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Abstract

In this paper, we propose an iterative method for finding the common element of the set of fixed points of Reich-Suzuki
nonexpansive mappings and the set of solutions of the variational inequalities problems in the framework of Hilbert
spaces. In addition, we establish convergence results for these proposed iterative methods under some mild conditions.
Furthermore, we establish analytically and numerically that our newly proposed iterative method converges to a
common element of the set of fixed points of a Reich-Suzuki nonexpansive mapping and the set of solutions of the
variational inequalities problems faster compared to some well-known iterative methods in the literature. Finally,
we apply our proposed iterative method to approximate the solution of a convex minimization problem. The results
obtained in this paper improve, extend and unify some related results in the literature.
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1 Introduction

Let H be a real Hilbert space with the inner product ⟨·, ·⟩ and the induced norm ∥ · ∥, C a nonempty closed convex
subset of H and A : H → H a nonlinear operator. The classical Variational Inequality Problem (VIP) is formulated
as: Find x∗ ∈ C such that for any x ∈ C

⟨Ax∗, x− x∗⟩ ≥ 0. (1.1)

The notion of VIP (1.1) was introduced independently by Stampacchia [20] and Fichera [11, 12] for modeling
problems arising from mechanics and for solving Signorini problem. It is well-known that many problems in economics,
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pure and applied sciences can be formulated as VIP (1.1). We denote the solution set of a VIP (1.1) by Ω(C,A) =
{x∗ ∈ C : ⟨Ax∗, x∗ − x⟩ ≥ 0 ∀ x ∈ C}. Thereafter, a lot of researchers in this area of mathematics have explore the
notion of VIP (1.1) for detail work on VIP (1.1) the reader should (see [7, 13, 20, 24] and the references therein). It
has been established over the years that the existence and approximation of a VIP (1.1) is equivalent to finding the
fixed point problem: Find

x∗ ∈ C such that x∗ = PC(I − ηA)x∗, (1.2)

where η > 0 and PC is called the metric projection of H onto C. We recall that the metric projection (PCx) is such
that

||x− PCx|| ≤ ||x− y||, ∀ y ∈ C.

It has been established in the literature that if A is L-Lipschitzian and v-strongly monotone, then the operator
PC(I − ηA) is a contraction on C provided thet 0 < η < 2v

L2 . In the light of this fact, the Banach contraction principle
clearly guarantees the existence and uniqueness of an approximate solution for a VIP (1.1). The well-known Picard
iterative process takes the form:

xn+1 = PC(I − ηA)xn. (1.3)

This approach of approximating the solution of a VIP (1.1) is called projected gradient method. It is well-known
that

x∗ ∈ Ω(C,A) if and only if x∗ = PC(x
∗ − ηAx∗).

Definition 1.1. Let C be an arbitrary space with self mapping T : C → C, a point x ∈ C is called a fixed point of
a mapping T if

Tx = x. (1.4)

The set of all fixed points of T is denoted by F (T ). Many problems in mathematics, engineering, physics, economics,
game theory, and other fields can be formulated into fixed point problems, making fixed point theory a useful field
of study. In general, it is nearly impossible to solve fixed point problems analytically, necessitating the consideration
of iterative methods of solutions for fixed point problems. Researchers have created multiple iterative methods for
solving fixed point problems for various operators (nonlinear) over the years, but the search for quicker and more
efficient iterative algorithms continues. The Picard iterative process

xn+1 = Txn, ∀n ∈ N, (1.5)

is one of the earliest iterative process used to approximate the solution of Equation (1.4), where T is a contraction
mapping. It is well-known that the Picard iterative method fails to approach the solution of Equation (1.4) when
T is a nonexpansive mapping and the initial point picked for the iteration is not the fixed point of T. However,
Browder [6] shown that a fixed point exists for the class of nonexpansive self mappings on a closed and bounded
subset of a uniformly convex Banach space. Following that, researchers in this field devised many iterative procedures
to approximate the fixed points of nonexpansive mappings and a variety of other nonlinear mappings. Developing
faster and more effective iterative techniques for approximating fixed points of nonlinear mappings is still an open
problem in this area of research. The following are some well-known iterative methods for approximating fixed points
of nonlinear mappings that have been published in the literature. Among many others, are; Mann [18], Ishikawa [16],
Krasnosel’skii [17] and so on. For detail work on iterative processes, the reader should (see [1, 2, 3, 4, 8] and the
references therein). The following iterative methods are referred to as Noor [19], S-iterative method [4], Picard-S [15]
and Thakur-New iterative method [21], respectively:


c0 ∈ C,

an = (1− αn)cn + αnTcn,

bn = (1− βn)cn + βnTan

cn+1 = (1− γn)cn + βnTbn, n ≥ 1,

(1.6)
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where {αn}, {γn} and {βn} are sequences in [0, 1] and C be a nonempty, closed and convex subset of a convex subset
of a normed space X. It is easy to see that if βn = αn = 0 for all n ∈ N, we obtain the well-known Mann iterative
method [18]. In addition, if αn = 0, we obtain the Ishikawa iterative method [16].


p0 ∈ C,

sn = (1− αn)pn + αnTpn,

pn+1 = (1− βn)Tpn + βnTsn, n ≥ 1,

(1.7)

where {αn} and {βn} are sequences in [0, 1] and C be a nonempty, closed and convex subset of a convex subset of a
normed space X and T a nonlinear mapping.

u0 ∈ C,

wn = (1− αn)un + αnTun,

vn = (1− βn)Tun + βnTwn

un+1 = Tvn, n ≥ 1,

(1.8)

where {αn} and {βn} are sequences in [0, 1], C be a nonempty, closed and convex subset of a convex subset of a
normed space X and T a nonlinear mapping.


v0 ∈ C,

un = (1− αn)vn + αnTvn,

yn = T ((1− βn)vn + βnTun),

vn+1 = Tyn, n ≥ 1,

(1.9)

where {αn} and {βn} are sequences in [0, 1] and C be a nonempty, closed and convex subset of a convex subset of a
normed space X and T a nonlinear mapping.

Remark 1.2. We note that the iterative method (1.9) can be expressed in the form:

v0 ∈ C,

un = (1− αn)vn + αnTvn,

wn = (1− βn)vn + βnTun

yn = Twn,

vn+1 = Tyn, n ≥ 1,

(1.10)

where {αn} and {βn} are sequences in [0, 1] and C be a nonempty, closed and convex subset of a convex subset of a
normed space X and T a nonlinear mapping.

Remark 1.3. We claim that iterative method (1.8) and (1.9) have the same rate of convergence. This claim will be
justified in Theorem 3.3

Question 1. Is it possible to define a new iterative method whose rate of convergence is better than the above listed
iterative methods for a Reich-Suzuki nonexpansive mapping?

Question 2. Is it possible to modify the above iterative methods and then use to approximate the common element of
the set of fixed points of a Reich-Suzuki nonexpansive mappings and the set of solutions of the variational inequalities
problems in the frame work of Hilbert spaces?

Motivated by Remark 1.3, Question 1, Question 2, the research works described above and the recent research
interests in this direction, we provide an affirmative answer to the above questions raised in this work by introducing an
iterative method for finding the common element of the set of fixed points of a Reich-Suzuki nonexpansive mappings
and the set of solution of the variational inequalities problems in the framework of Hilbert spaces. In addition,
we establish convergence results for this proposed iterative method under some mild conditions. Furthermore, we
establish analytically and numerically that our newly proposed iterative method converges to a fixed point of Reich-
Suzuki nonexpansive mappings faster compared to some well-known iterative methods in the literature. Finally, we
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apply our proposed iterative method to approximate the solution of a convex minimization problem. The results
obtained in this paper improve, extend and unify some related results in the literature.

The rest of this paper is organized as follows: In Section 2, we shall recall some useful definitions and Lemmas. In
Section 3, we present our proposed method, strong convergence analysis of our method is investigated and the rate
of convergence of our iterative method in comparison with other existing methods are investigated. In Section 4, we
present an application and some numerical experiments to show the efficiency and implementation of our method (in
comparison with other methods in the literature) are also discussed in the framework of infinite dimensional Hilbert
spaces. Lastly, in Section 5 we give a conclusion of the paper.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty, closed and convex subset of H.

Definition 2.1. Let A : H → H be an operator. Then the operator A is called

1. L-Lipschitz continuous if

∥Ax−Ay∥ ≤ L∥x− y∥,

where L > 0 and x, y ∈ H. If L = 1, Then, the operator A is called nonexpansive. Also, if y ∈ F (A) and L = 1,
Then A is called quasi-nonexpansive.

2. monotone if

⟨Ax−Ay, x− y⟩ ≥ 0 ∀x, y ∈ H.

3. k-inverse strongly monotone (k-ism) if there exists k > 0, such that

⟨Ax−Ay, x− y⟩ ≥ k∥Ax−Ay∥2 ∀ x, y ∈ H.

4. v-strongly monotone (v-sm) if there exists v > 0, such that

⟨Ax−Ay, x− y⟩ ≥ v∥x− y∥2 ∀ x, y ∈ H.

5. relaxed (α, k)-cocoercive if there exist α, k > 0, such that

⟨Ax−Ay, x− y⟩ ≥ −α∥Ax−Ay∥2 + k∥x− y∥2 ∀ x, y ∈ H.

6. condition (C) mapping if there exist an α ∈ (0, 1) and for all x, y ∈ H,

1

2
∥Ax− x∥ ≤ ∥x− y∥ ⇒ ∥Ax−Ay∥ ≤ ∥x− y∥.

7. Reich-Suzuki nonexpansive mapping if there exists an α ∈ (0, 1) and for all x, y ∈ H, 1
2∥Ax−x∥ ≤ ∥x− y∥, then

∥Ax−Ay∥ ≤ α∥Ax− x∥+ α∥Ay − y∥+ (1− 2α)∥x− y∥.

Remark 2.2. It is easy to see that if α = 0, Reich-Suzuki nonexpansive mapping becomes a mapping satisfying
condition (C).

Lemma 2.3. Let A : C → C be a Reich-Suzuki nonexpansive mapping with a fixed point, then A is quasi-
nonexpansive.

Proof . Let x ∈ F (A), α ∈ (0, 1) and y ∈ C,

1

2
∥Ax− x∥ =

1

2
∥x− x∥ = 0 ≤ ∥x− y∥.

So, we have

∥x−Ay∥ = ∥Ax−Ay∥ ≤ α∥Ax− x∥+ α∥Ay − y∥+ (1− 2α)∥x− y∥
= α∥Ay − y∥+ (1− 2α)∥x− y∥
≤ α∥Ay − x∥+ α∥x− y∥+ (1− 2α)∥x− y∥
= α∥x−Ay∥+ (1− α)∥x− y∥.

Then, we have (1− α)∥x−Ay∥ ≤ (1− α)∥x− y∥ and so, ∥x−Ay∥ ≤ ∥x− y∥. Hence, A is quasi-nonexpanisve. □
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Remark 2.4. Let T be Reich Suzuki-nonexpansive mapping, if x∗ ∈ F (T )∩Ω(C,A), we have the following assertion.
Since x∗ ∈ F (T ) ∩ Ω(C,A), we have that x∗ ∈ F (T ) and x∗ ∈ Ω(C,A), which implies that

x∗ ∈ F (T ) ⇒ x∗ = Tx∗, (2.1)

also

x∗ ∈ Ω(C,A) ⇒ x∗ = PC(x
∗ − ηAx∗). (2.2)

It follows from (2.1) and (2.2), we have

x∗ = Tx∗ = TPC(x
∗ − ηAx∗). (2.3)

PC is called the metric projection of H onto C. It is well-known that PC is a nonexpansive mapping of H onto C
and that PC satisfies

⟨x− y, PCx− PCy⟩ ≥ ∥PCx− PCy∥2,

for all x, y ∈ H. Furthermore, PCx is characterized by the properties PCx ∈ C,

⟨x− PCx, PCx− y⟩ ≥ 0

for all y ∈ C and
∥x− y∥2 ≥ ∥x− PCx∥2 + ∥y − PCx∥2

for all x ∈ H and y ∈ C.

Lemma 2.5. [5] Supose that {xn} and {yn} are two sequences of real numbers converging to the same fixed point
x0, with the following error estimate:

∥xn − x0∥ ≤ τn

∥yn − x0∥ ≤ ηn,

for all n ∈ N, where τn and ηn are two sequences of positive numbers converging to zero (0). Then, {xn} converges
faster than {yn} to x0 if

lim
n→∞

τn
ηn

= 0.

If lim
n→∞

τn
ηn

= k, where k ∈ (0,∞), then {xn} and {yn} are said to have the same rate of convergence.

3 Main Results

In this section, we introduce some iterative algorithms for finding the common element of the set of fixed point of a
Reich-Suzuki nonexpansive mappings and the set of solution of the variational inequalities. In addition, we establish
convergence results for these proposed iterative algorithms under some mild conditions. In view of Remark 2.4, we
obtain the following equivalent iterative methods for (1.6), (1.7), (1.8) and (1.10).


c0 ∈ C,

an = (1− αn)cn + αnTPC(I − ηA)cn,

bn = (1− βn)cn + βnTPC(I − ηA)an

cn+1 = (1− γn)cn + βnTPC(I − ηA)bn, n ≥ 1,

(3.1)

where {αn}, {γn} and {βn} are sequences in [0, 1].


p0 ∈ C,

sn = (1− αn)pn + αnTPC(I − ηA)pn,

pn+1 = (1− βn)TPC(I − ηA)pn + βnTPC(I − ηA)sn, n ≥ 1,

(3.2)
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where {αn} and {βn} are sequences in (0, 1).


u0 ∈ C,

wn = (1− αn)un + αnTPC(I − ηA)un,

vn = (1− βn)TPC(I − ηA)un + βnTPC(I − ηA)wn

un+1 = TPC(I − ηA)vn, n ≥ 1,

(3.3)

where {αn} and {βn} are sequences in (0, 1).



v0 ∈ C,

un = (1− αn)vn + αnTPC(I − ηA)vn,

wn = (1− βn)vn + βnTPC(I − ηA)un

yn = TPC(I − ηA)wn,

vn+1 = TPC(I − ηA)yn, n ≥ 1,

(3.4)

where {αn} and {βn} are sequences in (0, 1). In the light of providing an affirmative answer to the above questions,
we introduce the following iterative method.

x0 ∈ C,

un = (1− αn)xn + αnTPC(I − ηA)xn,

vn = (1− βn)un + βnTPC(I − ηA)un

wn = TPC(I − ηA)vn,

yn = TPC(I − ηA)wn,

xn+1 = TPC(I − ηA)yn, n ≥ 1,

(3.5)

where {αn} and {βn} are sequences in (0, 1).

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H and A be a relaxed (α, k)-cocoercive
and L-Lipschitzian mapping of C onto H and T Reich Suzuki-nonexpansive nonexpansive mapping on C such that
F (T ) ∩ Ω(C,A) ̸= ∅ and

0 < η <

(
2(k − αL2)

L2
, αL2

)
< k,

holds. Then, the iterative sequences {xn} defined by (3.5), with sequences {αn}, and {βn} in [0, 1] converges strongly
to x∗ ∈ F (T ) ∩ Ω(C,A).

Proof . Let x∗ ∈ F (T ) ∩ Ω(C,A). Using (3.5) and Lemma 2.3, we have

∥un − x∗∥ = ∥(1− αn)xn + αnTPC(I − ηA)xn − x∗∥
≤ (1− αn)∥xn − x∗∥+ αn∥TPC(I − ηA)xn − x∗∥
≤ (1− αn)∥xn − x∗∥+ αn∥PC(I − ηA)xn − x∗∥
= (1− αn)∥xn − x∗∥+ αn∥PC(I − ηA)xn − PC(I − ηA)x∗∥
≤ 1− αn)∥xn − x∗∥+ αn∥(I − ηA)xn − (I − ηA)x∗∥
= (1− αn)∥xn − x∗∥+ αn∥(xn − x∗)− η(An −Ax∗)∥. (3.6)

Now, observe that

∥(xn − x∗)− η(Axn −Ax∗)∥2 = ∥xn − x∗∥2 − 2η⟨Axn −Ax∗, xn − x∗⟩+ η2∥Axn −Ax∗∥2

≤ ∥xn − x∗∥2 − 2ηα∥Axn −Ax∗∥2 − 2ηk∥xn − x∗∥+ η2∥Axn −Ax∗∥2

≤ (1− 2ηk + 2ηαL2 + η2L2)∥xn − x∗∥2, (3.7)
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which implies that

∥(xn − x∗)− η(An −Ax∗)∥ ≤
√
(1− 2ηk + 2ηαL2 + η2L2)∥xn − x∗∥, (3.8)

where √
(1− 2ηk + 2ηαL2 + η2L2) = δ ∈ (0, 1). (3.9)

Thus by (3.6), we have

∥un − x∗∥ ≤ (1− αn)∥xn − x∗∥+ αnδ∥xn − x∗∥
= (1− αn(1− δ))∥xn − x∗∥. (3.10)

Also, using Algorithm 3.5, Lemma 2.3, (3.6) and similar approach as in (3.8), we have

∥vn − x∗∥ = ∥(1− βn)un + βnTPC(I − ηA)un − x∗∥
≤ (1− βn)∥un − x∗∥+ βn∥TPC(I − ηA)un − x∗∥
≤ (1− βn)∥un − x∗∥+ βnδ∥un − x∗∥
= (1− βn(1− δ))∥un − x∗∥
≤ (1− βn(1− δ))(1− αn(1− δ))∥xn − x∗∥. (3.11)

Similarly, using Algorithm 3.5, Lemma 2.3, (3.11) and similar approach as in (3.8), we have

∥wn − x∗∥ = ∥TPC(I − ηA)vn − x∗∥
≤ δ∥vn − x∗∥
≤ δ(1− βn(1− δ))(1− αn(1− δ))∥xn − x∗∥. (3.12)

In addition, using Algorithm 3.5, Lemma 2.3, (3.12) and similar approach as in (3.8), we have

∥yn − x∗∥ = ∥TPC(I − ηA)wn − x∗∥
≤ δ∥wn − x∗∥
≤ δ2(1− βn(1− δ))(1− αn(1− δ))∥xn − x∗∥. (3.13)

Finally, using Algorithm 3.5, Lemma 2.3, (3.13) and similar approach as in (3.8), we have

∥xn+1 − x∗∥ = ∥TPC(I − ηA)yn − x∗∥
≤ δ∥yn − x∗∥
≤ δ3(1− βn(1− δ))(1− αn(1− δ))∥xn − x∗∥, (3.14)

which implies that

∥xn − x∗∥ ≤ δ3(n+1)∥x0 − x∗∥
m∏

k=0

(1− βk(1− δ))(1− αk(1− δ)). (3.15)

Since (1− βk(1− δ)) ∈ (0, 1), (1−αk(1− δ)) ∈ (0, 1), we have (1− βk(1− δ))(1−αk(1− δ)) ∈ (0, 1) and δ ∈ (0, 1).
Passing the limit in (3.15), we obtain

lim
n→∞

∥xn − x∗∥ = 0. (3.16)

□

Theorem 3.2. Let C,H, T,A and δ be as defined in Theorem 3.1. Suppose that F (T ) ∩ Ω(C,A) ̸= ∅ and

0 < η <

(
2(k − αL2)

L2
, αL2

)
< k,

holds. Then, the iterative sequences {vn}, {un}, {pn} and {cn} defined by (3.4), (3.3), (3.2) and (3.1) respectively
with sequences {αn}, {βn} and {γn} in [0, 1] converges strongly to x∗ ∈ F (T ) ∩ Ω(C,A).
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Proof . Using similar approach as in Theorem 3.1, we obtain

∥vn − x∗∥ ≤ δ2(n+1)∥v0 − x∗∥
m∏

k=0

(1− αkβk(1− δ)), (3.17)

∥un − x∗∥ ≤ δ2(n+1)∥u0 − x∗∥
m∏

k=0

(1− αkβk(1− δ)), (3.18)

∥pn − x∗∥ ≤ δ(n+1)∥p0 − x∗∥
m∏

k=0

(1− αkβk(1− δ)), (3.19)

∥cn − x∗∥ ≤ ∥c0 − x∗∥
m∏

k=0

[
1− αk

(
1− δ

{
1− βk(1− δ[1− γk(1− δ)])

})]
. (3.20)

As in Theorem 3.1, we obtain

lim
n→∞

∥vn − x∗∥ = 0. (3.21)

lim
n→∞

∥un − x∗∥ = 0. (3.22)

lim
n→∞

∥pn − x∗∥ = 0. (3.23)

lim
n→∞

∥cn − x∗∥ = 0. (3.24)

□

Theorem 3.3. Let C,H, T,A and δ be as defined in Theorem 3.1 and {xn}, {vn}, {un}, {pn} and {cn} be iterative
methods defined by (3.5), (3.4), (3.3), (3.2) and (3.1) respectively with sequences {αn}, {βn} and {γn} in [0, 1] such
that

1. 0 < α < αn < 1,

2. 0 < β < βn < 1 and

3. 0 < γ < γn < 1.

Suppose that F (T ) ∩ Ω(C,A) ̸= ∅ and

0 < η <

(
2(k − αL2)

L2
, αL2

)
< k (3.25)

holds. Then, {xn} converges faster than all of {vn}, {un}, {pn} and {cn} to x∗ ∈ F (T ) ∩ Ω(C,A) provided that
x0 = c0 = p0 = u0 = v0. Furthermore, the iterative method (3.3) and (3.4) have the same rate of convergence.

Proof . From (3.15) in Theorem 3.1, and using the assumption, we obtain

∥xn − x∗∥ ≤ δ3(n+1)∥x0 − x∗∥(1− β(1− δ))n+1(1− α(1− δ))n+1

=

(
δ3(1− β(1− δ))(1− α(1− δ))

)n+1

∥x0 − x∗∥. (3.26)

Similarly, we obtain

∥vn − x∗∥ ≤ δ2(n+1)∥v0 − x∗∥(1− αβ(1− δ))n+1

=

(
δ2(1− αβ(1− δ))

)n+1

∥v0 − x∗∥, (3.27)



Some iterative algorithms for Reich-Suzuki with applications 183

∥un − x∗∥ ≤ δ2(n+1)∥u0 − x∗∥(1− αβ(1− δ))n+1

=

(
δ2(1− αβ(1− δ))

)n+1

∥u0 − x∗∥, (3.28)

∥pn − x∗∥ ≤ δ(n+1)∥p0 − x∗∥(1− αβ(1− δ))n+1

=

(
δ(1− αβ(1− δ))

)n+1

∥p0 − x∗∥, (3.29)

∥cn − x∗∥ ≤ ∥c0 − x∗∥
[
1− α

(
1− δ

{
1− β(1− δ[1− γ(1− δ)])

})]n+1

. (3.30)

It has been established that the sequences {xn}, {cn}, {pn}, {vn} and {un} converges strongly to zero. Now, before
applying Lemma 2.5, we claim that

(1− β(1− δ))(1− α(1− δ))

(1− αβ(1− δ))
< 1 (3.31)

(1− β(1− δ))(1− α(1− δ))

1− α

(
1− δ

{
1− β(1− δ[1− γ(1− δ)])

}) < 1. (3.32)

To see this, since α, β and γ in (0, 1) and the fact that δ ∈ (0, 1), we obtain αβ + αβ − αβδ < α + β. Then
α − β + αβ(1 − δ) < −αβ. Since 1 − δ > 0, α(1 − δ) − β(1 − δ) + αβ(1 − δ)2 < −αβ(1 − δ). This implies that
1− α(1− δ)− β(1− δ) + αβ(1− δ)2 < 1− αβ(1− δ) and so, (1− β(1− δ))(1− α(1− δ)) < (1− αβ(1− δ)). Thus,

(1− β(1− δ))(1− α(1− δ))

(1− αβ(1− δ))
< 1. (3.33)

In addition, we have

α+ αγδ3 < 1

⇒− αβ − αβγδ3 > −β

⇒− β + αβ < −αβγδ3

⇒− β(1− δ) + αβ(1− δ) < αβγδ3 − αβγδ2

⇒1− α+ αδ − αβδ + αβδ2 − β(1− δ) + αβ(1− δ) < 1− α+ αδ − αβδ + αβδ2αβγδ3 − αβγδ2

⇒(1− β(1− δ))(1− α(1− δ)) < 1− α

(
1− δ

{
1− β(1− δ[1− γ(1− δ)])

})
⇒ (1− β(1− δ))(1− α(1− δ))

1− α

(
1− δ

{
1− β(1− δ[1− γ(1− δ)])

}) < 1. (3.34)

Now, let

Ψn =

(
δ3(1− β(1− δ))(1− α(1− δ))

)n+1

∥x0 − x∗∥.

Φn =

(
δ2(1− αβ(1− δ))

)n+1

∥v0 − x∗∥.

Ωn =

(
δ2(1− αβ(1− δ))

)n+1

∥u0 − x∗∥.
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Γn =

(
δ(1− αβ(1− δ))

)n+1

∥p0 − x∗∥.

ϕn = ∥c0 − x∗∥
[
1− α

(
1− δ

{
1− β(1− δ[1− γ(1− δ)])

})]n+1

.

It is easy to see that limn→∞ Ψn = 0, limn→∞ Φn = 0, limn→∞ Ωn = 0, limn→∞ Γn = 0 and limn→∞ ϕn = 0. Thus,
using our hypothesis x0 = u0 = v0 = p0 = c0 (3.33) and (3.34) we have that

µn =
Ψn

Φn
=

(
δ3(1− β(1− δ))(1− α(1− δ))

)n+1

∥x0 − x∗∥(
δ2(1− αβ(1− δ))

)n+1

∥v0 − x∗∥

=

(
δ(1− β(1− δ))(1− α(1− δ))

)n+1

∥x0 − x∗∥(
(1− αβ(1− δ))

)n+1

∥x0 − x∗∥

=

(
δ(1− β(1− δ))(1− α(1− δ))

(1− αβ(1− δ))

)n+1

→ 0 as n → ∞.

νn =
Ψn

Ωn
=

(
δ3(1− β(1− δ))(1− α(1− δ))

)n+1

∥x0 − x∗∥(
δ2(1− αβ(1− δ))

)n+1

∥u0 − x∗∥

=

(
δ(1− β(1− δ))(1− α(1− δ))

)n+1

∥x0 − x∗∥(
(1− αβ(1− δ))

)n+1

∥x0 − x∗∥

=

(
δ(1− β(1− δ))(1− α(1− δ))

(1− αβ(1− δ))

)n+1

→ 0 as n → ∞.

ηn =
Ψn

Γn
=

(
δ3(1− β(1− δ))(1− α(1− δ))

)n+1

∥x0 − x∗∥(
δ(1− αβ(1− δ))

)n+1

∥p0 − x∗∥

=

(
δ2(1− β(1− δ))(1− α(1− δ))

)n+1

∥x0 − x∗∥(
(1− αβ(1− δ))

)n+1

∥x0 − x∗∥

=

(
δ2(1− β(1− δ))(1− α(1− δ))

(1− αβ(1− δ))

)n+1

→ 0 as n → ∞.
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θn =
Ψn

ϕn
=

∥x0 − x∗∥
(
δ3(1− β(1− δ))(1− α(1− δ))

)n+1

∥c0 − x∗∥
[
1− α

(
1− δ

{
1− β(1− δ[1− γ(1− δ)])

})]n+1

=

∥x0 − x∗∥
(
δ3(1− β(1− δ))(1− α(1− δ))

)n+1

∥x0 − x∗∥
[
1− α

(
1− δ

{
1− β(1− δ[1− γ(1− δ)])

})]n+1

=

(
δ3(1− β(1− δ))(1− α(1− δ))

1− α

(
1− δ

{
1− β(1− δ[1− γ(1− δ)])

}))n+1

→ 0 as n → ∞.

It follows from Lemma 2.5, {xn} converges faster than {cn}, {pn}, {vn} and {un} to x∗ ∈ F (T ) ∩ Ω(C,A). In
addition, we have

µn =
Φn

Ωn
=

(
δ2(1− αβ(1− δ))

)n+1

∥v0 − x∗∥(
δ2(1− αβ(1− δ))

)n+1

∥u0 − x∗∥
(3.35)

=

(
δ2(1− αβ(1− δ))

)n+1

∥u0 − x∗∥(
δ2(1− αβ(1− δ))

)n+1

∥u0 − x∗∥
→ 1 as n → ∞. (3.36)

By Lemma 2.5, it is easy to see that {un} and {vn} have the same rate of convergence. □

We now provide some numerical example to justify our analytical proof.

Example 3.4. Let H = R and C = [0, 1]. Define a mapping T : [0, 1] → [0, 1] and A : [0, 1] ⊂ H → H as

Tx =

{
1− x if x ∈ [0, 1

5 ),
x+4
5 if x ∈ [ 15 , 1]

(3.37)

and
A(x) = 3x.

It is easy to see that T satisfy condition (C), (see Remark 2.2 and [22, 23]) thus it is a Reich-Suzuki nonexpansive
mapping. Now, observe that

|Ax−Ay| = |3x− 3y| = 3|x− y|,

clearly, A is 3-Lipschitzian mapping. Furthermore, we have

⟨Ax−Ay, x− y⟩ = ⟨3x− 3y, x− y⟩
= (4− 1)⟨x− y, x− y⟩
= −1|x− y|2 + 4|x− y|2

= −1

9
|3x− 3y|2 + 4|x− y|2.

It is clear that A is a relaxed ( 19 , 4)-cocoercive. In addition, we have L = 3, α = 1
9 and k = 4, thus condition (3.25)

takes the form

0 < η <

(
2

3
, 1

)
< 4
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and the metric projection

PC(x) =


0, if x ∈ (−∞, 0),

x, if x ∈ [0, 1],

1 if x ∈ (1,∞).

(3.38)

Thus, we obtain

TPC(x) =


0, if x ∈ (−∞, 0),

T (x), if x ∈ [0, 1],

T (1) if x ∈ (1,∞).

(3.39)

With respect to Algorithm 3.5, Algorithm 3.4, Algorithm 3.3, Algorithm 3.2 and Algorithm 3.1, we randomly
choose x0 ∈ [0, 1]. We choose η = 0.2, βn = 7n

76n+60 , αn = 7n
800n+26 and γn = 76n+87

190n+78 We consider the following cases
for our numerical experiment.

Case 1: Take x0 = u0 = v0 = c0 = p0 = 0.6.

Case 2: Take x0 = u0 = v0 = c0 = p0 = 0.4.

Case 3: Take x0 = u0 = v0 = c0 = p0 = 0.35.
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Figure 1: Example 3.4. Top left: Case 1, Top right: Case 2, Bottom Case 3.

The report of this experiment is presented in Figure 1.
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Example 3.5. Let H = ℓ2(R), where

ℓ2(R) := {x = (x1, x2, ..., xi...), xi ∈ R and

∞∑
i=1

|xi|2 < ∞},

with inner product ⟨., .⟩ : ℓ2×ℓ2 → R defined by ⟨x, y⟩ :=
∑∞

i=1 xiyi and the norm ∥.∥ : ℓ2 → R by ∥x∥ :=
√∑∞

i=1 |xi|2,

where x = {xi}∞i=1 and y = {yi}∞i=1. Define the mappingA : ℓ2 → ℓ2 byAx =

(
x1+|x1|

3 , x2+|x2|
3 , ..., xi+|xi|

3 , ...

)
, ∀ x =

{xi}∞i=1 ∈ ℓ2. Let T : ℓ2 → ℓ2 be defined by Tx =

(
x1

6 , x2

6 , ..., xi

6 , ...

)
, for all x = {xi}∞i=1 ∈ ℓ2. Furthermore, let

C := {x ∈ ℓ2 : ∥x∥ ≤ 1} be the unit ball. Then, we define the metric projection PC as:

PC(x) =


x

∥x∥ℓ2
, if ∥x∥ℓ2 > 1,

x, if ∥x∥ℓ2 ≤ 1.

(3.40)

With respect to Algorithm 3.5, Algorithm 3.4, Algorithm 3.3, Algorithm 3.2 and Algorithm 3.1, we randomly
choose x0 ∈ H. We choose η = 0.2, βn = 7n

76n+60 , αn = 7n
800n+26 and γn = 76n+87

190n+78 . We consider the following cases for
our numerical experiment.

Case 1: Take x0 = p0 = v0 = c0 = u0 = (7.2108,−5.1081, 0, ..., 0, ...)T .

Case 2: Take x0 = p0 = v0 = c0 = u0 = (4.6507,−6.5670, 0, ..., 0, ...)T .

Case 3: Take x0 = p0 = v0 = c0 = u0 = (7.5647,−11.1256, 0, ..., 0, ...)T .

The report of this experiment is presented in Figure 2.

It is easy to see from Figure 1 and Figure 2 that our propose iterative method converges faster than the existing
ones. In addition, our claim that the iterative method (3.3) and (3.4) has been justified both analytical and with
examples.

4 Application

In this section, the application presented was inspired by the works of the authors in [9, 10, 14]. In addition, we
give a numerical experiment to compare Algorithm 3.5, Algorithm 3.4, Algorithm 3.3, Algorithm 3.2 and Algorithm
3.1.

4.1 Application

Let f : C → R be a convex mapping where C is a closed and convex subset of a Hilbert space H. Considering the
convex minimization problem

min
x∈C

f(x). (4.1)

Let PC : H → C be a projection map and f be the Frêchet differentiable. Denote the gradient of f by ∇f. It is
well-known that x∗ solves (4.1) if and only if the following variational inequality holds:

x∗ ∈ C, ⟨∇fx∗, x− x∗⟩ ≥ 0 ∀x ∈ C, (4.2)

that is x∗ ∈ Ω(C,A). In addition x∗ solves (4.1) if and only if x∗ = PC(x
∗ − η∇f(x∗)), where η > 0. In order to solve

(4.1) the gradient projection algorithm (GPA) is usually used and its defined as

xn+1 = PC(xn − η∇f(xn)),
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Figure 2: Case 1 (top left); Case 2 (top right); Case 3 (bottom).
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where x0 ∈ C and η is step size. Now, suppose that T = I (identity mapping) and A is taken as the gradient of
a convex function f in the iterative process (3.5), then we get the following iterative process which converges to a
solution of a convex minimization problem (4.1),

x0 ∈ C,

un = (1− αn)xn + αnPC(I − η∇f)xn,

vn = (1− βn)un + βnPC(I − η∇f)un

wn = PC(I − η∇f)vn,

yn = PC(I − η∇f)wn,

xn+1 = PC(I − η∇f)yn, n ≥ 1

(4.3)

where {αn} and {βn} are sequences in (0, 1).

Theorem 4.1. Suppose that problem (4.1) has a solution. Let f : C → R be a convex mapping such that its gradient
bigtriangledownf is a relaxed (α, k)-cocorcive and L-Lipschitzian mapping of C ontonH. Let {xn} be sequence defined
by (4.3) for any x0 ∈ C, such that condition (3.26) and δ is defined as in (3.9) hold, then {xn} obtained from (4.3)
converges strongly to x∗ to the solution of (4.1).

Proof . The prove follow similar approach as in Theorem 3.1, by taking T = I, which is clearly a nonexpansive
mapping, A = ∇f. We obtain in Theorem 3.1 that x∗ ∈ F (T ) ∩ Ω(C,A) = Ω(C,∇f) = {x ∈ C : ⟨∇fx, y − x⟩ ≥
0 ∀y ∈ C}. It follows that x∗ is a solution of (4.1). □

4.2 Numerical Example

[9] Let H = L2([0, 1]), H is a Hilbert space with the induced inner product

∥x(t)∥2 =
√
⟨x(t), x(t)⟩ =

(∫ 1

0

x2(t)dt

) 1
2

∀ x ∈ L2([0, 1]).

It is well-known that the set C = {x ∈ L2([0, 1]) : ∥x(t)∥2 ≤ 1} is closed and convex subset of H. We define
f : C → H as f(x) = ∥x(t)∥22, f is a convex function and x(0) = 0 a unique minimum of f. In addition, f is Frêchet
differentiable at x and its gradient ∇f : C → H is defined as ∇f(x) = 2x. Now observe that

∥∇f(x(t))−∇f(y(t))∥2 =

(∫ 1

0

(2x(t)− 2y(t))2dt

) 1
2

=

(∫ 1

0

(2(x(t)− y(t)))2dt

) 1
2

= 2

(∫ 1

0

(x(t)− y(t))2dt

) 1
2

= 2∥x(t)− y(t)∥2,

clearly ∇f(x) is 2-Lipschitzian mapping. In addition, we have that

⟨∇f(x(t))−∇f(y(t)), x(t)− y(t)⟩ =
∫ 1

0

(2x(t)− 2y(t)(x(t)− y(t)))dt

= 2

∫ 1

0

(x(t)− y(t))2dt

= (3− 1)

∫ 1

0

(x(t)− y(t))2dt

= −
∫ 1

0

(x(t)− y(t))2dt+ 3

∫ 1

0

(x(t)− y(t))2dt

= −∥x(t)− y(t)∥2 + 3∥x(t)− y(t)∥2

= −1

4
∥2x(t)− 2y(t)∥2 + 3∥x(t)− y(t)∥2.
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clearly ∇f(x) is a relaxed ( 14 , 3)-cocorcive. we have that L = 2, α = 1
4 and k = 3, then condition (??) takes the form

0 < η < 1 < 3. (4.4)

Let us choose η = 1
6 , βn = γn = αn = 1

6n+15 , then iterative scheme (4.3), (3.1), (3.2),(3.3) and becomes

x0 ∈ C,

un = (1− 1
6n+15 )xn + 1

6n+15PC(
2
3xn),

vn = (1− 1
6n+15 )un + 1

6n+15PC(
2
3un)

wn = PC(
2
3vn),

yn = PC(
2
3wn),

xn+1 = PC(
2
3yn), n ≥ 1

(4.5)


c0 ∈ C,

an = (1− 1
6n+15 )cn + 1

6n+15PC(
2
3cn),

bn = (1− 1
6n+15 )cn + 1

6n+15PC(
2
3an)

cn+1 = (1− 1
6n+15 )cn + 1

6n+15PC(
2
3bn), n ≥ 1,

(4.6)


p0 ∈ C,

sn = (1− 1
6n+15 )pn + 1

6n+15PC(
2
3pn),

pn+1 = (1− 1
6n+15 )PC(

2
3pn) +

1
6n+15PC(

2
3sn), n ≥ 1,

(4.7)


u0 ∈ C,

wn = (1− 1
6n+15 )un + 1

6n+15PC(
2
3un),

vn = (1− 1
6n+15 )PC(

2
3un) +

1
6n+15PC(

2
3wn)

un+1 = PC(
2
3vn), n ≥ 1,

(4.8)



v0 ∈ C,

un = (1− 1
6n+15 )vn + 1

6n+15PC(
2
3vn),

wn = (1− 1
6n+15 )vn + 1

6n+15PC(
2
3un)

yn = PC(
2
3wn),

vn+1 = PC(
2
3yn), n ≥ 1.

(4.9)

where

PC =

{
x(t) if x(t) ∈ C,
x(t)

∥x(t)∥ if x(t) /∈ C.
(4.10)

We plot the graph of error against number of iterations with tolerance level(||xn+1 − xn|| = 10× e−5) and varying

values of x0 = c0 = v0 = u0 = p0. For case 1 x0 = 3t+t2, case 2, x0 = t4+5t3−100t2−t+7 and case 3, x0 = e−7t3+4t2.

The report of this experiment is presented in Figure 3.

5 Conclusion

A new iterative method for finding the common element of the set of fixed points of a Reich-Suzuki nonexpansive
mappings and the set of solutions of the variational inequalities problems in the framework of Hilbert spaces was
introduced. In addition, we established that our proposed iterative method converges strongly to the solution of the
aforementioned problems. Finally, we considered some numerical examples of our proposed method in comparison
with other existing iterative methods in the literature. In all our comparisons, the numerical and analytical results
shows that our method performs better than these other methods.
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Figure 3: Case 1 (top left); Case 2 (top right); Case 3 (bottom).
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