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Abstract

In this paper, we study the existence of the solutions of a class of functional integral equations which contain a number
of classical nonlinear integral equations as special cases. The investigations are placed in the Banach space of real
functions defined, continuous on the real half-axis and vanishing at infinity. The method used in our considerations
depends on suitable conjunction of the technique of measures of noncompactness with the classical Schauder fixed
point theorem. The results obtained in this paper extend and improve essentially some known results in the recent
literature. Besides, three examples showing the generality and applicability of our results are presented.
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1 Introduction

It is well known that the theory of nonlinear integral equations of various types appears in many applications that
arise in the fields of mathematical analysis, nonlinear functional analysis, mathematical physics and engineering (see
[8, 9, 22]). A lot of real world problems in the theory of radiative transfer, kinetic theory of gases, in the theory of
neutron transport and in the traffic theory can be described and analysed with help of integral equations. Especially,
the so-called quadratic integral equation of Chandrasekhar’s type can be very often encountered in many applications,
[11, 12, 13, 14, 16, 21]. Many authors have studied the existence of solutions for several classes of nonlinear quadratic
integral equations.

The main subject of this paper is to investigate the following the nonlinear functional integral equation given by:

x(t) = f

(
t, (T1x)(t), (T2x)(t)

∫ ∞

0

u (t, s, x(s)) ds

)
, t ∈ R+, (1.1)

where the functions f , u and the operators Ti (i = 1, 2) are known, while x = x(t) is an unknown function. It is
worthwhile also mentioning that Eq.(1.1) contains as particular cases a lot of integral equations. For example, the
equation

x(t) = a(t) + x(t)

∫ ∞

0

t

t+ s
ϕ(s)x(s)ds, t ∈ R+ (1.2)
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is closely related to the famous quadratic integral equation of Chandrasekhar type:

x(t) = 1 + x(t)

∫ 1

0

t

t+ s
ϕ(s)x(s)ds, t ∈ [0, 1]. (1.3)

The equation (1.3) is considered in many papers and monographs, [2, 4, 13, 18].

The sufficient conditions on the existence of the solutions of the equation

x(t) =

∫ ∞

0

k(t, s)f (s, x(s)) ds, t ∈ R+ (1.4)

are given in [1].

The existence of the solution of nonlinear integral equations

x(t) = a(t) + x(t)

∫ ∞

0

k(t, s)h (s, x(s)) ds, t ∈ R+ (1.5)

and

x(t) = H(t, x(t)) + x(t)

∫ ∞

0

k(t, s)φ(s)(f(x(s)) + g(x(s)))ds, t ∈ R+ (1.6)

is researched in [20] and [30], respectively.

The existence and asymptotic stability of the solutions of the nonlinear integral equation

x(t) = a(t) + g(t, x(t))

∫ ∞

0

K(t, s)h (s, x(s)) ds, t ∈ R+ (1.7)

are studied in [6].

The monotonic solutions of the nonlinear integral equation

x(t) = g(t) +

∫ ∞

0

u (t, s, x(s)) ds, t ∈ R+ (1.8)

and the existence of the solutions of the Urysohn integral equation

x(t) = a(t) + f(t, x(t))

∫ ∞

0

u (t, s, x(s)) ds, t ∈ R+ (1.9)

are investigated in [5] and [7, 10, 15, 20, 26, 27, 28], respectively.

Besides, the equations

x(t) = (T1x)(t) + (T2x)(t)

∫ ∞

0

u (t, s, x(s)) ds, t ∈ R+ (1.10)

and

x(t) = F

(
t, x(t),

∫ ∞

0

u (t, s, x(s)) ds

)
, t ∈ R+ (1.11)

are examined in [19, 29] and [26], respectively.

The equations (1.2)-(1.11) can be easily obtained from the equation (1.1) by special selection of the functions and
the operators.

Many equations studied so far are the special form of the equation (1.1) (see, [1, 5, 6, 7, 10, 15, 17, 20, 23, 24, 25,
27, 28, 30]). Using the technique of a suitable measure of noncompactness and Schauder fixed point theorem, we prove
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an existence theorem for Eq.(1.1). We give three nontrivial examples that explain the generalizations and applications
of our results. So our work improves and completes some results mentioned before.

The integral equations (1.1) and (1.11) are quite similar to each other. But the equation (1.1) is more general than
the equation (1.11). Some equations can be written in both (1.1) and (1.11) form. In this case, is there
any difference between the existence theorem in the presented paper and Theorem 1 given in [26]? It
will be seen in Remark 4.4 and Remark 4.6 that the results obtained in our paper are a generalization
and extension of both the results in [26] and in some other articles.

2 Preliminaries

In this section, we give a collection of auxiliary facts which will be needed further on. Assume that (E, ∥.∥) is a real
Banach space with zero element θ . Let B(x, r) denote the closed ball centered at x and with radius r. The symbol
Br stands for the ball B(θ, r). If X is a subset of E, then X and ConvX denote the closure and convex closure of X,
respectively. With the symbols λX and X + Y , we denote the standard algebraic operations on sets. Moreover, we
denote by ME the family of all nonempty and bounded subsets of E and NE its subfamily consisting of all relatively
compact subsets. The definition of the concept of a measure of noncompactness presented below comes from [3].

Definition 2.1. A function µ : ME → R+ = [0,∞) is said to be a measure of noncompactness in E if it satisfies
following conditions:

(1) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .

(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

(3) µ(X) = µ(ConvX) = µ(X).

(4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ), for λ ∈ [0, 1].

(5) If {Xn} is a sequence of nonempty, bounded and closed subsets of the set E such that Xn+1 ⊂ Xn, (n = 1, 2, ...)
and limn→∞ µ(Xn) = 0, then the set X∞ = ∩∞

n=1Xn is nonempty.

Notice that the intersection set X∞ from (5) belongs to kerµ. In fact, from the inequality µ(X∞) ≤ µ(Xn) for any
n = 1, 2, ... we have that µ(X∞) = 0. This property of the set X∞ will be crucial later.

In the sequel, we will work in the Banach space C0(R+) consisting of real functions defined, continuous on R+ and
vanishing at infinity. The space C0(R+) is furnished with the standard norm ∥x∥ = sup{|x(t)| : t ∈ R+}.

Further we recall the definition of the measure of noncompactness in the space C0(R+) which will be used in our
considerations. In order to define it, let us fix a nonempty and bounded subset X of C0(R+). For x ∈ X, ε ≥ 0 and
L > 0 denoted by ωL(x, ε) the modulus of continuity of function x, i.e.,

ωL(x, ε) = sup{|x(s)− x(t)| : t, s ∈ [0, L] and |t− s| ≤ ε}.

Further, let us put:

ωL(X, ε) = sup{ωL(x, ε) : x ∈ X}, ωL
0 (X) = lim

ε→0
ωL(X, ε)

and

ω0(X) = lim
L→∞

ωL
0 (X). (2.1)

Next define:

βL(x) = sup{|x(t)| : t ≥ L}, βL(X) = sup
{
βL(x) : x ∈ X

}
and

β(X) = lim
L→∞

βL(X). (2.2)
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Finally, let us consider the function µ defined on the family MC0(R+) by the equality:

µ(X) = ω0(X) + β(X). (2.3)

It may be found in [3] that the function µ is a measure of noncompactness in the space C0(R+). Moreover, the kernel
kerµ contains nonempty and bounded sets X such that functions from X are locally equicontinuous on R+ and tend
to zero at infinity uniformly with respect to the set X, i.e. for each ε ≥ 0 there exists L > 0 with the property that

|x(t)| ≤ ε for all x ∈ X and t ≥ L.

This property of kerµ will be important in our further study.

3 The Main Result

We will consider Eq.(1.1) under the following assumptions (H1)− (H8):

(H1) f : R+ × R× R → R is continuous such that f(t, 0, 0) → 0 as t → ∞.

Remark 3.1. The assumption (H1) implies that there exists a constant F satisfying

sup {|f (t, 0, 0)| : t ≥ 0} ≤ F.

(H2) The function f satisfies the Lipschitz condition with the nonnegative constants l1 and l2 with respect to second
and third variables, i.e.

|f(t, x1, y)− f(t, x2, y)| ≤ l1|x1 − x2|
for all t ∈ R+ and x1, x2, y ∈ R and

|f(t, x, y1)− f(t, x, y2)| ≤ l2|y1 − y2|

for all t ∈ R+ and x, y1, y2 ∈ R.

(H3) The operators Ti : C0(R+) → C0(R+) are continuous and there exist nondecreasing functions di : R+ → R+

such that
∥Tix∥ ≤ di(∥x∥), (i = 1, 2)

for all x ∈ C0(R+).

(H4) u : R+ × R+ × R → R is a continuous function and there exist a continuous function g : R+ × R+ → R+ and a
continuous nondecreasing function h : R+ → R+ such that h(0) = 0 and

|u(t, s, x)| ≤ g(t, s)h(|x|)

for all t, s ∈ R+ and x ∈ R.

(H5) For every t ≥ 0 the function s → g(t, s) is integrable on R+ and the function t →
∫∞
0

g(t, s)ds is bounded on
R+. That is, there exists a constant G satisfying

sup

{∫ ∞

0

g(t, s)ds : t ≥ 0

}
≤ G.

(H6) The inequality
l1d1(r) + l2d2(r)h(r)G+ F ≤ r

has a positive solution r0.

(H7) There exist the nonnegative constants mi,r0 and br0 for r0 such that the inequalities

µ(TiX) ≤ mi,r0 µ(X), (i = 1, 2) and β (hX) ≤ br0 β(X)

hold for all nonempty and bounded subset X of the ball Br0 , where β and µ are defined by (2.2) and (2.3), h is
the function given in the assumption (H4), hX = {hx : x ∈ X} and the function hx : R+ → R+ for each x ∈ X
is defined by hx(t) = h (|x(t)|).
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Remark 3.2. The set hX is nonempty and bounded subset of C0(R+), since the subset X of Br0 is nonempty
and the estimate |hx(t)| ≤ h(∥x∥) ≤ h(r0) holds for all x ∈ X and t ∈ R+.

(H8) l1m1,r0 + l2m2,r0h(r0)G+ 2l2d2(r0)br0G < 1.

Lemma 3.3. If the assumptions (H4) and (H5) are satisfied, then the inequality∣∣∣∣∫ ∞

0

u (t, s, x(s)) ds

∣∣∣∣ ≤ h (∥x∥)G (3.1)

holds for all t ∈ R+ and x ∈ C0(R+). Also, the function t →
∫∞
0

u (t, s, x(s)) ds is continuous on R+ for an arbitrarily
fixed x ∈ C0(R+).

Proof . Since
|u (t, s, x(s))| ≤ g(t, s)h (|x(s)|) ≤ g(t, s)h (∥x∥)

for all t, s ∈ R+ and x ∈ C0(R+), the function t →
∫∞
0

u (t, s, x(s)) ds is well defined on R+ for an arbitrarily fixed
x ∈ C0(R+) and the inequality (3.1) holds for all t ∈ R+ and x ∈ C0(R+).

Let us fix arbitrarily L > 0 and ε ≥ 0 and take arbitrary numbers t1, t2 ∈ [0, L] with |t1 − t2| ≤ ε. Then,∣∣∣∣∫ ∞

0

u (t1, s, x(s)) ds−
∫ ∞

0

u (t2, s, x(s)) ds

∣∣∣∣
≤

∫ L

0

|u (t1, s, x(s))− u (t2, s, x(s))| ds

+

∫ ∞

L

|u (t1, s, x(s))− u (t2, s, x(s))| ds

≤ LωL
∥x∥(u, ε) + [sup {h (|x(s)|) : s ≥ L}]

∫ ∞

L

[g(t1, s) + g(t2, s)] ds

≤ LωL
∥x∥(u, ε) + 2Gh

(
sup {|x(s)| : s ≥ L}

)
, (3.2)

where

ωL
∥x∥(u, ε) = sup {|u(t1, s, y)− u(t2, s, y)| : t1, t2, s ∈ [0, L],

y ∈ [−∥x∥, ∥x∥ ] and |t1 − t2| ≤ ε} .

Further, from the uniform continuity of the function u on the set [0, L]×[0, L]×[−∥x∥, ∥x∥ ] we derive that ωL
∥x∥(u, ε) →

0 as ε → 0. Besides, since x ∈ C0(R+), taking into account the continuity of the function h together with h(0) = 0,
we can choose a number L so big that the last term of the inequality (3.2) is sufficiently small. Thus we deduce that
the function t →

∫∞
0

u (t, s, x(s)) ds is continuous on the interval [0, L] for any L > 0 big enough and consequently it
is continuous on the whole interval R+. □

Lemma 3.4. If the assumptions (H1)− (H5) are satisfied, then the operator T defined by

(Tx)(t) = f

(
t, (T1x)(t), (T2x)(t)

∫ ∞

0

u (t, s, x(s)) ds

)
(3.3)

transforms the space C0(R+) into itself. Besides, the inequality

∥Tx∥ ≤ l1d1(∥x∥) + l2d2(∥x∥)h(∥x∥)G+ F (3.4)

holds for all x ∈ C0(R+).

Proof . It is obvious from (H1), (H3) and Lemma 3.3 that the function Tx given by (3.3) is continuous on R+.



1316 Özdemir

Next we show that (Tx)(t) → 0 as t → ∞. For each t ∈ R+ we have the estimate:

|(Tx)(t)| ≤
∣∣∣∣f (t, (T1x)(t), (T2x)(t)

∫ ∞

0

u (t, s, x(s)) ds

)
−f

(
t, 0, (T2x)(t)

∫ ∞

0

u (t, s, x(s)) ds

)∣∣∣∣
+

∣∣∣∣f (t, 0, (T2x)(t)

∫ ∞

0

u (t, s, x(s)) ds

)
− f (t, 0, 0)

∣∣∣∣
+|f (t, 0, 0) |. (3.5)

By using of (H2) and Lemma 3.3 we get from (3.5) that

|(Tx)(t)| ≤ l1 |(T1x)(t)|+ l2

∣∣∣∣(T2x)(t)

∫ ∞

0

u (t, s, x(s)) ds

∣∣∣∣+ |f (t, 0, 0)|

≤ l1 |(T1x)(t)|+ l2 |(T2x)(t)|h (∥x∥)G+ |f (t, 0, 0)| (3.6)

for all t ∈ R+. The estimate (3.6), together with (H1) and (H3), gives that (Tx)(t) → 0 as t → ∞. Thus the operator
T transforms the space C0(R+) into itself. Additionally, by (3.6) and hypotheses, we obtain that

|(Tx)(t)| ≤ l1∥T1x∥+ l2∥T2x∥h(∥x∥)G+ F (3.7)

for all t ∈ R+. So we have (3.4) from (3.7) and (H3). □

Remark 3.5. Let’s assume that the assumptions (H1)− (H6) hold. Then, by considering Lemma 3.4, we infer that
T : Br0 → Br0 from (3.3), (3.4) and (H6).

Theorem 3.6. If the assumptions (H1)− (H7) hold, then the estimate

µ(TX) ≤ kµ(X) (3.8)

holds for any nonempty subset X of the ball Br0 . Here, T is the operator defined by (3.3) and k is the constant given
as k = l1m1,r0 + l2m2,r0h(r0)G+ 2l2d2(r0)br0G.

Proof . Let us take a nonempty subset X of the ball Br0 . It is clear by Remark 3.5 that T : Br0 → Br0 . Fix ε ≥ 0,
L > 0, t1, t2 ∈ [0, L] with |t1 − t2| ≤ ε and take an arbitrary function x ∈ X. Then, we get that:

|(Tx)(t1)− (Tx)(t2)|

≤
∣∣∣∣f (t1, (T1x)(t1), (T2x)(t1)

∫ ∞

0

u (t1, s, x(s)) ds

)
− f

(
t2, (T1x)(t1), (T2x)(t1)

∫ ∞

0

u (t1, s, x(s)) ds

)∣∣∣∣
+

∣∣∣∣f (t2, (T1x)(t1), (T2x)(t1)

∫ ∞

0

u (t1, s, x(s)) ds

)
− f

(
t2, (T1x)(t2), (T2x)(t1)

∫ ∞

0

u (t1, s, x(s)) ds

)∣∣∣∣
+

∣∣∣∣f (t2, (T1x)(t2), (T2x)(t1)

∫ ∞

0

u (t1, s, x(s)) ds

)
− f

(
t2, (T1x)(t2), (T2x)(t2)

∫ ∞

0

u (t2, s, x(s)) ds

)∣∣∣∣ . (3.9)

From (3.9) and (H2) we get that

|(Tx)(t1)− (Tx)(t2)| ≤ ωL
r0(f, ε) + l1 |(T1x)(t1)− (T1x)(t2)|

+l2

∣∣∣∣(T2x)(t1)

∫ ∞

0

u(t1, s, x(s))ds− (T2x)(t2)

∫ ∞

0

u(t2, s, x(s))ds

∣∣∣∣
= ωL

r0(f, ε) + l1 |(T1x)(t1)− (T1x)(t2)|

+l2

∣∣∣∣ [(T2x)(t1)− (T2x)(t2)]

∫ ∞

0

u (t1, s, x(s)) ds

+(T2x)(t2)

∫ ∞

0

[u (t1, s, x(s))− u (t2, s, x(s))] ds

∣∣∣∣ , (3.10)
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where

ωL
r0(f, ε) = sup {|f(t1, x1, y)− f(t2, x1, y)| : t1, t2 ∈ [0, L], x1 ∈ [−d1(r0), d1(r0) ] ,

y ∈ [−d2(r0)h(r0)G, d2(r0)h(r0)G ] and |t1 − t2| ≤ ε} .

So we have by (3.10) and assumptions that:

|(Tx)(t1)− (Tx)(t2)| ≤ ωL
r0(f, ε) + l1 |(T1x)(t1)− (T1x)(t2)|

+l2 |(T2x)(t1)− (T2x)(t2)|
∫ ∞

0

|u(t1, s, x(s))|ds

+l2 |(T2x)(t2)|
∫ ∞

0

|u(t1, s, x(s))− u(t2, s, x(s))|ds

≤ ωL
r0(f, ε) + l1ω

L(T1x, ε) + l2ω
L(T2x, ε)h(∥x∥)

∫ ∞

0

g(t1, s)ds

+l2d2(∥x∥)
∫ ∞

0

|u(t1, s, x(s))− u(t2, s, x(s))| ds

≤ ωL
r0(f, ε) + l1ω

L(T1x, ε) + l2h(r0)GωL(T2x, ε)

+l2d2(r0)

{∫ L

0

|u (t1, s, x(s))− u (t2, s, x(s))| ds

+

∫ ∞

L

|u (t1, s, x(s))− u (t2, s, x(s))| ds
}

≤ ωL
r0(f, ε) + l1ω

L(T1x, ε) + l2h(r0)GωL(T2x, ε) + l2d2(r0)Lω
L
r0(u, ε)

+l2d2(r0) [sup {h (|x(s)|) : s ≥ L}]
∫ ∞

L

[g(t1, s) + g(t2, s)] ds

≤ ωL
r0(f, ε) + l1ω

L(T1x, ε) + l2h(r0)GωL(T2x, ε)

+l2d2(r0)
[
LωL

r0(u, ε) + 2G sup {h (|x(s)|) : s ≥ L}
]

which yields that:

ωL(Tx, ε) ≤ ωL
r0(f, ε) + l1ω

L(T1x, ε) + l2h(r0)GωL(T2x, ε) + l2d2(r0)
[
LωL

r0(u, ε) + 2GβL(hx)
]
, (3.11)

where
ωL(Tix, ε) = sup{|(Tix)(t1)− (Tix)(t2)| : t1, t2 ∈ [0, L] and |t1 − t2| ≤ ε}, (i = 1, 2)

and

ωL
r0(u, ε) = sup {|u(t1, s, y)− u(t2, s, y)| : t1, t2, s ∈ [0, L],

y ∈ [−r0, r0 ] and |t1 − t2| ≤ ε} .

Hence, we get by (3.11) that:

ωL(TX, ε) ≤ ωL
r0(f, ε) + l1ω

L(T1X, ε) + l2h(r0)GωL(T2X, ε) + l2d2(r0)
[
LωL

r0(u, ε) + 2GβL(hX)
]
. (3.12)

Since the functions f and u are uniformly continuous on [0, L]× [−d1(r0), d1(r0) ]× [−d2(r0)h(r0)G, d2(r0)h(r0)G ]
and [0, L] × [0, L] × [−r0, r0 ], respectively, we get that ωL

r0(f, ε) → 0 and ωL
r0(u, ε) → 0 as ε → 0. Now taking into

account the properties of the component involved in the estimate (3.12), we have:

ωL
0 (TX) ≤ l1ω

L
0 (T1X) + l2h(r0)GωL

0 (T2X) + 2l2d2(r0)GβL(hX)

which yields that:

ω0(TX) ≤ l1ω0(T1X) + l2h(r0)Gω0(T2X) + 2l2d2(r0)Gβ(hX). (3.13)
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Further taking x ∈ X and choosing arbitrarily L > 0, in view of the estimate (3.5) we obtain that:

sup {|(Tx)(t)| : t ≥ L} ≤ l1 sup {|(T1x)(t)| : t ≥ L}+ sup {|f (t, 0, 0)| : t ≥ L}

+l2 sup

{
|(T2x)(t)|

∫ ∞

0

|u(t, s, x(s))|ds : t ≥ L

}
≤ l1 sup {|(T1x)(t)| : t ≥ L}+ sup {|f (t, 0, 0)| : t ≥ L}

+l2 sup {|(T2x)(t)| : t ≥ L}h(∥x∥) sup
{∫ ∞

0

g(t, s)ds : t ≥ L

}
≤ l1 sup {|(T1x)(t)| : t ≥ L}+ sup {|f (t, 0, 0)| : t ≥ L}

+l2h(r0)G sup {|(T2x)(t)| : t ≥ L} . (3.14)

Hence, by considering hypotheses, we get by (3.14) that:

β(TX) ≤ l1β(T1X) + l2h(r0)Gβ(T2X). (3.15)

Now, linking (2.3), (3.13) and (3.15) and by using the assumption (H7) and the inequality β(X) ≤ µ(X) we derive
that:

µ(TX) ≤ l1µ(T1X) + l2h(r0)Gµ(T2X) + 2l2d2(r0)Gβ(hX)

≤ l1m1,r0µ(X) + l2m2,r0h(r0)Gµ(X) + 2l2d2(r0)br0Gβ(X)

≤ kµ(X)

which completes the proof.□

We can now give the following theorem about the existence of a solution of the integral equation
(1.1):

Theorem 3.7. Under the assumptions (H1) − (H8), there exists at least one solution x = x(t) of Eq. (1.1) in the
space C0(R+).

Proof .We define operator T on C0(R+) in the following way:

(Tx)(t) = f

(
t, (T1x)(t), (T2x)(t)

∫ ∞

0

u (t, s, x(s)) ds

)
.

Consider the sequence of sets (Bn
r0), where B1

r0 =ConvT (Br0), B
2
r0 =ConvT (B1

r0) and so on. Observe that all sets
of this sequence are nonempty, bounded, closed and convex. Moreover, Bn+1

r0 ⊂Bn
r0 for all n ∈ {1, 2, . . .}. Further,

keeping in mind Theorem 3.6, we get from (3.8) that:

µ(Bn
r0) ≤ knµ(Br0). (3.16)

Obviously in view of assumption (H8) we have that k < 1. Hence, from condition (5) of Definition 2.1 we infer that
the set Y =

⋂∞
n=1 B

n
r0 is nonempty, bounded, closed and convex. In fact, since µ(Y ) ≤ µ(Bn

r0) for any n ≥ 1, we
deduce by (3.16) that µ(Y ) = 0 and thus Y ∈ kerµ. It should be also noted that the operator T maps the set Y into
itself.

Now we show that T is continuous on the set Y . To do this fix ε ≥ 0, x0 ∈ Y and take functions x ∈ Y such that
∥x− x0∥ ≤ ε. Taking into account the fact that Y ∈ kerµ and the description of sets belonging to kerµ we can find a
number L > 0 such that for each z ∈ Y and t ≥ L the inequality |z(t)| ≤ ε is satisfied. Since T : Y → Y , we obtain
that

|(Tx)(t)− (Tx0)(t)| ≤ |(Tx)(t)|+ |(Tx0)(t)| ≤ 2ε (3.17)

for all x ∈ Y and t ≥ L. On the other hand, for t ∈ [0, L] we get that:

|(Tx)(t)− (Tx0)(t)|

≤
∣∣∣∣f (t, (T1x)(t), (T2x)(t)

∫ ∞

0

u (t, s, x(s)) ds

)
− f

(
t, (T1x0)(t), (T2x)(t)

∫ ∞

0

u (t, s, x(s)) ds

)∣∣∣∣
+

∣∣∣∣f (t, (T1x0)(t), (T2x)(t)

∫ ∞

0

u (t, s, x(s)) ds

)
− f

(
t, (T1x0)(t), (T2x0)(t)

∫ ∞

0

u (t, s, x0(s)) ds

)∣∣∣∣ . (3.18)
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From (3.18) and (H2) we have that:

|(Tx)(t)− (Tx0)(t)|

≤ l1 |(T1x)(t)− (T1x0)(t)|+ l2

∣∣∣∣(T2x)(t)

∫ ∞

0

u (t, s, x(s)) ds− (T2x0)(t)

∫ ∞

0

u (t, s, x0(s)) ds

∣∣∣∣
= l1 |(T1x)(t)− (T1x0)(t)|

+l2

∣∣∣∣ [(T2x)(t)− (T2x0)(t)]

∫ ∞

0

u (t, s, x(s)) ds+ (T2x0)(t)

∫ ∞

0

[u (t, s, x(s))− u (t, s, x0(s))]ds

∣∣∣∣ . (3.19)

Thus, we can write by (3.19) that

|(Tx)(t)− (Tx0)(t)| ≤ l1 |(T1x)(t)− (T1x0)(t)|+ l2 |(T2x)(t)− (T2x0)(t)|
∫ ∞

0

|u (t, s, x(s))| ds

+l2 |(T2x0)(t)|
∫ ∞

0

|u (t, s, x(s))− u (t, s, x0(s))| ds

and so by assumptions

|(Tx)(t)− (Tx0)(t)| ≤ l1∥T1x− T1x0∥+ l2∥T2x− T2x0∥h(∥x∥)
∫ ∞

0

g(t, s)ds

+l2d2(∥x0∥)

(∫ L

0

|u(t, s, x(s))− u(t, s, x0(s))| ds

+

∫ ∞

L

|u(t, s, x(s))− u(t, s, x0(s))| ds
)

which yields that

|(Tx)(t)− (Tx0)(t)| ≤ l1∥T1x− T1x0∥+ l2∥T2x− T2x0∥h(r0)G+ l2d2(r0)Lω̄
L
r0(u, ε)

+l2d2(r0) [sup {h (|x(s)|) : s ≥ L}]
∫ ∞

L

g(t, s)ds

+l2d2(r0) [sup {h (|x0(s)|) : s ≥ L}]
∫ ∞

L

g(t, s)ds

≤ l1∥T1x− T1x0∥+ l2∥T2x− T2x0∥h(r0)G+ l2d2(r0)Lω̄
L
r0(u, ε)

+l2d2(r0)G [h (sup {|x(s)| : s ≥ L}) + h (sup {|x0(s)| : s ≥ L})] (3.20)

for all t ∈ [0, L], where

ω̄L
r0(u, ε) = sup{|u(t, s, x)− u(t, s, y)| : t, s ∈ [0, L]; x, y ∈ [−r0, r0] and |x− y| ≤ ε}.

Observe that ω̄L
r0(u, ε) → 0 as ε → 0. Moreover, taking into account Y ∈ kerµ and the continuity of h together with

h(0) = 0, we can choose L in such a way that the term

h (sup {|x(s)| : s ≥ L}) + h (sup {|x0(s)| : s ≥ L})

in estimate (3.20) is small enough for all x ∈ Y . By the above facts and continuity of the operators T1 and T2, we
conclude from (3.17) and (3.20) that the operator T is continuous at the arbitrary fixed point x0. Thus, T is continuous
on the set Y . Finally, linking all above established properties of the set Y and the operator T : Y → Y and using the
Schauder fixed point principle we infer that the operator T has at least one fixed point x in the set Y . This means
that there exists at least one solution x = x(t) of Eq. (1.1) in the space C0(R+). □

4 Examples

Example 4.1. Consider the following nonlinear integral equation of the form:

x(t) =
1

1 + t
+ x(t)

∫ ∞

0

t

t+ s
ϕ(s)x(s)ds, (4.1)



1320 Özdemir

where t ∈ R+. Notice that Eq. (4.1) is a similar form of the famous quadratic integral equation of Chandrasekhar
type:

x(t) = 1 + x(t)

∫ 1

0

t

t+ s
ϕ(s)x(s)ds, t ∈ [0, 1].

Also, Eq.(4.1) is a special case of (1.1) if we put:

f(t, x, y) = x+ y, (T1x)(t) =
1

1 + t
, (T2x)(t) = x(t)

and

u(t, s, x) =

{
0, s = 0, t ≥ 0, x ∈ R
t

t+sϕ(s)x, s ̸= 0, t ≥ 0, x ∈ R.
(4.2)

Here, the characteristic function ϕ : R+ → R is continuous and satisfies ϕ(0) = 0.

The function f is continuous on R+ × R × R and the equality limt→∞ f(t, 0, 0) = 0 holds. Besides, f satisfies
the Lipschitz condition with the nonnegative constants l1 = 1 and l2 = 1 with respect to second and third variables.
Therefore the assumptions (H1) and (H2) of Theorem 3.7 are valid and the constant F can be taken as F =
sup {|f (t, 0, 0)| : t ≥ 0} = 0.

Since

|(T1x)(t)− (T1y)(t)| = 0 and |(T2x)(t)− (T2y)(t)| = |x(t)− y(t)|

for all t ∈ R+ and x, y ∈ C0(R+), we derive that:

∥T1x− T1y∥ = 0 and ∥T2x− T2y∥ = ∥x− y∥

which yield that the operators T1 and T2 are continuous on the space C0(R+). Further for all t ∈ R+ and x ∈ C0(R+),
the equalities

|(T1x)(t)| =
1

1 + t
and |(T2x)(t)| = |x(t)|

hold. Therefore, ∥T1x∥ = 1 and ∥T2x∥ = ∥x∥ for all x ∈ C0(R+). Hence, the assumption (H3) is satisfied with
d1(t) = 1 and d2(t) = t.

The function u : R+ ×R+ ×R → R defined by (4.2) is continuous, [11]. If the function ϕ is chosen as ϕ(s) = s e−s

6 ,
then it is obtained that the inequality

|u(t, s, x)| ≤ g(t, s)h (|x|) (4.3)

holds for all t, s ∈ R+ and x ∈ R, where the functions g : R+×R+ → R+ and h : R+ → R+ satisfying (4.3) are defined
by

g(t, s) =

{
0, s = 0, t ≥ 0
tse−s

6(t+s) , s ̸= 0, t ≥ 0

and h(t) = t. The continuity of g and h is clear. Also, h(0) = 0 and h is nondecreasing. Additionally,∫ ∞

0

g(t, s)ds =

∫ ∞

0

tse−s

6(t+ s)
ds ≤ 1

6

∫ ∞

0

se−sds =
1

6

for all t ≥ 0. So the assumptions (H4) and (H5) hold and we can chose the constant G as G = 1
6 .

The inequality in the assumption (H6) is equivalent to:

1 +
r2

6
≤ r. (4.4)

The number r0 chosen as 3−
√
3 ≤ r0 < 2 satisfies (4.4).
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Apart from this, fixing a nonempty and bounded subset X of the ball Br0 . Let x ∈ X, ε ≥ 0, L > 0 and
t1, t2 ∈ [0, L] such that |t1 − t2| ≤ ε. Then,

|(T1x)(t1)− (T1x)(t2)| =
∣∣∣∣ 1

1 + t1
− 1

1 + t2

∣∣∣∣
and

|(T2x)(t1)− (T2x)(t2)| = |x(t1)− x(t2)| .

The function t → 1
1+t is uniformly continuous on the set [0, L]. This implies that ωL(T1x, ε) → 0 as ε → 0. Besides,

ωL(T2x, ε) = ωL(x, ε). So, it is clear that ω0(T1X) = 0 and ω0(T2X) = ω0(X). By the equalities

βL(T1x) = sup{|(T1x)(t)| : t ≥ L} = sup

{
1

1 + t
: t ≥ L

}
=

1

1 + L
,

βL(T2x) = sup{|(T2x)(t)| : t ≥ L} = sup{|x(t)| : t ≥ L} = βL(x)

and

βL(hx) = sup{|hx(t)| : t ≥ L} = sup{h (|x(t)|) : t ≥ L} = sup{|x(t)| : t ≥ L} = βL(x),

we derive that β(T1X) = 0, β(T2X) = β(X) and β (hX) = β(X). Thus, we have by (2.3) that µ(T1X) = 0 and
µ(T2X) = µ(X). As a result, it is understood that the assumption (H7) holds with the constants m1,r0 = 0, m2,r0 = 1
and br0 = 1.

The inequality in (H8) has the form:

r0
2

< 1. (4.5)

Since 3−
√
3 ≤ r0 < 2, (4.5) is satisfied.

Since all of the assumptions of Theorem 3.7 are fullfilled, we deduce that the integral equation (4.1) has at least
one solution x = x(t) belonging to the space C0(R+).

Remark 4.2. Let us consider the nonlinear integral equation:

x(t) =
1

1 + t
+ x(t)

∫ ∞

0

tλϕ(s)

t+ s
log (1 + |x(s)|) ds, t ∈ R+ (4.6)

which is a similar version of the quadratic integral equation of the generalized Chandrasekhar’s type:

x(t) = 1 + x(t)

∫ 1

0

tλϕ(s)

t+ s
log (1 + |x(s)|) ds, t ∈ [0, 1]. (4.7)

The equation (4.7) was considered in many papers (see, [11, 13]) and it arose originally in connection with scattering
through a homogeneous semi-infinite plane atmosphere, [13]. If we take

f(t, x, y) = x+ y, (T1x)(t) =
1

1 + t
, (T2x)(t) = x(t),

u(t, s, x) =

{
0, s = 0, t ≥ 0, x ∈ R
tλ
t+sϕ(s) log (1 + |x|) , s ̸= 0, t ≥ 0, x ∈ R

and ϕ(s) = s e−s

6 , then (4.6) is a special form of (1.1). Since log (1 + |x|) ≤ |x| for all x ∈ R, the inequality |u(t, s, x)| ≤
g(t, s)|x| holds for all t, s ∈ R+ and x ∈ R, where

g(t, s) =

{
0, s = 0, t ≥ 0
t|λ|

6(t+s)se
−s, s ̸= 0, t ≥ 0.
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Also, by taking h(t) = t, we can easily see by Example 4.1 that the assumptions (H1)− (H5) of Theorem 3.7 hold.

Besides, it is clear that the assumption (H6) is equivalent to the inequality:

1 +
r2|λ|
6

≤ r. (4.8)

If the real parameter λ is chosen as 0 < |λ| < 4
3 , then (4.8) holds for the number r0 with

3−3
√

1− 2
3 |λ|

|λ| ≤ r0 < 2
|λ| and

the validity of the assumption (H7) can be shown as in Example 4.1.

Finally, the inequality in (H8) is equivalent to:

r0|λ|
2

< 1 (4.9)

and (4.9) is satisfied for
3−3

√
1− 2

3 |λ|
|λ| ≤ r0 < 2

|λ| .

Since the conditions of Theorem 3.7 are satisfied, the equation (4.6) has at least one solution in the space C0(R+).

Example 4.3. Let us consider the following nonlinear integral equation:

x(t) =
t

1 + t2
+

4 sinx(t)

25
(
1 + sin2 x(t)

)
+

2x2(t)
∫∞
0

cos t
(1+s)2x

3(s)ds

50

[
1 +

(
x2(t)

∫∞
0

cos t
(1+s)2x

3(s)ds
)2] , t ∈ R+. (4.10)

If we put

f(t, x, y) =
t

1 + t2
+

4x

25 (1 + x2)
+

2y

50 (1 + y2)
,

(T1x)(t) = sinx(t), (T2x)(t) = x2(t) and u(t, s, x) =
cos t

(1 + s)2
x3,

then Eq. (4.10) is a special case of Eq. (1.1).

It is easily verified that the assumptions of Theorem 3.7 are satisfied.

Indeed, the function f is continuous on the set R+ × R× R and f satisfies limt→∞ f(t, 0, 0) = limt→∞
t

1+t2 = 0.

Since

|f(t, x1, y)− f(t, x2, y)| ≤
4

25

(
|x1 − x2|

(1 + x2
1) (1 + x2

2)
+

|x1| |x2|
(1 + x2

1) (1 + x2
2)
|x1 − x2|

)
,

|f(t, x, y1)− f(t, x, y2)| ≤
2

50

(
|y1 − y2|

(1 + y21) (1 + y22)
+

|y1| |y2|
(1 + y21) (1 + y22)

|y1 − y2|
)

for all t ∈ R+ and x, x1, x2, y, y1, y2 ∈ R, we can write the inequalities:

|f(t, x1, y)− f(t, x2, y)| ≤
4

25

(
|x1 − x2|+

1

2

1

2
|x1 − x2|

)
=

1

5
|x1 − x2|,

|f(t, x, y1)− f(t, x, y2)| ≤
2

50

(
|y1 − y2|+

1

2

1

2
|y1 − y2|

)
=

1

20
|y1 − y2|.

Thus, l1 and l2 can be taken as l1 = 1
5 and l2 = 1

20 .

T1 and T2 are the continuous operators on the space C0(R+). Further for all x ∈ C0(R+) and t ∈ R+, we have
that:

|(T1x)(t)| ≤ ∥x∥ and |(T2x)(t)| ≤ ∥x∥2.

Hence the assumption (H3) is satisfied with d1(t) = t and d2(t) = t2.
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Now notice that the function u is continuous on the set R+ × R+ × R. Moreover, since

|u(t, s, x)| =
∣∣∣∣ cos t

(1 + s)2
x3

∣∣∣∣ = | cos t|
(1 + s)2

|x|3

for all t, s ∈ R+ and x ∈ R, if we choose g(t, s) = | cos t|
(1+s)2 and h(t) = t3, we see that the assumption (H4) is satisfied.

To check that the assumption (H5) is satisfied let us observe that s → | cos t|
(1+s)2 is integrable on R+ and t →∫∞

0
| cos t|
(1+s)2 ds is bounded on R+. Thus it is easily seen that:

G = sup

{∫ ∞

0

| cos t|
(1 + s)2

ds : t ∈ R+

}
= sup

{
| cos t| : t ∈ R+

}
= 1.

Besides, F = sup {|f (t, 0, 0)| : t ≥ 0} = 1
2 and the inequality in the assumption (H6) has the form:

r

5
+

r5

20
+

1

2
≤ r. (4.11)

It can be easily verified that if 0.631265 ≤ r0 <
√
2, then r0 is the solution of (4.11). Apart from this for ε ≥ 0, L > 0,

∥x∥ ≤ r0 and t, s ∈ [0, L] such that |t− s| ≤ ε, we have:

|(T1x)(t)− (T1x)(s)| = |sinx(t)− sinx(s)|
≤ |x(t)− x(s)|. (4.12)

Further, it can be seen that:

|(T2x)(t)− (T2x)(s)| =
∣∣x2(t)− x2(s)

∣∣
= |x(t)− x(s)| |x(t) + x(s)|
≤ 2r0|x(t)− x(s)|. (4.13)

From the estimates (4.12) and (4.13) in view of the (2.1) we have that

ω0(T1X) ≤ ω0(X) and ω0(T2X) ≤ 2r0ω0(X),

respectively. Besides, we get that:

sup {|(T1x)(t)| : t ≥ L} = sup {|sinx(t)| : t ≥ L}
≤ sup {|x(t)| : t ≥ L} . (4.14)

Thus from the estimate (4.14) we have that:

β(T1X) ≤ β(X).

Moreover, we derive that:

sup {|(T2x)(t)| : t ≥ L} = sup
{∣∣x2(t)

∣∣ : t ≥ L
}

≤ r0 sup {|x(t)| : t ≥ L}
≤ 2r0 sup {|x(t)| : t ≥ L} (4.15)

and

sup {|hx(t)| : t ≥ L} = sup {h (|x(t)|) : t ≥ L}

= sup
{
|x(t)|3 : t ≥ L

}
≤ r20 sup {|x(t)| : t ≥ L} . (4.16)
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Thus from the estimates (4.15) and (4.16) we have that:

β(T2X) ≤ 2r0β(X) and β (hX) ≤ r20β(X).

Therefore, taking into account the above estimates and (2.3), we get m1,r0 , m2,r0 and br0 are equal to 1, 2r0 and r20,
respectively.

Besides, it is obtained that

l1m1,r0 + l2m2,r0h(r0)G+ 2l2d2(r0)br0G =
1

5
+

r40
5

< 1

for 0.631265 ≤ r0 <
√
2. Hence the assumption (H8) is satisfied.

Thus we showed that all assumptions of Theorem 3.7 are fulfilled. This yields that the Eq.(4.10) has at least one
solution x = x(t) in the space C0(R+).

Remark 4.4. Notice that the integral equation (4.10) can’t be derived from any of the integral equations handled in
[1, 5, 6, 7, 10, 15, 17, 19, 20, 23, 24, 25, 27, 28, 29, 30].

Besides, (4.10) can be obtained from (1.11) by choosing

F (t, x, y) =
t

1 + t2
+

4 sinx

25
(
1 + sin2 x

) + 2x2y

50 (1 + x4y2)

and u(t, s, x) = cos t
(1+s)2x

3 for t, s ∈ R+ and x, y ∈ R. But, there is no function g : R+ × R+ → R+ satisfying the

inequality
|u(t, s, x)| ≤ g(t, s)|x|

for all t, s ∈ R+ and x ∈ R. Therefore, the assumption (H3) in [26] doesn’t hold. Consequently, the
existence theorem given in [26] cannot be applied to the integral equation (4.10).

Example 4.5. Let us consider the following integral equation:

x(t) =
1

4
exp(−t) +

1

3
ln

(
1 +

|x(t)|
1 + t

)
+

1

10
arctan

(
x(t)

√
x2(t) + 1

∫ ∞

0

t exp (−ts− s)x(s)ds

)
, t ∈ R+. (4.17)

Observe that this equation has the form of Eq.(1.1) if we put:

f(t, x, y) =
1

4
exp(−t) +

1

3
ln (1 + |x|) + 1

10
arctan y,

(T1x)(t) =
x(t)

1 + t
, (T2x)(t) = x(t)

√
x2(t) + 1 and u(t, s, x) = t exp (−ts− s)x.

It is easily shown that the function f : R+ × R× R → R is continuous and f(t, 0, 0) = 1
4 exp(−t) → 0 as t → ∞.

Without loss of generality we can suppose that |x1| < |x2|. So, there exists η ∈ (|x1|, |x2|) satisfying the inequality

|f(t, x1, y)− f(t, x2, y)| =
1

3
|ln (1 + |x1|)− ln(1 + |x2|)|

≤ 1

3(1 + η)
|x1 − x2| (4.18)

for all t ∈ R+ and y ∈ R. Taking into account (4.18), we have

|f(t, x1, y)− f(t, x2, y)| ≤
1

3
|x1 − x2|

for all t ∈ R+ and x1, x2, y ∈ R.
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We assume that y1 < y2 without loss of generality. Thus, for all t ∈ R+ and x ∈ R, we get

|f(t, x, y1)− f(t, x, y2)| =
1

10
|arctan y1 − arctan y2|

≤ 1

10(1 + ρ2)
|y1 − y2| , (4.19)

where ρ ∈ (y1, y2). By considering (4.19), we have

|f(t, x, y1)− f(t, x, y2)| ≤
1

10
|y1 − y2|

for all t ∈ R+ and x, y1, y2 ∈ R.
Consequently, l1 and l2 satisfying the condition (H2) of Theorem 3.7 can be chosen as l1 = 1

3 and l2 = 1
10 .

T1 and T2 are continuous operators on the space C0(R+). Additionally for all x ∈ C0(R+) and t ∈ R+ we have
that:

|(T1x)(t)| =
|x(t)|
1 + t

≤ ∥x∥
1 + t

≤ ∥x∥

and

|(T2x)(t)| =
∣∣∣x(t)√x2(t) + 1

∣∣∣ ≤ ∥x∥
√
∥x∥2 + 1.

Hence the assumption (H3) is satisfied with d1(t) = t and d2(t) = t
√
t2 + 1.

The function u(t, s, x) is continuous on the set R+ × R+ × R. Further we get

|u(t, s, x)| = |t exp (−ts− s)x| = t exp (−ts− s) |x|

for all t, s ∈ R+ and x ∈ R. Thus the functions appearing in assumption (H4) have the form g(t, s) = t exp (−ts− s)
and h(t) = t. Obviously s → t exp (−ts− s) is integrable on R+ and t →

∫∞
0

t exp (−ts− s) ds is bounded on R+.
Moreover, we have that:

G = sup

{∫ ∞

0

t exp (−ts− s) ds : t ∈ R+

}
= sup

{
t

t+ 1
: t ∈ R+

}
= 1.

Now notice that the inequality
l1d1(r) + l2d2(r)h(r)G+ F ≤ r

in the assumption (H6) is equivalent to:

r

3
+

r2

10

√
r2 + 1 +

1

4
≤ r. (4.20)

It can be easily verified that if 0.400985 ≤ r0 ≤ 1.159091, then r0 is the solution of (4.20).

Let us take ε ≥ 0, L > 0, ∥x∥ ≤ r0 and t, s ∈ [0, L] such that |t− s| ≤ ε. So we get that:

|(T1x)(t)− (T1x)(s)|

=

∣∣∣∣ x(t)1 + t
− x(s)

1 + s

∣∣∣∣
=

∣∣∣∣( 1

1 + t
− 1

1 + s

)
x(t) +

1

1 + s
(x(t)− x(s))

∣∣∣∣
≤ |s− t|

(1 + t)(1 + s)
|x(t)|+ 1

1 + s
|x(t)− x(s)|

≤ |s− t| ∥x∥+ |x(t)− x(s)|
≤ ε r0 + |x(t)− x(s)|. (4.21)
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Further, we assume that x(t) < x(s) without loss of generality, then it can be easily seen that there exists η ∈ (x(t), x(s))
satisfying the inequality

|(T2x)(t)− (T2x)(s)|

=
∣∣∣x(t)√x2(t) + 1− x(s)

√
x2(s) + 1

∣∣∣
=

∣∣∣ [x(t)− x(s)]
√

x2(t) + 1 + x(s)
[√

x2(t) + 1−
√
x2(s) + 1

]∣∣∣
≤ |x(t)− x(s)|

∣∣∣√x2(t) + 1
∣∣∣+ |x(s)|

∣∣∣√x2(t) + 1−
√
x2(s) + 1

∣∣∣
≤

√
r20 + 1|x(t)− x(s)|+ r0

2|η|
2
√
η2 + 1

|x(t)− x(s)| . (4.22)

By considering (4.22), we obtain that

|(T2x)(t)− (T2x)(s)| ≤
(√

r20 + 1 + r0

)
|x(t)− x(s)| (4.23)

for all t, s ∈ [0, L] with |t− s| ≤ ε.

From estimates (4.21) and (4.23) in view of the (2.1), we have that:

ω0(T1X) ≤ ω0(X) and ω0(T2X) ≤
(√

r20 + 1 + r0

)
ω0(X).

Further, we get that:

sup {|(T1x)(t)| : t ≥ L} = sup

{∣∣∣∣ x(t)1 + t

∣∣∣∣ : t ≥ L

}
≤ ∥x∥ sup

{
1

1 + t
: t ≥ L

}
=

∥x∥
1 + L

. (4.24)

Moreover, it is clear that:

sup {|(T2x)(t)| : t ≥ L} = sup
{∣∣∣x(t)√x2(t) + 1

∣∣∣ : t ≥ L
}

=
√

r20 + 1 sup {|x(t)| : t ≥ L}

≤
(√

r20 + 1 + r0

)
sup {|x(t)| : t ≥ L} . (4.25)

Besides,

sup {|hx(t)| : t ≥ L} = sup {h (|x(t)|) : t ≥ L}
= sup {|x(t)| : t ≥ L} . (4.26)

Thus from estimates (4.24), (4.25) and (4.26) in view of (2.2) we have that:

β(T1X) = 0, β(T2X) ≤
(√

r20 + 1 + r0

)
β(X) and β(hX) = β(X).

So,
µ(T1X) = ω0(T1X) + β(T1X) ≤ ω0(X) ≤ µ(X),
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µ(T2X) = ω0(T2X) + β(T2X)

≤
(√

r20 + 1 + r0

)
(ω0(X) + β(X))

=

(√
r20 + 1 + r0

)
µ(X).

Therefore we get that m1,r0 = 1, m2,r0 =
√
r20 + 1 + r0 and br0 = 1. Keeping in mind the above obtained constants,

we get that

l1m1,r0 + l2m2,r0h(r0)G+ 2l2d2(r0)br0G =
1

3
+

(√
r20 + 1 + r0

)
r0

10
+

r0
√

r20 + 1

5
< 1

for 0.400985 ≤ r0 ≤ 1.159091 and thus the assumption (H8) is satisfied.

Finally, we conclude that the assumptions of Theorem 3.7 hold. This implies that the considered integral equation
(4.17) has a solution x = x(t) belonging to the space C0(R+).

Remark 4.6. Notice that the integral equation (4.17) can’t be derived from any of the integral equations handled in
[1, 5, 6, 7, 10, 15, 17, 19, 20, 23, 24, 25, 27, 28, 29, 30].

On the other hand, (4.17) can be derived from the equation (1.11) by taking

F (t, x, y) =
1

4
exp(−t) +

1

3
ln

(
1 +

|x|
1 + t

)
+

1

10
arctan

(
x
√
x2 + 1 y

)
and u(t, s, x) = t exp(−ts− s)x for t, s ∈ R+ and x, y ∈ R. But, since

lim
T→∞

{
sup

{∫ T

0

g(t, s)ds : t ∈ [T,∞)

}}

= lim
T→∞

{
sup

{∫ T

0

t exp(−ts− s)ds : t ∈ [T,∞)

}}

= lim
T→∞

{
sup

{
t

1 + t

(
1− 1

exp(Tt+ T )

)
: t ∈ [T,∞)

}}
= 1,

the assumption (H5) in[26] doesn’t hold. Hence, the existence theorem given in [26] cannot be applied
to (4.17).

5 Concluding Remarks

This paper contains a result on the existence of solutions of the nonlinear integral equation (1.1). The equation
(1.1) is more general than many integral equations examined up to now. The investigations of the paper are placed
in the Banach space of real functions defined, continuous on the real half-axis and vanishing at infinity. The main
tools used in our considerations are the concept of a measure of noncompactness and the classical Schauder fixed point
theorem. The result obtained in this paper generalizes and extends several ones obtained earlier for some integral
equations. We give some examples illustrating the different of this paper than the other studies in [1, 5, 6, 7, 10, 15,
17, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30].
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[29] İ. Özdemir and B. İlhan, On the existence and uniform attractivity of the solutions of a class of nonlinear integral
equations on unbounded interval, Taiwanese J. Math. 21 (2017), no. 2, 385–402.

[30] H.A.H. Salem, On the quadratic integral equations and their applications, Comput. Math. Appl. 62 (2011), 2931–
2943.


	Introduction
	Preliminaries
	The Main Result
	Examples
	Concluding Remarks

