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Abstract

In this paper, the solution of the general integral equation of the second kind is approximated using polynomials.
These polynomials are obtained based on the Remez algorithm and the minimization of residual function. The nature
of the use of the Remez algorithm in the proposed method will lead to the conversion of the integral equation to a
system of algebraic equations and obtaining the best polynomial approximation for the solution of an integral equation.
Also, the convergence analysis of the approach is discussed. Finally, some numerical examples and comparisons with
previous results confirm the efficiency and high accuracy of the presented method.
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1 Introduction

One of the fundamental classes of equations are the integral ones. Integral equations are utilized in various
fields of science, such as physics, biology, economics, and engineering, etc. For this reason, these equations have
received more attention in recent decades. General approaches for solving integral equations are classified in two
types: analytical and numerical methods. Analytical methods are usually not available to solve integral equations.
Therefore, much effort has been made for producing numerical methods for solving various types of integral equations.
In fact, there are several numerical methods for solving variety of Fredholm and Voltera integral equations. Especially,
some numerical methods, such as projection and collocation methods, have been used to solve the problem. Most of
these methods, appropriate linear combinations of basic functions, such as Chebyshev polynomials [1, 2, 3, 4, 5, 6],
Legendre polynomials [7, 8, 9], Bernoulli polynomials [10], Bernstein polynomials [11, 12, 13], monomials[14, 15], Tau-
collocation method[16], wavelets [17, 18, 19] have been used. The coefficients of linear combinations of basic functions
are obtained through these methods. And most of the these methods are performable only for Fredholm or Volterra
(linear or nonlinear) integral equations. Therefore, it is necessary to present a generic method that can be applied to
all integral equations of the second kind which includes Fredholm, Volterra, and mixed Fredholm-Volterra (linear and
nonlinear) and as a result, best coefficients of linear combinations are yielded.
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The problem of best polynomial approximation for a continuous function on a closed interval is one of the most
important and applicable subjects of the approximation theory. The Remez algorithm is an iterative algorithm and
effective technique for obtaining the best polynomial approximation with very high accuracy. The basis of the Remez
algorithm is to find a certain number of points on the desired interval and to solve the system of their corresponding
equations. By updating the points and repeating the process, it is possible to achieve the desired accuracy in obtaining
the best polynomial approximation. Concerning this issue, first, the basic idea of [15] and the Remez algorithm is
developed and then it is applied to integral equations of the second kind. The current study attempts to propose a new
approach in order to find the best polynomial approximations for a given integral equation of the second kind. In this
approach, the solution of a given integral equation is represented as a polynomial (linear combination of monomials).
Furthermore, the calculation method of the corresponding coefficients of these monomials is discussed based on the
Remez algorithm. Moreover, the convergence and the error analysis of the proposed scheme are studied. This study
shows that the obtained approximations are very close to the best polynomial approximation for the solution of
an integral equation, which is the main advantage of the proposed method. The accuracy and convergence rate of
this method are compared with the other existing ones, which indicates improvements in the results. Accordingly,
this method is appropriate and practical for solving all integral equations of the second kind, integro- differential
equations, multi-dimensional integral equations, ordinary and partial differential equations. The structure of the
paper is as follows:
In Section 2, the Remez algorithm is introduced. In the third section, the method of solving the integral equations of
the second kind by using the Remez algorithm is presented. Sections 4 and 5 are devoted to the convergence analysis
of the presented method. Finally, to observe the efficiency of the proposed approach, it is used to examine some
numerical examples and obtained results are compared with those of previous methods.

2 The Remez Algorithm

With the assumption that n is a nonnegative integer, Pn denotes the set of all (real valued) polynomials of degree
≤ n ; such that if pn ∈ Pn then

pn(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0. (2.1)

Definition 2.1. For given f ∈ C[a, b] and n ≥ 0, fixed, p∗n ∈ Pn is called a polynomial of best approximation of
degree n to the function f in the ∞-norm whenever:

∥f − p∗n∥∞ = min
pn∈Pn

∥f − pn∥∞, (2.2)

where

∥f − pn∥∞ = max
a≤x≤b

|f(x)− pn(x)|.

Chebyshev proved that such polynomial exists and is unique. So, it is often referred to as the minimax polynomial.

Theorem 2.2. (The Oscillation Theorem) Suppose that f ∈ C[a, b], a polynomial pn ∈ Pn is a minimax polynomial
for f on [a, b] if and only if, there exists a sequence of n+2 points xi, i = 0, 1, ..., n+1, such that a ≤ x0 < ... < xn+1 ≤ b,

f(xi)− pn(xi) = (−1)(i)e, i = 0, 1, ..., n+ 1, (2.3)

and
e = max

a≤x≤b
|f(x)− pn(x)|. (2.4)

By using the Oscillation Theorem, minimax polynomial for the function f on the interval [a, b] can be obtained. For
this objective , the system of n + 2 linear equations (2.3) in the n + 2 unknowns {a0, a1, ..., an, e} is solved( for xi

,s
selected). The great challenge is that e does not always satisfy in (2.4). To solve this problem, Remez has been
presented an iterative algorithm known to the Remez algorithm as the following:
Step I: Choose arbitrarily n+ 2 points xi, 0 ≤ i ≤ n+ 1 in the given interval [a, b].
Step II: By solving the following system of linear equations, a0, a1, ..., an are found.

f(xi)− pn(xi) = (−1)ie, i = 0, 1, ..., n+ 1, (2.5)
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where pn is as (2.1).
Step III: Obtaining pn from step II yields the root of |f − pn|, zi, on interval [xi, xi+1], i = 0, 1, ..., n+ 1.
Step IV: First we divide the interval [a, b] into the (n+ 2) subintervals [a, z0], [z0, z1], ..., [zn−1, zn], [zn, b]. Then in
each of these subintervals, the point at which |f − pn| attains its maximum value is computed and is denoted by x∗

i ,
i = 0, 1, ..., n+ 1.
Step V: It stops and pn obtained from step II is chosen as the best polynomial approximation; otherwise it is set
xi := x∗

i and goes to step II.
It has been proved that the system of equations of Eq. (2.5) have unique solution, therefore other steps of the algorithm
are applicable.

3 Explaining the Method

The general form of a Hammerstein integral equation is given as follows:

y(x) = λs.

∫ 1

0

k1(x, t)F1(t, y(t))dt+ γs.

∫ x

0

k2(x, t)F2(t, y(t))dt+ g(x), (3.1)

where the parameters λ, γ and k1(x, t), k2(x, t), F1, F2 and g(x) are known functions, while y(x) is an unknown
function which must be determined.
Suppose that the approximate solution of Eq. (3.1) is presented as Eq. (2.1), therefore

y(x)− pn(x) = R[pn](x) + ϵ[pn](x), (3.2)

where:

R[pn](x) = −pn(x) + λs.

∫ 1

0

k1(x, t)F1(t, pn(t))dt+ γs.

∫ x

0

k2(x, t)F2(t, pn(t))dt+ g(x), (3.3)

ϵ[pn](x) = λs.

∫ 1

0

k1(x, t)[F1(t, y(t))− F1(t, pn(t))]dt+ γs.

∫ x

0

k2(x, t)[F2(t, y(t))− F2(t, pn(t))]dt. (3.4)

So, Eq. (3.2) can be written as follows:

(y(x)− ϵ[pn](x))− pn(x) = R[pn](x). (3.5)

In the next sections, it will be shown that there exists a polynomial p∗n ∈ Pn such that

∥R[p∗n]∥∞ = min
pn∈Pn

∥R[pn]∥∞. (3.6)

Also, it will be proved that the sequence {p∗n} is convergent to the exact solution of Eq. (3.1).
According to Eqs. (3.5) and (3.6), it is concluded that:

min
pn∈Pn

∥y − ϵ[pn]− pn∥∞ = ∥y − ϵ[p∗n]− p∗n∥∞ = ∥R[p∗n]∥∞. (3.7)

Eq. (3.4) and the convergence of the sequence {p∗n} result in

lim
n−→∞

∥ϵ[p∗n]∥∞ = 0. (3.8)

Now, it is shown that {p∗n} is best polynomial approximation for y − ϵ[p∗n] ( where y(x) is the exact solution of Eq.
(3.1)). According to Eq. (3.5), it is clear that

y(x)− ϵ[p∗n](x)− pn(x) = R[p∗n](x) + p∗n(x)− pn(x). (3.9)

Due to Eq. (3.9), there exist a polynomial p̄n such that:

∥y − ϵ[p∗n]− p̄n∥∞ = min
pn∈Pn

∥y − ϵ[p∗n]− pn∥∞ = min
pn∈Pn

∥R[p∗n] + p∗n − pn∥∞ = ∥R[p∗n] + p∗n − p̄n∥∞. (3.10)
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Moreover, p∗n and p̄n are almost the same, since according to Eq. (3.10) we have

∥p∗n − p̄n∥∞ ≤ 2∥R[p∗n]∥∞. (3.11)

On the other hand, due to the definition of R[p∗n] it can be written

∥R[p∗n]∥∞ ≤ ∥R[p∗∗n ]∥∞ ≤ L∥p∗∗n − y∥∞, ∀n ∈ N (3.12)

where L is a constant and p∗∗n is the best polynomial approximation for the solution of Eq. (3.1).

Theorem 2.4.6 of [21] for interval [−1, 1] gives

E[−1,1]
n (y) = ∥p∗∗n − y∥∞ =

1

2n
|y(n+1)(ξ)|
(n+ 1)!

, ξ ∈ (−1, 1). (3.13)

Assuming g(x) = y(
x+ 1

2
), −1 ≤ x ≤ 1 we get

E[0,1]
n (y) = E[−1,1]

n (g). (3.14)

From Eqs. (3.13) and (3.14) we have

E[0,1]
n (y) = E[−1,1]

n (g) =
1

2n
|g(n+1)(ξ)|
(n+ 1)!

. (3.15)

Based on the definition of g and Eq. (3.15), it is deduced that

∥p∗∗n − y∥∞ =
1

22n+1

|y(n+1)(ξ)|
(n+ 1)!

, ξ ∈ [0, 1]. (3.16)

With a little ignorance, Eqs. (3.11), (3.12) and (3.16), especially for n sufficiently large, are shown

p̄n = p∗n. (3.17)

Since p̄n is best approximation for y − ϵ[p∗n] then, to obtain p̄n (or same p∗n ) of Eq. (3.10) can be achieved based on
the Remez algorithm which is based on the solution of the following equations system :

(y(xi)− ϵ[p∗n](xi))− p̄n(xi) = (−1)ie, i = 0, 1, ..., n+ 1, (3.18)

where xi, 0 ≤ i ≤ n+ 1 are chosen in the interval [0, 1].
Eqs. (3.5), (3.17) and (3.18) yield

R[p∗n](xi) = (−1)ie, i = 0, 1, ..., n+ 1. (3.19)

Therefore, despite of the unknown y(x), by using of Eqs. (3.5), (3.17) and (3.18), steps of the Remez algorithm for
obtaining p∗n are executable.
Conclusion: In fact, to finding the best polynomial approximation pn for y − ϵ[p∗n] is equivalent with minimization
∥R[pn]∥∞ for pn ∈ Pn and it can be implemented by using the Remez algorithm based on solving the system (3.19).
Main conclusion I: Minimization of ∥R[pn]∥∞ leads to generation of the sequence {p∗n} which:
1- Converges to solution of integral equation.
2- ϵ[p∗n] is convergent to zero according to (3.4).
Since p∗n is the best polynomial approximation for y − ϵ[p∗n] and ϵ[p∗n] −→ 0 hence
3- By increasing n, p∗n is best polynomial approximation for solution of integral equation.

4 The convergence analysis of linear integral equations

In this section, it is assumed that in Eq. (3.1), F1(t, y(t)) = y(t) and F2(t, y(t)) = y(t), which yields the linear
form of integral equation. It is supposed that the form of approximate solutions of integral equation is as Eq. (2.1).
Substituting Eq. (2.1) into linear integral equation causes that the residual function R[pn] turns into

R [pn] = a0ϕ0 + a1ϕ1 + ...+ anϕn + g, (4.1)
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where

ϕi(x) = −xi + λ

∫ 1

0

k1(x, t)t
idt+ γ

∫ x

0

k2(x, t)t
idt, 0 ≤ i ≤ n.

Let minimization R [pn] occur for a
∗
i , i = 0, 1, 2, ..., n, therefore,

∥a∗0ϕ0 + a∗1ϕ1 + ...+ a∗nϕn + g∥∞ = min
pn∈Pn

∥R[pn]∥∞. (4.2)

Now, we show that the sequence {p∗n} is convergent to the solution of linear integral equation where:

p∗n(x) = a∗nx
n + a∗n−1x

n−1 + ...+ a∗1x+ a∗0. (4.3)

As a result, items 2, 3 of Main conclusion for linear integral equation are concluded.

Theorem 4.1. There exists a p∗n as Eq. (4.3) such that ∥R[p∗n]∥∞ = min
pn∈Pn

∥R[pn]∥∞.

Proof . The set V = {a0ϕ0 + a1ϕ1 + ... + anϕn|(a0, a1, ..., an) ∈ Rn+1} is a finite dimensional subspace of normed
space C[0, 1]. Hence there is a best approximation function g with respect to V [20]. □

Theorem 4.2. If k2 (x, t) is continuous on 0 ≤ t ≤ x ≤ 1 and f(x) is continuous on 0 ≤ x ≤ 1, then the integral
equation y(x)− γ

∫ x

0
k2 (x, t) y(t) d t = g(x) possesses a unique continuous solution for 0 ≤ x ≤ 1.

Proof . See [20]. □

Theorem 4.3. The sequence {p∗n} of presented method is convergent to the exact solution of Eq. (3.1) whenever in
Eq. (3.1) λ = 0. (linear Volterra integral equation)

Proof . At first, corresponding to the integral equation

y(x)− γ

∫ x

0

k2 (x, t) y(t) d t = g(x),

we define the linear transformation T : C [0, 1] → C [0, 1] by

T [v] (x) = v(x)− γ

∫ x

0

k2(x, t)v(t)dt. (4.4)

Obviously the operator T is bounded, because k2(x, t) is bounded on the set{
(x, t)

∣∣0 ≤ t ≤ x ≤ 1
}
.

Also T is one-to-one, since Eq. (3.1) has a unique solution. Moreover, according to Theorem 4.2, T is onto. Thus
there exist 0 < α and 0 < β, such that (see [16]) α ∥v∥∞ ≤ ∥Tv∥∞ ≤ β ∥v∥∞ for all v ∈ V where

α =
1

∥T−1∥∞
and β = ∥T∥∞ . (4.5)

In particular for v = pn − y, we have:

α ∥pn − y∥∞ ≤ ∥R [pn] ∥∞ ≤ β ∥pn − y∥∞ , (4.6)

where y is the exact solution Eq. (3.1). Since span {φ0, φ1, ..., φn, φn+1, ...} is dense in C [0, 1] and y ∈ C [0, 1], for
given ε > 0, there exists some pN such that ∥R [pN ] ∥∞ < αε. According to definitions of p∗n and R [p∗n] for any n ≥ N
we have:

∥R [p∗n] ∥∞ ≤ ∥R [p∗N ]∥∞ ≤ ∥R [pN ]∥∞ ≤ αε. (4.7)

By (4.6) and (4.7) the proof is completed. □
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Theorem 4.4. (Fredholm alternative) Let V be a Banach space and let K : V → V be a compact operator where

K [v] (x) = −
∫ 1

0
k1(x, t) v(t) dt . Then the equation

v(x)− λ

∫ 1

0

k1 (x, t) v(t) d t = g(x),

has a unique solution v ∈ V for any f ∈ V , if and only if the homogeneous equation

v(x)− λ

∫ 1

0

k1 (x, t) v(t) d t = 0,

has only the trivial solution v = 0. In this case, the operator I +K has a bounded inverse (I +K)
−1

.

Proof . See [17]. □

Theorem 4.5. The sequence of approximate solutions {p∗n} of the proposed method is convergent to the exact solution
of Eq. (3.1), whenever in Eq. (3.1) γ = 0 (Fredholm integral equation).

Proof . The proof is the same as of Theorem (3). □

Theorem 4.6. The sequence of approximate solutions {p∗n} of the proposed method is convergent to the exact solution
of Eq. (3.1) whenever in Eq. (3.1), γ, λ ̸= 0 (mixed Volterra − Fredholm integral equations ).

Proof . By defining

T [v] (x) = v(x)− γ

∫ x

0

k2(x, t)v(t)dt, (4.8)

and

S [v] (x) = −λ

∫ 1

0

k1(x, t)v(t)dt, (4.9)

Eq. (3.1) becomes
T [v] (x) + S [v] (x) = f(x). (4.10)

Obviously T−1 is bounded and S is compact. Hence, the linear operator T−1S is compact too. Due to [17], the
linear operator I+T−1S has a bounded inverse, as Eq. (3.1) has a unique solution. Therefore similar to the proof of
Theorem 4.3, the result can be obtained. □

Conclusion II: With the aid of Theorems 4.3, 4.4, 4.5 and 4.6 it is concluded that:

αA ∥R [pn] ∥∞ ≤ ∥pn − y∥∞ ≤ βA ∥R [pn] ∥∞ ; ∀n, (4.11)

where αA = 1
∥A∥∞

, βA =
∥∥A−1

∥∥
∞ , and

Ay(x) = y(x)− λ

∫ 1

0

k1(x, t)y(t)dt− γ

∫ x

0

k2(x, t)y(t)dt. (4.12)

Using (4.4) gives
αA ∥R [p∗n]∥∞ ≤ ∥p∗n − y∥∞ ≤ βA ∥R [p∗n]∥∞ . (4.13)

Conclusion III: Assuming p∗∗n is the best approximation for the solution of linear integral equation (2.1), according
to definition ∥R[p∗n]∥∞ and inequalities (4.11), (4.13) we can write

∥p∗n − y∥∞ ≤ κ(A)∥p∗∗n − y∥∞ (4.14)

where κ(A) = ∥A∥∥A−1∥ ≥ 1. Consequently p∗n can be very close to p∗∗n .

Also by definition of ϵ[pn](x) and the fact that k1 and k2 are continuous, we have

∥ϵ[p∗n]∥∞ ≤ k∥y − p∗n∥∞. (4.15)
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5 The convergence analysis of nonlinear integral equations

In this section, it is assumed that F1(x, y(x)) and F2(x, y(x)) with respect to variable y(x) are nonlinear. Even
though the presented method is practical for all nonlinear integral equations of the second kind, the existence of the
nonlinear terms in the integrand of these equations will increase the computation time and complexity. In order to solve
this problem, first we linearize the integrand term by changing variables Z1(x) = F1(x, y(x)) and Z2(x) = F2(x, y(x)).
Therefore, Eq. (3.1) is converted into following system{

Z1(x) = F1(x, L[Z1, Z2](x)),

Z2(x) = F2(x, L[Z1, Z2](x)),
(5.1)

where L[Z1, Z2](x) = λs.
∫ 1

0
k1(x, t)Z1(t)dt+ γs.

∫ x

0
k2(x, t)Z2(t)dt+ g(x).

Then the system (5.1) is solved by the Remez algorithm. It is clear that y∗(x) = λs.
∫ 1

0
k1(x, t)Z

∗
1 (t)dt+γs.

∫ x

0
k2(x, t)Z

∗
2 (t)dt+

g(x) is the solution of Eq. (3.1) where (Z∗
1 , Z

∗
2 ) is the solution of system (5.1). It is assumed that pn, qn are polynomials

of degree n the same as (2.1). So from (5.1) we have{
(Z1(x)− ϵ1[pn, qn](x))− pn(x) = R1[pn, qn](x)

(Z2(x)− ϵ2[pn, qn](x))− qn(x) = R2[pn, qn](x)
(5.2)

where 
ϵ1[pn, qn](x) = F1(x, L[Z1, Z2](x))− F1(x, L[pn, qn](x)),

ϵ2[pn, qn](x) = F2(x, L[Z1, Z2](x))− F2(x, L[pn, qn](x)),

R1[pn, qn](x) = −pn(x) + F1(x, L[pn, qn](x)),

R2[pn, qn](x) = −qn(x) + F2(x, L[pn, qn](x)).

(5.3)

Now, in a similar way as in section 3, we look for p∗n and q∗n which are the best polynomial approximations for Z1 − ϵ1
and Z2 − ϵ2 in (5.3) such that by increasing n, ϵ1 and ϵ2 tend to zero.
Remark: Corresponding to λ = 0 or γ = 0 have R2[pn, qn](x) = R2[qn](x) or R1[pn, qn](x) = R1[pn](x), respectively,
that for obtaining p∗n or q∗n proceed the same as previous sections.
Corresponding to λ ̸= 0 and γ ̸= 0, at first is defined:

R[pn, qn] := max{∥R1[pn, qn]∥∞ , ∥R2[pn, qn]∥∞}. (5.4)

Then, we put R[p∗n, q
∗
n] = min

pn,qn∈Pn

R[pn, qn].

Finally, to find p∗n, q
∗
n, the follwing system of equations will be solved .{

R1[pn, qn](xi) = (−1)ie1, i = 0, 1, ..., n+ 1,

R2[pn, qn](xj) = (−1)je2. j = 0, 1, ..., n+ 1.
(5.5)

Theorem 5.1. Suppose that F̃1 = F1(x, g(x)) and F̃2 = F2(x, g(x)), if | lim
s→∞

(s−F1(x, js))| > 1+∥F̃1∥ and | lim
s→∞

(s−

F2(x, js))| > 1 + ∥F̃2∥ (j is a constant ). Then there exists p∗n and q∗n where ∥R1[p
∗
n, q

∗
n]∥∞ = min

pn,qn∈Pn

∥R1[pn, qn]∥∞
and ∥R2[p

∗
n, q

∗
n]∥∞ = min

pn,qn∈Pn

∥R2[pn, qn]∥∞.

Proof . First let λ = 0 (Volterra), therefore

Z2(x) = F2(x, L[Z2](x)), (5.6)

R2[qn](x) = −qn(x) + F2(x, L[qn](x)), (5.7)

where

L[Z](x) = γs.

∫ x

0

k2(x, t)Z(t)dt+ g(x). (5.8)

The set Ωn is defined as follows:

Ωn = {qn ∈ Pn| ∥R2[qn]∥∞ ≤ 1 + ∥F̃2∥∞}. (5.9)
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Clearly 0 ∈ Ωn, so Ωn is nonempty and based on definition of Ωn, it follows that ∥R2[qn]∥∞ attains its minimum over
the set Ωn and this set is uniformly bounded, otherwise there exists sequence {qm} of set Ωn such that

|qm(xm)| = ∥qm∥∞ → ∞. (5.10)

Case 1: F2 satisfies similar to Lipshitz condition with constant r, in other words

|F2(x, qm(x))− F2(x, Z2(x))| ≤ r|qm(x)− Z2(x)|. (5.11)

Hence, subtracting (5.6) from (5.7) and using Lipschitz condition gives

|qm(xm)− Z2(xm)| ≤ |R2[qm](xm)|+ r |
∫ xm

0

k2(xm, t)(qm(t)− Z2(t))dt|. (5.12)

It is clear that Z2(xm) and |R2[qm](xm)| are finite, therefore, due to (5.10) and dividing the two sides of Eq. (5.12)
by |qm(xm)| and then taking the limit on both sides of Eq. (5.12), it can be deduced that

0 <
1

r
≤ lim

m→∞

|g(xm) +
∫ xm

0
k2(xm, t)qm(t)dt− g(xm)−

∫ xm

0
k2(xm, t)Z2(t))dt|

|qm(xm)|
≤ k2. (5.13)

where k2 = max
0≤x,t≤1

|k2(x, t)|. Thus, there exist r1 and r2 such that for sufficiently large m value, we have:

r1qm(xm) ≤ g(xm) +

∫ xm

0

k2(xm, t)qm(t)dt ≤ r2qm(xm). (5.14)

From (5.7) and (5.14) it is obtained

R2[qm](xm) = −qm(xm) + F2(xm, jqm(xm)). (5.15)

Due to the qm ∈ Ωn, itis in contradiction with the assumption | lim
s→∞

(s− F2(x, js))| > 1 + ∥F̃2∥.

Case 2: Case 1 does not satisfy. Then for any r ∈ N, there exists qr ∈ Ωn such that

r|qr(x)− Z2(x)| < |F2(x, qr(x))− F2(x, Z2(x))|. (5.16)

Also, subtraction (5.6) , (5.7) and then applying absolute value is yields

|F2(x, qr(x))− F2(x, Z2(x))| − |qr(x)− Z2(x)| ≤ |R2[qr](x)|. (5.17)

Since r can take large values and qr ∈ Ωn, then (5.16) and (5.17) contradict bounded R2[qr]. Therefore, it is proven
that Ωn is bounded. So, the function Γ(qn) := ∥R2[qn]∥∞ is continuous, therefore, Ωn is a closed set. Hence the
continuous function Γ attains its minimum over the set Ωn(compact). According to the definition Ωn we have

min
qn∈Pn

∥R2[qn]∥∞ = min
qn∈Ωn

∥R2[qn]∥∞, (5.18)

which completes the proof. Fredholm and Fredholm-Volerra are proved similar to Volterra. □

Theorem 5.2. If lim
s→∞

(s − F1(x, js)) ̸= 0 and lim
s→∞

(s − F2(x, js)) ̸= 0, then sequences {q∗n} and {p∗n} of presented

method are uniformly bounded.

Proof . It can be proven in analogous way as Theorem 5.1 . □

Theorem 5.3. The sequence {q∗n} of presented method is convergent to the exact solution of Eq. (3.1) whenever in
Eq. (3.1), λ = 0. (nonlinear Volterra integral equation)

Proof . The Theorem 5.2 states that the sequence {q∗n} is uniformly bounded, hence F2 over {q∗n} ∪ {Z2} satisfies in
the Lipshitz condition. The subtracting (5.6) from (5.7) and applying of Lipschitz condition for F2 leads to:

∥R2[qn]∥∞ ≤ (1 + rk2)∥Z2 − qn∥∞, (5.19)
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and

|Z2(x)− qn(x)| ≤ |R2[qn](x)|+ r

∫ x

0

k2(x, t)|Z2(t)− qn(t)|dt, (5.20)

where r is the Lipschitz constant of function F2 and k2 = max
0≤x≤t≤1

|k2(x, t)|.

Using Grönwall’s inequality for (5.20), especially when qn = q∗n , it follows that

∥Z2 − q∗n∥∞ ≤ ∥R2[q
∗
n]∥∞erk2 . (5.21)

Based on the definition R2[q
∗
n], obviously

∥R2[q
∗
n]∥∞ −→ 0. (5.22)

Inequality (5.21) and (5.22) prove the convergence {q∗n} to Z2( exact solution). □

Theorem 5.4. The sequence {p∗n} of presented method is convergent to the exact solution of Eq. (3.1) whenever in
Eq. (3.1), γ = 0. (nonlinear Fredholm integral equation)

Proof . In this case we have

R1[pn](x) = −pn(x) + F1(x, L[pn](x)). (5.23)

where

L[Z](x) = λs.

∫ 1

0

k1(x, t)Z(t)dt+ g(x), (5.24)

Eq. (5.23) gives

|p∗n(x)− p∗n(z)| ≤ |R1[p
∗
n](x)|+ |R1[p

∗
n](z)|+ r1|L[p∗n](x)− L[p∗n](z)|+ r2|x− z|, (5.25)

where r1 and r2 are the Lipschitz constants of function F1. Since ∥R1[p
∗
n]∥∞ −→ 0, k1 is continuous and especially

{p∗n} is uniformly bounded, then the sequence {p∗n} is equicontinuous. Considering that {p∗n} is uniformly bounded
and equicontinuous, according to Arzelà–Ascoli theorem proof is completed. □

Proving the convergence of Volterra-Fredholm integral equation is the same as Theorem 5.4. Therefore Main
Conclusion in the previous section for nonlinear integral equations is satisfied.

6 Numerical results

In this section, five numerical examples will be solved using the proposed method. These examples confirm the
accuracy and high performance of the method, and all of them are carried out using programs written in MAPLE.
Also, when the results are compared with those of [6], [10], and [16] it is indicated that the presented method is more
accurate.
Absolute error between the exact solution and its approximate solution is defined by

en(x) = |y∗n(x)− y∗(x)|,
and

∥en∥∞ = max
x∈[0,1]

|en(x)|,
(6.1)

where y∗n is an approximate solution of the proposed method and y∗ is the exact solution. On the other hand, it is
assumed that p∗∗n is the best polynomial approximation of degree at most n, for y∗ by using Maple software. y∗n in
Examples 6.1, 6.2 and 6.3 is a polynomial (same p∗n), the comparison between the two graphs y∗n and p∗∗n , reveals that
they are identical and it does not display minor differences between them. To show this and the rate of convergence
of this method, the graphs y∗ − y∗n and y∗ − p∗∗n are plotted in Figures 1, 2 and 3. From these figures one can see
that y∗n and p∗∗n are almost the same. Especially, it is clear that by increasing n, the difference between y∗n and p∗∗n
decreases. This confirms our theoretical results.

Example 6.1. Consider the following Volterra integral equation
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y(x) = sin(x)− esin(x) + 1 +

∫ x

0

cos(t)ey(t)dt, (6.2)

with the exact solution y(x) = sin(x). The comparison of y∗ − y∗n and y∗ − p∗∗n for n = 6 and n = 8, is presented in
Fig.1. Overlapping of these two ghraphs in Fig.1 reveals that y∗n is a best polynomial approximation for y∗.

Figure 1: The comparison between differences the exact solution with its best polynomial approximation and obtained polynomial based
on the proposed method for Example 6.1.

Example 6.2. Consider the following Volterra integral equation [6]:

y(x) =
3

2
− 1

2
e−2x −

∫ x

0

[y2(t) + y(t)]dt, (6.3)

with the exact solution y(x) = e−x. The errors obtained by the proposed method and those of the method in [6] are
shown in Table 1. This table demonstrates that presented method has smaller errors than those of the method [6]. So,
the graphs of y∗−y∗n and y∗−p∗∗n for n = 12 and n = 15 in Fig.2 show that y∗n is a best polynomial approximation for y∗.
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Table 1: Absolute errors based on the proposed method and the method in [6] for Example 6.2.

n ∥en∥∞ ∥en∥∞
Proposed method Method in [6]

4 1E − 05 2.39E − 05
8 1.5E − 11 1.99E − 10

Figure 2: The comparison between differences the exact solution with its best polynomial ap- proximation and obtained polynomial based
on the proposed method for Example 6.2.

Example 6.3. Consider the following Volterra-Fredholm integral equation[16]

y(x) = 2 cos(x)− 2 + 3

∫ x

0

sin(x− t)y2(t)dt+
6

7− 6 cos(1)

∫ 1

0

(1− t) cos2(x)(t+ y(t))dt, (6.4)

with the exact solution y(x) = cos(x). Table 3 indicates that the results of our method have more rapid rate of con-
vergence than the method [16]. The comparison of y∗ − p∗∗n , y∗ − y∗n for n = 10, 12 are exhibited in Fig. 2. Maximum
absolute errors 10−14 and 10−17 show that y∗n is a good approximation for y∗. Also, by increasing n, y∗n is very close
to best approximation.
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Table 2: Comparison of absolute errors for Example 6.3 in case n = 8.

xi en(xi) in [16] en(xi) in presented method

0 0 7.12E-12
0.2 2.81E-14 0
0.4 2.88E-11 1.38E-11
0.6 1.66E-09 6.51E-12
0.8 2.94E-08 5.23E-12
1 2.73E-08 3.28E-12

Figure 3: Comparison between differences the exact solution with its best polynomial ap- proximation and obtained polynomial based on
the proposed method for Example 6.3.

Example 6.4. Consider the following Volterra-Fredholm integral equation[10]:

y(x) = f(x) +

∫ x

0

sin(y(t))dt+

∫ 1

0

2x2t ln(y(t))dt, (6.5)

with the exact solution y(x) = 1 + x. In this example, accoding to (5.1) nonpolynomial approximate solution is as
follows:

y∗n(x) = f(x) +

∫ x

0

p∗n(t)dt+

∫ 1

0

2x2tq∗n(t)dt, (6.6)
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Table 3: The relative error for 6.1, 6.2, 6.3 and 6.4 in case n=11 , n=13.

n enr enr enr enr

Example (6.1) Example (6.2) Example (6.3) Example (6.4)

11 2.7E-13 1.5 E-16 4.5E-16 1.75E-12
13 6.4E-17 3.4E-20 8.3E-20 4.2E-15

where polynomials p∗n and q∗n are obtained from the system 5.5. The comparison of absolute errors in Fig. 4 with the
figure of example 7 of [10] confirms the high efficiency of this method.

Figure 4: Graph of en(x) for example (6.4) with n = 13.

Finally, to ensure the convergence and efficiency of the proposed method, a relative error of the approximate
solution is obtained for each of the presented examples for n=11 , 13 in the table 3.

7 Conclusions

This study discussed how the Remez algorithm can be applied for obtaining the approximate solution of integral
equations. The most important contribution in this work is that the implementation of this method for integral
equations yielded the best polynomial approximations for the solution of the integral equation. So, a great advantage
of the recommended method from a computational point of view is simplicity and quick reduction of an integral
equation to a system of algebraic equations. The proof of essential theorems and the presentation of numerical
examples confirm the application of this method for obtaining the approximate solution of integral equations with a
high convergence rate. So, it could be possible to extend this method to integrodifferential integral equations, multi-
dimensional integral equations, ordinary and partial differential equations, which will be investigated in the future
studies.
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