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Abstract

In this paper, we propose an iterative method for finding the common element of the set of fixed points of Reich-Suzuki
nonexpansive mappings and the set of solutions of the variational inequalities problems in the framework of Hilbert
spaces. In addition, we establish convergence results for these proposed iterative methods under some mild conditions.
Furthermore, we establish analytically and numerically that our newly proposed iterative method converges to a
common element of the set of fixed points of a Reich-Suzuki nonexpansive mapping and the set of solutions of the
variational inequalities problems faster compared to some well-known iterative methods in the literature. Finally,
we apply our proposed iterative method to approximate the solution of a convex minimization problem. The results
obtained in this paper improve, extend and unify some related results in the literature.
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1 Introduction

Let H be a real Hilbert space with the inner product (-, -) and the induced norm || - ||, C' a nonempty closed convex
subset of H and A : H — H a nonlinear operator. The classical Variational Inequality Problem (VIP) is formulated
as: Find «* € C such that for any z € C

(Az™,x —2*) > 0. (1.1)

The notion of VIP (1.1) was introduced independently by Stampacchia [20] and Fichera [11], 12] for modeling
problems arising from mechanics and for solving Signorini problem. It is well-known that many problems in economics,
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pure and applied sciences can be formulated as VIP (1.1). We denote the solution set of a VIP by Q(C, A) =
{z* € C: (Az*,2* —z) > 0 V¥V x € C}. Thereafter, a lot of researchers in this area of mathematics have explore the
notion of VIP for detail work on VIP the reader should (see [7, (13, 20, 24] and the references therein). It
has been established over the years that the existence and approximation of a VIP (1.1 is equivalent to finding the
fixed point problem: Find

x* € C such that z* = Po(I —nA)z™, (1.2)

where 7 > 0 and P is called the metric projection of H onto C. We recall that the metric projection (Pgx) is such
that
lz — Peal| < |le —yll, VyeC.

It has been established in the literature that if A is L-Lipschitzian and v-strongly monotone, then the operator
Po(I —nA) is a contraction on C provided thet 0 < n < % In the light of this fact, the Banach contraction principle
clearly guarantees the existence and uniqueness of an approximate solution for a VIP . The well-known Picard
iterative process takes the form:

Tnt1 = Po(I — nA)x,. (1.3)

This approach of approximating the solution of a VIP (|1.1)) is called projected gradient method. It is well-known
that
x* € Q(C,A) if and only if z* = Po(z* — nAx™).

Definition 1.1. Let C be an arbitrary space with self mapping T : C — C, a point = € C is called a fixed point of
a mapping 7T if
Tr =x. (1.4)

The set of all fixed points of T is denoted by F'(T'). Many problems in mathematics, engineering, physics, economics,
game theory, and other fields can be formulated into fixed point problems, making fixed point theory a useful field
of study. In general, it is nearly impossible to solve fixed point problems analytically, necessitating the consideration
of iterative methods of solutions for fixed point problems. Researchers have created multiple iterative methods for
solving fixed point problems for various operators (nonlinear) over the years, but the search for quicker and more
efficient iterative algorithms continues. The Picard iterative process

Tnt1 =Ty, Yn €N, (1.5)

is one of the earliest iterative process used to approximate the solution of Equation , where T' is a contraction
mapping. It is well-known that the Picard iterative method fails to approach the solution of Equation when
T is a nonexpansive mapping and the initial point picked for the iteration is not the fixed point of T. However,
Browder [6] shown that a fixed point exists for the class of nonexpansive self mappings on a closed and bounded
subset of a uniformly convex Banach space. Following that, researchers in this field devised many iterative procedures
to approximate the fixed points of nonexpansive mappings and a variety of other nonlinear mappings. Developing
faster and more effective iterative techniques for approximating fixed points of nonlinear mappings is still an open
problem in this area of research. The following are some well-known iterative methods for approximating fixed points
of nonlinear mappings that have been published in the literature. Among many others, are; Mann [18], Ishikawa [16],
Krasnosel’skii [I7] and so on. For detail work on iterative processes, the reader should (see [Il 2 3] 4, 8] and the
references therein). The following iterative methods are referred to as Noor [19], S-iterative method [4], Picard-S [15]
and Thakur-New iterative method [21], respectively:

co €C,

an = (1 —ap)en + anTey,

b, = (1= Bn)cn + BuTay,

Cnt1 = (1 —vn)en + BnThy,, n>1,
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where {a,}, {7} and {8, } are sequences in [0,1] and C be a nonempty, closed and convex subset of a convex subset
of a normed space X. It is easy to see that if 5, = a, = 0 for all n € N, we obtain the well-known Mann iterative
method [18]. In addition, if a;,, = 0, we obtain the Ishikawa iterative method [16].

Po € 07
Sn = (1 - an)pn + anTpn7 (17)
Pn+1 = (1 - ﬁn)Tpn + BnTSna n Z 17

where {a,,} and {3, } are sequences in [0,1] and C' be a nonempty, closed and convex subset of a convex subset of a
normed space X and T a nonlinear mapping.

ug € C,

wy, = (1 — ap)uy + apTug,
vp = (1 = Bp)Tu, + BrTw,
Upt1 =LV, n>1,

(1.8)

where {a,,} and {8,} are sequences in [0,1], C' be a nonempty, closed and convex subset of a convex subset of a
normed space X and T a nonlinear mapping.

vy € C,

up = (1 — an)vp + @y Toy,

Yn = T((1 = Bn)vn + BnTun),
Upt1 =Typ, n=>1,

(1.9)

where {a,,} and {8,} are sequences in [0,1] and C be a nonempty, closed and convex subset of a convex subset of a
normed space X and T a nonlinear mapping.

Remark 1.2. We note that the iterative method (1.9)) can be expressed in the form:

vg € C,

Up = (1 — ap)vy + Ty,

wyp = (1 = Bn)vn + BnTuny (1.10)
Yn = Twp,

Unt1 =T Yn, n>1,

where {a,} and {8,} are sequences in [0, 1] and C be a nonempty, closed and convex subset of a convex subset of a
normed space X and T a nonlinear mapping.

Remark 1.3. We claim that iterative method (1.8) and (1.9 have the same rate of convergence. This claim will be
justified in Theorem 3.3

Question 1. Is it possible to define a new iterative method whose rate of convergence is better than the above listed
iterative methods for a Reich-Suzuki nonexpansive mapping?

Question 2. Is it possible to modify the above iterative methods and then use to approximate the common element of
the set of fixed points of a Reich-Suzuki nonexpansive mappings and the set of solutions of the variational inequalities
problems in the frame work of Hilbert spaces?

Motivated by Remark Question 1, Question 2, the research works described above and the recent research
interests in this direction, we provide an affirmative answer to the above questions raised in this work by introducing an
iterative method for finding the common element of the set of fixed points of a Reich-Suzuki nonexpansive mappings
and the set of solution of the variational inequalities problems in the framework of Hilbert spaces. In addition,
we establish convergence results for this proposed iterative method under some mild conditions. Furthermore, we
establish analytically and numerically that our newly proposed iterative method converges to a fixed point of Reich-
Suzuki nonexpansive mappings faster compared to some well-known iterative methods in the literature. Finally, we
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apply our proposed iterative method to approximate the solution of a convex minimization problem. The results
obtained in this paper improve, extend and unify some related results in the literature.

The rest of this paper is organized as follows: In Section [2] we shall recall some useful definitions and Lemmas. In
Section [3] we present our proposed method, strong convergence analysis of our method is investigated and the rate
of convergence of our iterative method in comparison with other existing methods are investigated. In Section [4, we
present an application and some numerical experiments to show the efficiency and implementation of our method (in
comparison with other methods in the literature) are also discussed in the framework of infinite dimensional Hilbert
spaces. Lastly, in Section [5| we give a conclusion of the paper.

2 Preliminaries
Let H be a real Hilbert space and C' be a nonempty, closed and convex subset of H.
Definition 2.1. Let A: H — H be an operator. Then the operator A is called
1. L-Lipschitz continuous if
Az — Ay[| < Lz —y],

where L > 0 and z,y € H. If L = 1, Then, the operator A is called nonexpansive. Also, if y € F(A) and L =1,
Then A is called quasi-nonexpansive.
2. monotone if

(Az — Ay,x —y) >0 Va,y € H.
3. k-inverse strongly monotone (k-ism) if there exists k > 0, such that
(Az — Ay, x —y) > k|Az — Ay||* Y x,y € H.
4. v-strongly monotone (v-sm) if there exists v > 0, such that
(Az — Ay, 2 —y) > v|jlz —y|* Yo,y H.
5. relaxed («, k)-cocoercive if there exist a,, k > 0, such that
(Az — Ay, z —y) > —a| Az — Ay|* + kllz — y||* Va,y € H.
6. condition (C) mapping if there exist an o € (0,1) and for all z,y € H,

1
Az =zl < llz —yll = [[Az — Ay < [lz — y]l.
7. Reich-Suzuki nonexpansive mapping if there exists an o € (0,1) and for all z,y € H, 3||Az —z| < ||z —y||, then
[Az — Ay|| < af| Az — 2| + af| Ay — y|| + (1 = 2a)[lz — y]|.

Remark 2.2. It is easy to see that if @ = 0, Reich-Suzuki nonexpansive mapping becomes a mapping satisfying
condition (C).

Lemma 2.3. Let A : C — C be a Reich-Suzuki nonexpansive mapping with a fixed point, then A is quasi-
nonexpansive.

Proof . Let x € F(A),a € (0,1) and y € C,
1 1
Az =zl =Sz — 2l =0 < [lz —y]|.

So, we have

|z — Ay = [|[Az — Ay|| < af|Az — z|| + af|Ay — y| + (1 — 20)[|z — y||
= allAy —y| + (1 — 2a) ||z — y||
< allAy — x|l + allz — y[| + (1 = 2a)[|z — y||
= allz — Ay|| + (1 — a)[|z — y]|.

Then, we have (1 — a)||z — Ay|| < (1 — a)|jz — y|| and so, ||z — Ay|| < ||z — y||. Hence, A is quasi-nonexpanisve. [J
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Remark 2.4. Let T be Reich Suzuki-nonexpansive mapping, if * € F(T)NQ(C, A), we have the following assertion.
Since z* € F(T) N Q(C, A), we have that =* € F(T') and z* € Q(C, A), which implies that

¥ e F(T) = 2" =T, (2.1)
also
¥ € Q(C,A) = 2" = Po(z* —nAx™). (2.2)
It follows from and , we have
¥ =Tx* = TPo(z* — nAx™). (2.3)

Pg is called the metric projection of H onto C. It is well-known that Pc is a nonexpansive mapping of H onto C
and that Pg satisfies
(x —y, Pex — Poy) > ||Pox — Peyl?,

for all z,y € H. Furthermore, Poz is characterized by the properties Pox € C,
(x — Pox,Pox —y) >0

for all y € C and
& = ylI* > ||z — Pez|® + |ly — Pozl|?

forall z € H and y € C.

Lemma 2.5. [5] Supose that {z,} and {y,} are two sequences of real numbers converging to the same fixed point
g, with the following error estimate:

||xn - $0H < Th
||yn - mOH < M,

for all n € N, where 7,, and 7,, are two sequences of positive numbers converging to zero (0). Then, {z,} converges
faster than {y,} to x if

If lim ™ =k, where k € (0,00), then {x,} and {y,} are said to have the same rate of convergence.
n—oo 'ln

3 Main Results

In this section, we introduce some iterative algorithms for finding the common element of the set of fixed point of a
Reich-Suzuki nonexpansive mappings and the set of solution of the variational inequalities. In addition, we establish
convergence results for these proposed iterative algorithms under some mild conditions. In view of Remark we

obtain the following equivalent iterative methods for (1.6]), (1.7)), (1.8) and (1.10).

co € C,
an = (1 —ay)en, + ayTPo(I —nA)ey, (3.1)
bn = ( - Bn)cn + BnTPC'(I - nA)an .
Cn+1 = (1 - rYn)cn + ﬁnTPC(I - UA)bna n = 17
where {ay,}, {7} and {5,} are sequences in [0, 1].
Po € Ca
Sp = (1 - an)pn + anTPC(I - nA)pru (32)

Pn+1 = (1 - Bn)TPC(I - UA)pn + BnTPC(I - 77A)8m n = 17
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where {ay,} and {5, } are sequences in (0, 1).

ug € C,
wp, = (1 — ap)uny + @y TPo(I — nA)uy, (3.3)
v = (1 = Bn)TPc(I —nA)uy, + BT Po(I — nA)w,
Upt1 = TPo(I —nA)v,, n>1,
where {a,,} and {8, } are sequences in (0, 1).
vg € C,
tun = (1 = ap)vy + @y TPe(I —nA)vy,
wp, = (1 = Bn)vn + BuTPc(I — nA)u, (3.4)

yn = TPc(I — nA)w,,
Un+1 = TPC(I - nA)yna n > 1;

where {a,} and {8, } are sequences in (0,1). In the light of providing an affirmative answer to the above questions,
we introduce the following iterative method.

xg € C,

up = (1 — ap)xn + anTPe(I — nA)x,,
vp = (1 = Bp)un + BT Pc(I —nA)uy,
wy, = TPo(I —nA)v,,

Yn = TPc(I —nA)w,,

Tpt1 = TPo(I —nA)y,, n>1,

(3.5)

where {a,,} and {8, } are sequences in (0, 1).

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H and A be a relaxed (o, k)-cocoercive
and L-Lipschitzian mapping of C' onto H and T Reich Suzuki-nonexpansive nonexpansive mapping on C such that
F(T)NQ(C, A) # () and
2(k — aL?
0<n< <(L2°‘),QL2> <k,

holds. Then, the iterative sequences {z,} defined by (3.5)), with sequences {a,}, and {8, } in [0, 1] converges strongly
to z* € F(T)NQ(C, A).

Proof . Let z* € F(T) N Q(C, A). Using (3.5) and Lemma we have

[un — 2" = [[(1 = an)zn + anTPe(I —nA)x, — 2"
< (I =an)llzn — 2" + onl|TPc(I = nA)z, — 27|
< (I —an)llzn — 2% + anl|Pe(I — nA)z, — 2|
= (1 —an)llzn — 2" + anllPe(I = nA)zn — Po(I — nA)z||
<1—ap)llzn — 27| + anl|(I = nA)zn — (I —nA)z"|
= (1 —ap)llen — 2" + anl[(zn — 27) — n(An — Az")|. (3.6)

Now, observe that

[(zn —2") — n(Az, — Am*)||2 = llzn — x*HQ = 2n(Az, — Ax*, 2, — 2%) + 772”’45571 - Am*HQ
< lzn — 2*|1? = 2nall Az, — Ax*||? = 2nklle, — 2*|| + n*|| Az, — Az*|?
< (1 =20k + 2nal? + n*L?)|z, — 2*|?, (3.7)
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which implies that

(= 2%) = n(An — Az*)|| < /(L = 20k + 2al? + P L), — *]) (3.8)

where

V(1 =20k + 2nal? +n2L2?) =6 € (0,1). (3.9)

Thus by (3.6]), we have
[un —2*| < (1 = an)l|lzn — 27| + andllzn — 27|
= (1= an(l =98z, —x*|. (3.10)

Also, using Algorithm Lemma (3.6) and similar approach as in (3.8)), we have

v — 2™ = |(1 = Bp)un + BuTPc(I — nA)u, — |

(1= B)llun — || + Bull T Pe(I — nA)u, — 27|

(1= Bu)llun — (| + Brdllun — 2|

(1= Bn(1—=0))l[un — 27|

(1= 5n(1—=0)A = an(l =6))[zn — ™. (3.11)

IN A

IN

Similarly, using Algorithm Lemma (3.11) and similar approach as in (3.8)), we have
lwn — 2™ = | TPo(I —nA)vy — 27|
< Ofvn — 7|
< 6(1— Bull = 6))(1 — an(1 = ) — 271 (3.12)
In addition, using Algorithm Lemma (3-12) and similar approach as in (3.8]), we have

lyn —2*|| = |TPc(I — nA)w, — |
< dlwn, — 27|
<821 = Bn(1 = 6)(1 — an(1 = 0))||z, — 2*]. (3.13)

Finally, using Algorithm Lemma 2.3 (3.13)) and similar approach as in (3.8)), we have
[#ns1 — 2" = [[TPc(I = nA)yn — =]

< Ollyn — 2"
< O%(1 = Ba(1 = 8))(L — an(l = 8)|lzn — 2|, (3.14)
which implies that
|z — 2" < 8*" D [y — | T[T = Bi(1 = 6))(1 = ax(1 - 6)). (3.15)

k=0

Since (1 —Br(1—46)) € (0,1), (1 —ax(1—46)) € (0,1), we have (1 — (1 —0))(1 —ax(1 —0)) € (0,1) and 6 € (0,1).
Passing the limit in , we obtain

nh—>Holo lzn, — 2| = 0. (3.16)
O

Theorem 3.2. Let C, H,T, A and § be as defined in Theorem Suppose that F(T)NQ(C, A) # @ and

2k — alL?
0<n< <(L2a),aL2> <k

holds. Then, the iterative sequences {v,}, {un},{pn} and {c,} defined by lb (3:3), (3:2) and (B.1) respectively
with sequences {ay,}, {8,} and {y,} in [0, 1] converges strongly to z* € F(T) N Q(C, A).
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Proof . Using similar approach as in Theorem we obtain

lon = 2*[| < 8>V log — 27| T (1 = arBr(1 =), (3.17)

k=0
= || < 62D ug — 2| TT(1 = anBi(1 = 4)), (3.18)

k=0
I — 2| < 6@V g — || T[T (1 — awBBi(1 = 6)), (3.19)

k=0
few =l < llo =" T [1=en(1-8{1 = sr1 = = 1= o} )| (3.20)

k=0
As in Theorem [3.1] we obtain

nhﬁn;o |lvn, — 2*|| = 0. (3.21)
nhﬁn;o lwn — ™| = 0. (3.22)
Jim ([p, — 27| = 0. (3.23)
nh_}rrolo llen — 2™ = 0. (3.24)

O

Theorem 3.3. Let C,H,T, A and ¢ be as defined in Theorem and {z,}, {vn}, {un}, {pn} and {c,} be iterative

methods defined by (3.5), (3.4), (3.3), (3.2) and (3.1]) respectively with sequences {a,},{8,} and {v,} in [0,1] such
that

lL.LO0<a<a, <1,
2.0<B8<pBr<1and
3. 0<y<y, <1

Suppose that F(T) N Q(C, A) # () and

2(k — aL?

holds. Then, {z,} converges faster than all of {v,},{un},{pn} and {c,} to 2* € F(T) N Q(C, A) provided that
Lo = ¢p = pg = ug = vg. Furthermore, the iterative method (3.3)) and (3.4) have the same rate of convergence.

Proof . From (3.15)) in Theorem and using the assumption, we obtain
|z — 2| < 62V [lzg —2*|(1 = B(1 = 8))" (1 — (1 = §)"H
n+1
— (Fa-sa-opa-a-a)) - (3.26)
Similarly, we obtain
[on — 2| < 62+ Vlug — 2|1 — aB(1 — §))"+!

n+1
(ﬁaaM1®Q oo — 2*|l (3.27)
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= || < 6V Jlug — 27(|(1 = aB(1 = §))"+!

n+1
- (52(1 aB - 6))) T (3.28)

I — %[ < 6" Vlpo — 2*||(1 = ap(1 - 5))"*

n+1
- (au Bl - 5))) Ipo — 21, (3.29)

Jew =1 < oo =l |1 = (1= {1 = g1 g1 =201 - 6)1)})}“1. (3.30)

It has been established that the sequences {x,},{cn}, {pn}, {vn} and {u,} converges strongly to zero. Now, before
applying Lemma [2.5] we claim that

(1-p(1=0)(1 - -7))
(1-aB(1-9))
(1-8(1=46)(1—a(1-9))

1-a(1-of1-s0-s0-ra-ap})

To see this, since «, 8 and ~ in (0,1) and the fact that § € (0,1), we obtain «f + a8 — a8 < a + . Then
a—B+aB(l -6 < —aB. Since 1 —6 > 0, a(l —68) — B(1 —03) +ap(l —§)? < —aB(l —§). This implies that
1—a(l-46)-B(1—-6)+aB(l—-05§)2?<1—ap(l—17)andso, (1—8(1-109)1—a(l—-75))<(1—ap(l-7)). Thus,

(1-5(1-96)1 -l -9))
(1-aB(1-9))

<1 (3.31)

<1 (3.32)

<1 (3.33)

In addition, we have

a+ays® <1
= —af —afys® > —p
= - f+af < —afys®
= — B(1 —6) +ap(l —d) < afyd® — afys?
=1—a+ad—aBd+aBé®—B(1—06)+ap(l—05) <1—a+ad—aBs+aBs*afys® — afys?

=(1-B(1-8)(1-a(l-46)<1 a(l — 5{1 —B(1 -1 —~(1 5)})})
(1-60-9)( —a =9))

1-a(1-of1-s0-s0-a-ap})

= <1 (3.34)

Now, let

n+1
v, - (63<1 (- 8)(1 - a(1 —6))) P

Py,

(%0~ as01- 6>>)n+l||vo ).

0, = (821~ a1 - 5)))n+1||uo — 2.
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r, = (50— as - 5)))7l+1||l?0 2

oot 1ot {1 s1-sna -}

It is easy to see that lim, ., ¥,, = 0,lim, o ®, = 0,lim, 00 2, = 0,lim,, - I';, = 0 and lim,,_,, ¢, = 0. Thus,
using our hypothesis xo = ug = v9 = po = ¢o (3.33) and (3.34]) we have that

n+1
g, (PU-BO-0)0-al-6)) -]

Mn = q)in - nt1
(5%1 aB- 6))) o — ]
n+1
(5(1—ﬁ(1—5))(1—a(1—5))> o — 2|
- n+1
(0-as=6)) o]
51— A1 =6)(1 - a1 —48)\""
:( (l—aﬁ(l—é)) > — 0 as n — oo.
n+1
. (#a-pa-0p1-a-6)) -]
n Qn n+1
(62<1 Bl - 6))) o — 2]
n+1
(6(1 - 81— a(l— 6))) o — 2]
= n+1
((1 a1 - 6))) o
(81 =B -8)1 —a(l—4)\""
—( (1—aﬂ(1—5)) ) — 0 as n — oo.
n+1
p, (PO-B0-0)0-a=6)) -]
Nn = Fn =

(50— as1 - 5)))n+1||P0 |

n+1
(#0-s0-0a-an-0))  feo-s]

(a-asa- 5))>n+1$0 — o

21— p(1=4))(1 — a(l —8))\""
( (1= aB(1—9)) > — 0 as n — oo.
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n+1
o — x*(m (- 8)(1— a1 - 6)))
O = — = n+1
" e —av) 1-a(1-ofi-sa s -sa-an}))

n+1
I (63<1 A1 - 81 —a(l - 6)))

o=l [1 B a(l - 5{1 — A1 =01 —~(1 - 6)1>}>]n+l
(—Su=pa-o)1-at—0)

i1
1- a(l —5{1 — B =61 — (1 - 5)])}>)

It follows from Lemma {z,} converges faster than {c,},{pn}, {vn} and {u,} to z* € F(T) N Q(C,A). In
addition, we have

— 0 as n — oo.

<52(1 —af(1— 5)))n+1||110 — ¥

¢,
n
(#0-as-6)) -]
n+1
(#0-as-a))  fu- o]
= g} — 1 as n — oc. (3.36)
(52(1—04[3(1—5))) luo — x|
By Lemma [2.5] it is easy to see that {u,} and {v,} have the same rate of convergence. [J
We now provide some numerical example to justify our analytical proof.
Example 3.4. Let H =R and C = [0, 1]. Define a mapping 7' : [0,1] — [0,1] and A : [0,1] CH — H as
11—z if 0,3
Tm:{xﬂm.l xel[ '5) (3.37)
5 if o S [g, 1]
and
A(x) = 3x.

It is easy to see that T satisfy condition (C), (see Remark [2.2|and [22] [23]) thus it is a Reich-Suzuki nonexpansive
mapping. Now, observe that

|Az — Ay| = |3z — 3y| = 3|z — y|,
clearly, A is 3-Lipschitzian mapping. Furthermore, we have

(Ar — Ay,x —y) = 3z — 3y, v — y)
=@d-1){z—-yz—y)
= —llz —y|* + 4]z — y|?

1
=~ =3y + 4z -yl

It is clear that A is a relaxed (%, 4)-cocoercive. In addition, we have L = 3, = é and k = 4, thus condition (|3.25|)

takes the form )
0<n< (3, 1) <4
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and the metric projection

0, if € (—00,0),
Po(z) =< x, if zel0,1],
1 if z € (1,00).

0, if € (—o00,0),
TPc(z) = T(x), if z€]0,1],
T(1) if ze(1,00).

(3.38)

(3.39)

With respect to Algorithm Algorithm Algorithm Algorithm and Algorithm we randomly

76n+87

choose zy € [0,1]. We choose n = 0.2, 6, = 76;%, ay = soolﬁ and v, = To0ni7s We consider the following cases

for our numerical experiment.
Case 1: Take x¢g = ug = v = cg = pg = 0.6.
Case 2: Take xg = ug = vg = cg = pg = 0.4.

Case 3: Take x¢g = up = vg9 = cg = pg = 0.35.

—+—Ag31
—O—Alg3.2
102 —-%-—Alg33
Alg3.4

- = —AQg3s

10 8 L L L L L L I} 10 8 L L L L L L L L L I}
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 16 18 20
Number of iterations Number of iterations
10°

® —%—Alg 3.1

Ll —O—Alg3.2

10 —-%-=Alg3.3

“ Alg 3.4

- = —Ag3s

0 2 4 6 8 10 12 14 16 18 20
Number of iterations

Figure 1: Example Top left: Case 1, Top right: Case 2, Bottom Case 3.

The report of this experiment is presented in Figure
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Example 3.5. Let H = /5(R), where

6HR) = {z = (21,22, ..., Ti...), ; € R and Z |z:]? < oo},
i=1

with inner product (.,.) : o x lo — R defined by (x,y) := > i z;4; and the norm ||.|| : lo — Rby ||z]| := /Yooy |7il%,

where z = {z;}$2; and y = {y;}$2;. Define the mapping A : lo — {3 by Az =

z1+|z1| z2+|z2| xi+|zq| _
e e T

{z:}52, € £o. Let T : £y — £y be defined by T = | T, 2, ..., f;,...), for all x = {x;}3°, € {3. Furthermore, let

C:={x € {3 : ||z|| < 1} be the unit ball. Then, we define the metric projection Pc as:

ngﬁlz’ if ”foz > 1,

Po(z) = (3.40)
z, if ||zlle, <1

With respect to Algorithm Algorithm Algorithm Algorithm and Algorithm we randomly

choose zg € H. We choose n = 0.2, 3, = 76”160,0% = soonrzr% and v, = 11)60’;18778. We consider the following cases for
our numerical experiment.

Case 1: Take xg = py = vo = ¢o = ug = (7.2108, —5.1081, 0, ..., 0, ...)T.
Case 2: Take xg = pg = vg = ¢ = ug = (4.6507, —6.5670,0, ..., 0, ...)T.
Case 3: Take z9 = pg = vo = ¢p = ug = (7.5647,-11.1256,0, ..., 0, ...)T.
The report of this experiment is presented in Figure

It is easy to see from Figure 1 and Figure 2 that our propose iterative method converges faster than the existing
ones. In addition, our claim that the iterative method (3.3) and (3.4) has been justified both analytical and with
examples.

4 Application

In this section, the application presented was inspired by the works of the authors in [9] 10, 14]. In addition, we
give a numerical experiment to compare Algorithm Algorithm Algorithm Algorithm and Algorithm
B.1
4.1 Application

Let f: C'— R be a convex mapping where C is a closed and convex subset of a Hilbert space H. Considering the
convex minimization problem

min f(x). (4.1)

zeC

Let Po : H — C be a projection map and f be the Fréchet differentiable. Denote the gradient of f by Vf. It is
well-known that z* solves (4.1]) if and only if the following variational inequality holds:

z*e C,(Vfx*,x—a*) >0 VzeC, (4.2)

that is z* € Q(C, A). In addition z* solves (4.1) if and only if * = Po(2* — nV f(z*)), where n > 0. In order to solve
(4.1) the gradient projection algorithm (GPA) is usually used and its defined as

Tn+1 = PC(frfn - va(xn))7
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10% g Q, 102 ¢
1 —— Alg 3.1 —#—Alg3.1
b ——Alg32 4 —O— Alg 32
1 —=%-—Alg3.3 h —-%-=Alg 3.3
0 L 0 L
10 i Alg 3.4 10 I Alg 3.4
1 — — —Ag35 i — — —Alg35
v I
2 ! 2 !
102 F 102 F
| 1
b 10%§ S 104t
106 £ 100 F
108 ¢ 108 F
10'10 1 1 1 1 1 1 1 1 1 1 10—10 1 1 1 1 1 1 1 1 1 |
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Number of iterations Number of iterations
105 -
—#—Alg3.1
——Alg32
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100 1
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Number of iterations

Figure 2: Case 1 (top left); Case 2 (top right); Case 3 (bottom).
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where 29 € C and 7 is step size. Now, suppose that T = I (identity mapping) and A is taken as the gradient of
a convex function f in the iterative process (3.5), then we get the following iterative process which converges to a
solution of a convex minimization problem (4.1)),

xg € C,

up = (1 — ap)zn, + anPo(I — 9V f)a,,
Vn = (1= Bn)un + BnPc(I =0V fu,
wn, = Po(I =1V f)uon,

Yn = Pc(I =0V flwn,

Tn+1 = Pc(I =V yn, n>1

where {a,,} and {5, } are sequences in (0, 1).

Theorem 4.1. Suppose that problem (4.1)) has a solution. Let f : C — R be a convex mapping such that its gradient
bigtriangledownf is a relaxed («, k)-cocorcive and L-Lipschitzian mapping of C onton H. Let {z,,} be sequence defined

by (4.3) for any z¢ € C, such that condition (3.26) and J is defined as in (3.9) hold, then {z,} obtained from (4.3)
o).

converges strongly to * to the solution of |

Proof . The prove follow similar approach as in Theorem by taking T" = I, which is clearly a nonexpansive
mapping, A = Vf. We obtain in Theorem that z* € F(T)NQC,A) = QC,Vf)={zr e C: (Vfr,y—z) >
0 Yy € C}. It follows that z* is a solution of (4.1). O

4.2 Numerical Example

[9] Let H = L?([0,1]), H is a Hilbert space with the induced inner product

1

la(t)] = <mowu»=(1;ﬁamQQVxeL%mu»

It is well-known that the set C = {x € L?([0,1]) : ||z(¢)|]2 < 1} is closed and convex subset of H. We define

f:C — H as f(x) = ||z(t)||3, f is a convex function and z(0) = 0 a unique minimum of f. In addition, f is Fréchet
differentiable at = and its gradient Vf : C — H is defined as V f(x) = 22. Now observe that

1 B
IV f((t)) =V f(y(E)ll2 = </0 (22(t) — 2y(t))2dt)

=(A?ﬂmw—ym»%05
2(Aiawwam)é

= 2[jz(t) — y(®)]l2,

clearly V f(x) is 2-Lipschitzian mapping. In addition, we have that
(Vf(2(t) = VIy(t),z(t) —y(t)) = /0 (22(t) — 2y(t)(x(t) — y(t)))dt
=2 [ @) -y
1
— (9 _ (1) — 2
SRR REORRTOIR
=~ [ ) -yt +3 [ (w6 - ye)ar
0 0

= —llz(t) =y + 3ll=(t) — y ()]
1

= = l122() = 29 @7 + 3]l=(t) — y(®)]*
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clearly V f(z) is a relaxed (4, 3)-cocorcive. we have that L =2, = § and k = 3, then condition (??) takes the form
0<n<1<3. (4.4)
Let us choose ) = &, B, = Yn = an = ﬁ, then iterative scheme (4.3)), (3.1)), (3.2)),(3.3) and becomes
o € C7

up = (1 — ﬁ)xn + ﬁPg(%xn),
v = (1 — ﬁ)un + mPc(%un)
Wy, = PC(%Un)a
Yn = PC(%wn)a

Tn1 = Pco(3yn), n>1

Cy € O,

a :(1771 )e + =—Lt=P, (20

n 6n+15/n T Gntis’ C\3Cn)s
by = (1— ﬁ)en + 6nJ1rl5PC(%
Cnp1 = (1 - 6ni15)cn + 6ni15PC(

Po € C,
sn=(1— 6n—1&-15)p" + 6n41r15 PC(%p")v (4.7)
Pnt1 = (1 — ﬁ)PC(%pn)"_ﬁPC(%Sn)v n>1,

ug € C,

wy, = (1 — 6n<1|»15)u” + 6ni15PC(%“n)v

vn = (1= gggs) Pe(Fun) + G Pe(Fwn)
Unp+1 = PC(%Un)a n>1,

Vo € C,

uy, = (1 - ﬁ)vn + enimPC(%vn)’

Wy, = (1 - 6717-15—15)1}” + Gn_1|_15PC(%un) (49)
Yn = PC(%wn)v

Un+1 = PC(%yn)a n =1

where

o {a:(t) if z(t) € C, (4.10)

z(t) .
Ty i z(t) ¢ C.

We plot the graph of error against number of iterations with tolerance level(||z,+1 — x,|| = 10 x e7°) and varying
values of £g = ¢g = vg = ug = po. For case 1 zy = 3t+12, case 2, xo = t*+5t3—100t>—t+7 and case 3, zo = et +4t2.

The report of this experiment is presented in Figure

5 Conclusion

A new iterative method for finding the common element of the set of fixed points of a Reich-Suzuki nonexpansive
mappings and the set of solutions of the variational inequalities problems in the framework of Hilbert spaces was
introduced. In addition, we established that our proposed iterative method converges strongly to the solution of the
aforementioned problems. Finally, we considered some numerical examples of our proposed method in comparison
with other existing iterative methods in the literature. In all our comparisons, the numerical and analytical results
shows that our method performs better than these other methods.
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Figure 3: Case 1 (top left); Case 2 (top right); Case 3 (bottom).
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