 2, ..., r and ϕ(I,h)(p

′
) ≺LU ϕ(I,h)(p0) for at least one index h ∈ (1, 2, 3...r).

Now, we define pareto optimality for (IV MP )E .

Definition 3.3. A feasible solution p0 is a pareto optimal solution (IV MP )E , if there exists no p
′ ∈ M such that

ϕ(I,l)oE ⪯LU ϕ(I,l)oE(p0) for each l = 1, 2, ..r and ϕ(I,h)oE(p
′
) ≺LU ϕ(I,h)oE(p0) for at least one index h ∈ (1, 2, ...r).

LU- E- convexity for interval-valued multi-objective functions is defined as follows:
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Definition 3.4. Let ϕI be a MVIF defined on an E-convex set M ⊂ Rn w.r.t. a map E : Rn → Rn. We say ϕI is
LU-E-convex at p0 if each ϕ(I,l) is LU-E-convex at p0 for l = 1, 2, ...r, i.e.

ϕ(I,l)

(
tE(p0) + (1− t)E(p)

)
⪯LU tϕ(I,l)(E(p0)) + (1− t)ϕ(I,l)(E(p))

for each p ∈ M and t ∈ [0, 1].

Proposition 3.5. Let ϕI be an MVIF defined on an E-convex set M ⊂ Rn, then ϕI is LU-E-convex at p0 iff ϕL
l and

ϕU
l are E-convex at p0, where, l = 1, 2, ...r.

Proof . From Definition 3.3 and Proposition 2.13, the proof is obvious. □

Theorem 3.6. (Fritz john type sufficiency condition) Considering the same assumptions of (IVMP)E if there
exists p0 ∈ C

′
and real-valued multipliers αL

l , α
U
l > 0 and γi ≥ 0, for l = 1, 2, ..., r, i = 1, 2, 3....2s respectively, such

that the following conditions hold:
(1)

∑r
l=1 α

L
l ∇sϕL

l oE(p0) +
∑r

1 α
U
l ∇sϕU

l oE(p0) +
∑2s

i=1 γi∇sζioE(p0) = 0,

(2)
∑2s

i=1 γiζioE(p0) = 0,
then, p0 is a LU Pareto optimal solution of (IVMP)E .

Proof . Let

ϕoE(p) =

r∑
l=1

αL
l ϕ

L
l oE(p) +

r∑
l=1

αU
l ϕ

U
l oE(p).

Since, ϕI is LU-E-convex and gH-SD at p0, by Theorem (3.1) and Proposition (3.5), ϕ is also E-convex and SD at
p0, therefore

∇sϕoE(p0) =

r∑
l=1

αL
l ∇sϕL

l oE(p0) +

r∑
l=1

αU
l ∇sϕU

l oE(p0),

so the given conditions become
(1) ∇sϕoE(p0) +

∑2s
i=1 γi∇sζioE(p0) = 0

(2)
∑2s

i=1 γiζioE(p0) = 0.

Since ϕ is E-convex and SD, by Theorem 2.6,

∇sϕoE(p0)
T (E(p)− E(p0)) ≤ ϕoE(p)− ϕoE(p0) ∀p ∈ C

′
.

By the new condition (1), we get

−
2s∑
i=1

γi∇sζioE(p0)
T (E(p)− E(p0)) ≤ ϕoE(p)− ϕoE(p0) ∀ p ∈ C

′
(1).

Since, each ζi is E-convex and SD, again by Theorem 3.1, for i = 1, 2, 3...2s, we get

∇sζioE(p0)
T (E(p)− E(p0)) ≤ ζioE(p)− ζioE(p0) ∀ p ∈ C

′

or
2s∑
i=1

γi∇sζioE(p0)
T (E(p)− E(p0)) ≤

2s∑
i=1

γi

(
ζioE(p)− ζioE(p0)

)
∀p ∈ C

′
.

Applying condition (2), we get

2s∑
i=1

γi∇sζloE(p0)
T (E(p)− E(p0)) ≤

2s∑
i=1

γi(ζioE)(p) ∀ p ∈ C
′
. (2).

On adding (1) and (2), we get

−
2s∑
i=1

γi(ζioE)(p) ≤ ϕoE(p)− ϕoE(p0) ∀p ∈ C
′
.
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But for each i, γi ≥ 0 and ζioE(p) ≤ 0, thus

ϕoE(p) ≥ ϕoE(p0) ∀p ∈ C
′
.

Hence, p0 is an optimal solution of ϕ with respect to E.

Now, let p0 be not a pareto optimal solution of the problem (IV MP )E , by the Definition (3.2), ∃ p
′ ∈ C

′
, such

that
ϕ(I,l)oE(p

′
) ⪯LU ϕ(I,l)oE(p0), for each l = 1, 2, ...r,

and
ϕ(I,h)oE(p

′
) ≺LU ϕ(I,h)oE(p0), for at least one indexh ∈ (1, 2, 3...r).

Therefore, by our first assumption

ϕoE(p) =

r∑
l=1

(
αL
l ϕ

L
l oE(p) + αU

l ϕ
U
l oE(p)

)
.

ϕL
l oE(p

′
) ≤ ϕL

l oE(p0) and ϕU
l oE(p

′
) ≤ ϕU

l oE(p0), for l = 1, 2, ...r,
and

ϕL
hoE(p

′
) < ϕL

hoE(p0) , ϕU
h oE(p

′
) < ϕU

h oE(p0),

for at least one index h ∈ (1, 2, ...r) and since αL
l , α

U
l > 0, ∀l = 1, 2, ...r, we get

ϕoE(p
′
) < ϕoE(p0)

which is a contradiction by the fact that

ϕoE(p0) ≥ ϕoE(p),∀p ∈ C
′
.

Hence, p0 is a pareto optimal solution of (IV MP )E . □

Now, we construct an example to verify the above theorem.

Example 3.7. Contemplate the multi-objective E-convex interval-valued programming problem

Min ϕ(I,l) =
(
ϕ(I,1), ϕ(I,2)

)
,

subject to:
(p, q) ∈ M,

where
ϕ(I,1)(p, q) = [−|p|+ q2, |p|+ 2q2]

ϕ(I,2)(p, q) = [−p2 − q, p2 + 2q]

and
M = {(p, q) ∈ R2 : p+ q − 1 ≤ 0, − q ≤ 0}.

The above problem is neither LU-convex nor differentiable, but it is gH-symmetric differentiable and E-convex
w.r.t. a map E(p, q) = (0, q). So, the E-convex version of above problem is as follows:

(ϕ(I,l)oE)(p, q) = {[q2, 2q2], [−q, 2q]}

subject to:
E(M) = {(0, q) ∈ R2 : 0 ≤ q ≤ 1}.

Now
ϕL
1 (p, q) = q2 & ϕU

1 (p, q) = 2q2

ϕL
2 (p, q) = −q & ϕU2(p, q) = 2q.
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By Theorem (3.1) and Proposition(3.5), ϕL
1 , ϕ

U
1 and ϕL

2 , ϕ
U
2 are E-convex and symmetrically differentiable at (0,0).

Thus, by the conditions (1) and (2) of Theorem (3.3), there exists multipliers λL
1 , λ

U
1 , λ

L
2 , λ

U
2 , µ1 and µ2 such that

λL
1 [0, 2q]

T + λU
1 [0, 4q]

T + λL
2 [0,−1]T + λU

2 [0, 2]
T + µ1[0, 1]

T + µ2[0,−1]T = 0

µ1(q − 1) = 0

µ2(q) = 0

(p, q) = (0, 0) is a feasible solution, so at (0,0), we have

µ1(−1) = 0 =⇒ µ1 = 0

−λL
2 + 2λU

2 − µ2 = 0.

Which satisfy
λL
2 = λU

2 = µ2,

for positive values of µ2, we get

λL
2 , λ

U

2 > 0.

λL
1 , λ

U
1 is arbitrary, so if we take them positive then the conditions of Theorem (3.6) is satisfied and hence (0, 0) is the

LU-Pareto solution of the given problem.

Using the Theorem (2.14), Sachin et. al. [20] generalized the E-convexity and introduced sE-pseudo convex and
sE- quasi convex symmetrically differentiable real- valued functions. We extend the above concept of generalized
E-convexity for IVF using gH-SD with the help of following Theorem.

Theorem 3.8. [20] Let ϕI be a gH-SD IVF on an open E-convex set M ⊂ Rn w.r.t. a map E : Rn → Rn. Then, ϕI

is LU-E-convex iff
∇s

gϕI(E(p0))
T (E(p)− E(p0)) ⪯LU ϕI(E(p))− ϕI(E(p0)), ∀p ∈ M.

Definition 3.9. LU-sE-pseudo convex function
Let ϕI be an interval-valued gH-SD function defined on an E-convex set M ⊂ Rn w.rr.t. a map E : Rn → Rn, then
ϕI is said to be LU-sE-pseudoconvex at p0 if

∇s
gϕI(E(p0))

T (E(p)− E(p0)) ≥LU 0 =⇒ ϕI(E(p) ≥LU ϕI(E(p0)∀p ∈ M.

Proposition 3.10. Let ϕI be an IVF defined on an E-convex set M ⊂ Rn, then ϕI is LU-sE-pseudo convex at p0, iff
ϕL and ϕU are sE-pseudo convex at p0 ∈ M .

Proof . It is a direct consequnence of the Definition (3.4). □

Proposition 3.11. Let ϕI be a MVIF defined on an E-convex set M ⊂ Rn, then ϕI is LU-sE-pseudo convex at p0 iff
ϕL
l and ϕU

l are sE-pseudo convex at p0 ∈ M .

Proof . It follows from Definition (3.4) and Proposition (3.10). □

Definition 3.12. LU-sE-quasi convex function
Let ϕI be an interval-valued gH-SD function defined on an E-convex set M ⊂ Rn w.r.t. a map E : Rn → Rn, then ϕI

is said to be LU-sE-quasi convex at p0 if

ϕI(E(p)) ⪯LU ϕI(E(p0)) =⇒ ∇s
gϕI(E(p0))

T (E(p)− E(p0)) ⪯LU 0 ∀p ∈ M.

Proposition 3.13. Let ϕI be an IVF defined on an E-convex set M ⊂ Rn, then ϕI is LU-sE-quasi convex at p0 iff
ϕL and ϕU are sE-quasi convex at p0 ∈ M

Proof . It is a direct consequence from the Theorem (3.8). □
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Proposition 3.14. Let ϕI be a multi-valued interval function defined on an E-convex set M ⊂ Rn, then ϕI is
LU-sE-quasi convex at p0 iff ϕL

l and ϕU
l are sE-quasi convex at p0 ∈ M

Proof . From Definition (3.12) and Proposition (3.13), it can be proved easily. □

Theorem 3.15. Let p0 ∈ M , H = {i : (ζioE)(p0) = 0}, ϕ(I,l) be a multi-valued LU-sE-pseudo convex at p0 with
respect to E : Rn → Rn and ζI,i be LU-sE- quasi convex at p0 with respect to same E. If there exists real-valued
multipliers γi ≥ 0, i = 1, 2, ...2s, s.t. following conditions hold.
(1) ∇s(ϕL

l oE)(p0) +
∑2s

i=1 γi∇s(ζioE)(p0) = 0

(2) ∇s(ϕU
l oE)(p0) +

∑2s
i=1 γi∇s(ζioE)(p0) = 0

(3)
∑2s

i=1 γi(ζioE)(p0) = 0, i = 1, 2, ...2s
then p0 is an LU-optimal solution of (IVMP )E .

Proof . Since γi ≥ 0 and each ζioE(p0) ≤ 0, by assumption (3)

2s∑
i=1

γi(ζioE)(p0) = 0.

This implies that γi = 0, for i /∈ H. Now ζi(p0) is sE-quasi convex for i ∈ H, then

(ζioE)(p) ≤ (ζioE)(p0) =⇒ ∇s(ζioE)(p0)
T (E(p)− E(p0)) ≤ 0

or
γi∇s(ζioE)(p0)

T (E(p)− E(p0)) ≤ 0 ∀p ∈ M

or
2s∑
i=1

γi∇s(ζioE)(p0)
T (E(p)− E(p0)) ≤ 0 ∀p ∈ M.

By assumption (1), we have

−∇s(ϕL
l oE)(p0)

T (E(p)− E(p0)) ≤ 0 ∀p ∈ M

∇s(ϕL
l oE)(p0)

T (E(p)− E(p0)) ≥ 0 ∀p ∈ M.

Since ϕ(I,l) be LU-sE-pseudo convex function at p0, by Proposition (3.13), ϕL
l and ϕU

l be sE-pseudo convex
function at p0
which implies

(ϕL
l oE)(p) ≥ (ϕL

l oE)(p0) ∀p ∈ M.

Similarly
(ϕU

l oE)(p) ≥ (ϕU
l oE)(p0) ∀p ∈ M

which can be written as
(ϕ(I,l)oE)(p0) ⪯LU (ϕ(I,l)oE)(p) ∀p ∈ M

or
(ϕIoE)(p0) ⪯LU (ϕIoE)(p) ∀p ∈ M.

Hence, p0 is LU- optimal solution of (IV MP )E □

4 Conclusion

This paper shows the theory of multiobjective interval-valued E-convex programming. We derive Fritz John type
sufficient conditions of optimality for E-convex programming problem with interval-valued objective and constraint
functions, using gH-symmetrical derivative. We use LU ordering for comparing the intervals. We have also generalized
E-convexity and defined LU-sE-pseudo convex and LU-sE-quasi convex functions for interval-valued functions.

In future, this work can be extended for the fractional programming problems. Also the equality constraints are
not considered in this paper, which can be done by using the similar methodology. Moreover, the extension of our
results to Hadamard manifolds would be desirable and which is an open problem for the future research.
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