Generalization of the Titchmarsh's theorem for the second Hankel-Clifford transformation

Mohamed El Hamma*, Radouan Daher, Ayoub Mahfoud
Laboratoire Mathématiques et Appliqués, Faculté des sciences Aïn Chock, Université Hassan II, Casablanca, Morocco

(Communicated by Abasalt Bodaghi)

Abstract

Using a generalized translation operator, we obtain an analogue of Titchmarsh's theorem for the second Hankel-Clifford transformation for functions satisfying the second Hankel-Clifford Lipschitz condition in the space $L_{\mu}^{2}\left((0,+\infty), x^{\mu}\right)$.

Keywords: Generalized translation operator, Second Hankel-Clifford transformation, Second Hankel-Clifford Lipschitz class
2020 MSC: Primary 42B10; Secondary 46F12

1 Introduction and preliminaries

The theorem 85 in [15, Titchmarsh characterized the set of functions in $L^{2}(\mathbb{R})$ satisfying the Cauchy Lipschitz class by means of an asymptotic estimate growth of the norm of their Fourier transform, namely we have

Theorem 1.1. ([15], Theorem 85) Let $\alpha \in(0,1)$ and assume that $f \in L^{2}(\mathbb{R})$. Then the following are equivalents

1. $\|f(x+h)-f(x)\|_{L^{2}(\mathbb{R})}=O\left(h^{\alpha}\right)$ as $h \longrightarrow 0$
2. $\int_{|\lambda| \geq s}|\hat{f}(\lambda)|^{2} d \lambda=O\left(s^{-2 \alpha}\right)$,
where \hat{f} stands for the Fourier transform of f.
In this paper we obtain an analogue of this theorem 1.1 for the Second Hankel-Clifford transformation. There are many analogues of this result: for the Fourier transform, for the Jacobi transform, for the Fourier transform on the group of p-Adic Numbers, For the Fourier-Walsh transform, for the generalized Dunkl transform, for the generalized Bessel transform etc (see, for exemple [3, 4, 5, 6, 12, 13]).

We briefly overview the theory of second Hankel-Clifford transformation and related harmonic analysis (see [10, 11, 14).

We define the space $L_{\mu}^{p}=L_{\mu}^{p}((0,+\infty)), \quad 1 \leq p<\infty$ and $\mu \geq 0$, as the space of all those real-valued measurable functions f on $(0,+\infty)$, such that

[^0]$$
\|f\|_{L_{\mu}^{p}}=\left(\int_{0}^{\infty}|f(x)|^{p} x^{\mu} d x\right)^{1 / p}<\infty
$$

The Bessel-Clifford function of the first kind of order $\mu \geq 0$ (See [7]).

$$
c_{\mu}(x)=\sum_{k=0}^{+\infty} \frac{(-1)^{k} x^{k}}{k!\Gamma(\mu+k+1)},
$$

is a solution of the differential equation

$$
x y^{\prime \prime}+(\mu+1) y^{\prime}+y=0,
$$

and we have

$$
\begin{equation*}
c_{\mu}(x)=x^{-\frac{\mu}{2}} J_{\mu}(2 \sqrt{x}), \tag{1.1}
\end{equation*}
$$

where J_{μ} the Bessel function of first kind.

For $f \in L_{\mu}^{1}$. Hayek [9] introduced the second Hankel-Clifford transformation by

$$
h_{2, \mu}(f)(\lambda)=\int_{0}^{+\infty} c_{\mu}(\lambda x) f(x) x^{\mu} d x
$$

and its inversion formula is defined by

$$
f(x)=\int_{0}^{+\infty} c_{\mu}(\lambda x) h_{2, \mu}(f)(\lambda) \lambda^{\mu} d \lambda
$$

The corresponding Parseval's equality now takes the form [11]

$$
\int_{0}^{+\infty} f(x) g(x) x^{\mu} d x=\int_{0}^{+\infty} F_{2}(\lambda) G_{2}(\lambda) \lambda^{\mu} d \lambda
$$

where $F_{2}(\lambda)=h_{2, \mu}(f)(\lambda)$ and $G_{2}(\lambda)=h_{2, \mu}(g)(\lambda)$.
i.e,. For $f \in L_{\mu}^{2}$, we have

$$
\|f\|_{L_{\mu}^{2}}=\left\|h_{2, \mu}(f)\right\|_{L_{\mu}^{2}} .
$$

Let $\Delta=\Delta(x, y, z)$ be the area of triangle with sides $x, y, z($ see [8, 16]). Set

$$
D_{\mu}(x, y, z)=\frac{\Delta^{2 \mu+1}}{2^{2 \mu}(x y z)^{\mu} \Gamma\left(\mu+\frac{1}{2}\right) \sqrt{\pi}}
$$

If Δ exists and zero otherwise. We note that $D_{\mu}(x, y, z) \geq 0$ and it is symmetric in x, y, z.
The generalized translation operator value of $f \in L_{\mu}^{2}$ is defined by

$$
T_{h}(f)(x)=\int_{0}^{+\infty} f(z) D_{\mu}(h, x, z) z^{\mu} d z, 0<x, h<\infty
$$

From lemma 1.3 in [14], we have

$$
\begin{equation*}
h_{2, \mu}\left(T_{h}(f)\right)(\lambda)=c_{\mu}(\lambda h) h_{2, \mu}(f)(\lambda) \tag{1.2}
\end{equation*}
$$

where $f \in L_{\mu}^{2}$.
For $\mu \geq-\frac{1}{2}$, we introduce the normalized spherical Bessel function j_{μ} defined by

$$
\begin{equation*}
j_{\mu}(x)=\frac{2^{\mu} \Gamma(\mu+1) J_{\mu}(x)}{x^{\mu}} \tag{1.3}
\end{equation*}
$$

From [1] we have the following lemma:

Lemma 1.2. Let $\mu \geq-\frac{1}{2}$. The following inequalities hold

1. $\left|j_{\mu}(x)\right| \leq 1$
2. $1-j_{\mu}(x)=O\left(x^{2}\right) ; \quad 0 \leq x \leq 1$
3. $\sqrt{x} J_{\mu}(x)=O(1)$.

Lemma 1.3. The following inequality is true

$$
\left|1-j_{\mu}(x)\right| \geq c
$$

with $|x| \geq 1$, where $c>0$ is certain constant.

Proof . Analog of lemma 2.9 in [2].
It follows from (1.1) and (1.3) that

$$
c_{\mu}(x)=\frac{1}{\Gamma(\mu+1)} j_{\mu}(2 \sqrt{x}) .
$$

2 Main result

In this section we give the main result of this paper. We need first to define the second Hankel-Clifford Lipschitz class.

Definition 2.1. Let $\alpha \in(0,1)$. A function $f \in L_{\mu}^{2}$ is said to be in the second Hankel-Clifford Lipschitz class, denoted by $\operatorname{Lip}(\alpha, 2, \mu)$, If

$$
\left\|T_{h} f(x)-\frac{1}{\Gamma(\mu+1)} f(x)\right\|_{L_{\mu}^{2}}=O\left(h^{\alpha}\right) \quad \text { as } h \longrightarrow 0 .
$$

Our main result is the next theorem

Theorem 2.2. Let $f \in L_{\mu}^{2}$. Then the following are equivalent:

1. $f \in \operatorname{Lip}(\alpha, 2, \mu)$
2. $\int_{N}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(N^{-2 \alpha}\right) \quad$ as $N \longrightarrow+\infty$

Proof . 1) $\Longrightarrow 2)$ Let $f \in L_{\mu}^{2}$. It follows from (1.2) and (1.4) that

$$
\begin{aligned}
h_{2, \mu}\left(T_{h} f-\frac{1}{\Gamma(\mu+1)} f\right)(\lambda) & =\left(C_{\mu}(\lambda h)-\frac{1}{\Gamma(\mu+1)}\right) h_{2, \mu}(f)(\lambda) \\
& =\frac{1}{\Gamma(\mu+1)}\left(j_{\mu}(2 \sqrt{\lambda h})-1\right) h_{2, \mu}(f)(\lambda)
\end{aligned}
$$

then, using the Parseval's identity, we have

$$
\left\|T_{h} f-\frac{1}{\Gamma(\mu+1)} f\right\|_{L_{\mu}^{2}}^{2}=\frac{1}{\Gamma(\mu+1)} \int_{0}^{+\infty}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda .
$$

Assume that $f \in \operatorname{Lip}(\alpha, 2, \mu)$. Then we have

$$
\left\|T_{h} f-\frac{1}{\Gamma(\mu+1)} f\right\|_{L_{\mu}^{2}}=O\left(h^{\alpha}\right) \quad \text { as } h \longrightarrow 0
$$

If $\lambda \in\left[\frac{1}{4 h}, \frac{2}{4 h}\right]$, then $2 \sqrt{\lambda h} \geq 1$. From lemme 1.3 we obtain

$$
1 \leq \frac{1}{c^{2}}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}
$$

i.e.,

$$
\frac{1}{\Gamma(\mu+1)} \leq \frac{1}{c^{2} \Gamma(\mu+1)}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}
$$

Then

$$
\begin{aligned}
\frac{1}{\Gamma(\mu+1)} \int_{\frac{1}{4 h}}^{\frac{2}{4 h}}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda & \leq \frac{1}{c^{2} \Gamma(\mu+1)} \int_{\frac{1}{4 h}}^{\frac{2}{4 h}}\left|1-j_{\mu}(2 \sqrt{h \lambda})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& \leq \frac{1}{c^{2} \Gamma(\mu+1)} \int_{0}^{+\infty}\left|1-j_{\mu}(2 \sqrt{h \lambda})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& =O\left(h^{2 \alpha}\right)
\end{aligned}
$$

we conclude that

$$
\int_{N}^{2 N}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(N^{-2 \alpha}\right) \quad \text { as } N \longrightarrow+\infty
$$

Thus there exists $C_{1}>0$ such that

$$
\int_{N}^{2 N}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \leq C_{1} N^{-2 \alpha}
$$

So that

$$
\begin{aligned}
\int_{N}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda & =\left(\int_{N}^{2 N}+\int_{2 N}^{4 N}+\int_{4 N}^{8 N}+\ldots .\right)\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& \leq C_{1}\left(N^{-2 \alpha}+(2 N)^{-2 \alpha}+(4 N)^{-2 \alpha}+\ldots\right) \\
& \leq C_{1} N^{-2 \alpha}\left(1+2^{-2 \alpha}+\left(2^{-2 \alpha}\right)^{2}+\left(2^{-2 \alpha}\right)^{3}+\ldots\right) \\
& \leq C_{1} K_{\alpha} N^{-2 \alpha},
\end{aligned}
$$

where $K_{\alpha}=\left(1-2^{-2 \alpha}\right)^{-1}$ since $2^{-2 \alpha}<1$.
This proves that

$$
\int_{N}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(N^{-2 \alpha}\right) \text { as } N \longrightarrow+\infty .
$$

$2) \Longrightarrow 1)$ Suppose now that

$$
\int_{N}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(N^{-2 \alpha}\right) \text { as } N \longrightarrow+\infty
$$

we have to show that

$$
\frac{1}{\Gamma(\mu+1)} \int_{0}^{+\infty}\left|1-j_{\mu}(2 \sqrt{h \lambda})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(h^{2 \alpha}\right) \text { as } h \longrightarrow 0
$$

We write

$$
\int_{0}^{+\infty}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=I_{1}+I_{2}
$$

where

$$
I_{1}=\int_{0}^{\frac{1}{4 h}}\left|1-j_{\mu}(2 \sqrt{h \lambda})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda,
$$

and

$$
I_{2}=\int_{\frac{1}{4 h}}^{+\infty}\left|1-j_{\mu}(2 \sqrt{h \lambda})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda
$$

From (1) of lemma 1.2, we have

$$
\begin{aligned}
I_{2} & =\int_{\frac{1}{4 h}}^{+\infty}\left|1-j_{\mu}(2 \sqrt{h \lambda})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& \leq 4 \int_{\frac{1}{4 h}}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& =O\left(h^{2 \alpha}\right) \text { as } h \longrightarrow 0 .
\end{aligned}
$$

Then

$$
\frac{1}{\Gamma(\mu+1)} \int_{\frac{1}{4 h}}^{+\infty}\left|1-j_{\mu}(2 \sqrt{h \lambda})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(h^{2 \alpha}\right)
$$

Set

$$
\psi(x)=\int_{x}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda
$$

We know from (2) of lemma 1.2 that $1-j_{\mu}(2 \sqrt{h \lambda})=O(\lambda h)$ for $0 \leq 2 \sqrt{\lambda h} \leq 1$. Thus there exists $C_{2}>0$ such that $\left|1-j_{\mu}(2 \sqrt{h \lambda})\right| \leq C_{2} \lambda h$ for $0 \leq 2 \sqrt{\lambda h} \leq 1$. Then

$$
I_{1} \leq-C_{2} h^{2} \int_{0}^{\frac{1}{4 h}} x^{2} \psi^{\prime}(x) d x
$$

An integration by parts yields

$$
\begin{aligned}
I_{1} & \leq-C_{2} h^{2} \int_{0}^{\frac{1}{4 h}} x^{2} \psi^{\prime}(x) d x \\
& \leq-C_{2} \psi\left(\frac{1}{4 h}\right)+2 C_{2} h^{2} \int_{0}^{\frac{1}{4 h}} x^{2} \psi(x) d x \\
& \leq 2 C_{2} h^{2} \int_{0}^{\frac{1}{4 h}} x \psi(x) d x \\
& \leq 2 C_{2} h^{2} \int_{0}^{\frac{1}{4 h}} x x^{-2 \alpha} d x \\
& \left.\leq 2 C_{2} h^{2} \int_{0}^{\frac{1}{4 h}} x^{1-2 \alpha} d x \quad \text { (the integral exists since } \alpha<1\right) \\
& \leq C_{2} K h^{2 \alpha} .
\end{aligned}
$$

where K is a positive constant. Then

$$
\frac{1}{\Gamma(\mu+1)} \int_{0}^{\frac{1}{4 h}}\left|1-j_{\mu}(2 \sqrt{h \lambda})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(h^{2 \alpha}\right)
$$

and this ends the proof.

References

[1] V.A. Abilov and F.V. Abilova, Approximation of functions by Fourier-Bessel sums, IZV. Vyssh. Uchebn Zaved. Mat. 45 (2001), no. 8, 1-7.
[2] E. S. Belkina and S.S. Platonov, Equivalence of K-functionals and modulus of smoothness contructed by generalized Dunkl translations, Russian Math. 52 (2008), 1--11.
[3] R. Daher and M. El Hamma, An analog of Titchmarsh's theorem of the Jacobi transform, Int. J. Math. Anal. 6 (2012), no. 20, 975-981.
[4] R. Daher and M. El Hamma, An analog of Titchmarsh's theorem for the generalized Dunkl transform, J. Pseudo Differ. Oper. Appl. 7 (2016), 59-65.
[5] R. Daher, M. El Hamma and S. El Ouadih, An analog of Titchmarsh's theorem for the generalized Fourier-Bessel transform, Lobachevskii J. Math. 37 (2016), No. 2, 114-119.
[6] R. Daher, M. Boujeddaine, M.E. Hamma, Generalization of Titchmarsh's theorem for the Fourier transform in the space $L^{2}\left(\mathbb{R}^{n}\right)$, Afr. Mat. 27 (2016), 753-758.
[7] A. Gray, G.B. Matthecos and T.M. MacRobert, A Treatise on Bessel functions and their applications to physics, Macmillan, London, 1952.
[8] D.T. Haimo, Integral equations associated with Hankel convolution, Trans. Amer. Math. Soc. 116 (1965), 330-375.
[9] N. Hayek, Sobre la transformación de Hankel, Actas de la VIII Reunión Anual de Matemáticos Epańoles, 1967, pp. 47-60.
[10] S. P. Malgonde and S.R. Bandewar, On the generalized Hankel-Clifford transformation of arbitrary order, Proc. Indian Alod Sci. Math. Sci. 110 (2000), no. 3, 293-304.
[11] J.M.R. Méndez Pérez and M.M. Socas Robayna, A pair of generalized Hankel- Clifford transformation and their applications, J. Math. Anal. Appl. 154 (1991), 543-557.
[12] S.S. Platonov, An analog of Titchmarsh's of the Group of p-Adic Numbers, p-Adic Numbers, Ultrametric Anal. Appl. 9 (2017), no. 2, 158-164.
[13] S.S. Platonov, An analog of Titchmarsh's theorem for the Fourier-Walsh transforms, Math. Notes 103 (2018), no.1, 96-103.
[14] P. Prasad and V.K. Singh Pseudo-differential operators involving Hankel-Clifford transformations, Asian-Eur. J. Math. 5 (2012), no. 3, 15 pages.
[15] E. Titchmarsh, Introduction to the theory of Fourier Integrals, Oxford Univ. Press, Oxford, 1948 (end ed) Gostekhizdat, Moscow, 1948.
[16] G.N. Waston, A Treatise on the theory of Bessel functions, Cambridge University Press, Cambrige, 1958.

[^0]: *Corresponding author
 Email addresses: m_elhamma@yahoo.fr (Mohamed El Hamma), rj024daher@gmail.com (Radouan Daher), ayoubmahfoud00@gmail.com (Ayoub Mahfoud)

