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Abstract

In this article, a new fixed point theory and generalized condensing operator have been established to prove the
existence of solutions for an infinite system of differential equations of nth order. Also, some interesting examples are
employed to support the findings. To validate our discussion the solutions of the examples are approximated by an
iterative algorithm with high accuracy. The algorithm is convergent and constructed based on the modified homotopy
perturbation method.
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In Banach spaces, the study of infinite system of ODE is one of the fundamental and widely studied. The theory of
infinite system of ODE describes many factual problems that are existing in mechanics, branching processes etc. The
MNC shows an imperative role in the theory of infinite system of ODE (see[3, 17]). Some application of MNC in space
ℓp (1 < p < ∞) to solve infinite system of ODE can be seen in [15]. Banaś and Lecko [5] and Mursaleen et al. [16]
initiated the study of the existence of solutions of infinite system of ODE in the spaces c0, c, ℓ1 and ℓp, respectively.
Mursaleen and Rizvi [17] considered the same differential equations and solved it in spaces c0 and ℓ1 MKC. In our
discussion, we aim to study an infinite system of ODE problem with order n in spaces c, lp (1 < p <∞) and n (ψ) by
using MKC operator and Green’s function (see [7]).
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1 Preliminaries

Let us consider a real Banach space C with the norm ∥ . ∥ . Assume that B(x0, r) = {x ∈ C :∥ x− x0 ∥≤ r0} . Let
Q ⊆ C is a nonempty, then Q̄ and Conv Q are denoted closure and convex closure of Q, respectively. Further, MC is a
family of all nonempty and bounded subsets of C and by the notation NC we denotes its subfamily consisting of all
relatively compact sets.

Definition 1.1. Mapping ∆ : MC → [0,∞) is called a MNC [5] if:

(i) ker ∆ = {Q ∈ MC : ∆ (Q) = 0} be nonempty, ker ∆ ⊂ NC ,
(ii) Q ⊂ R =⇒ ∆ (Q) ≤ ∆ (R) ,
(iii) ∆ (Conv Q) = ∆ (Q) ,
(iv) ∆ (λQ+ (1− λ) R) ≤ λ∆ (Q) + (1− λ)∆ (R) for λ ∈ [0, 1] ,
(v) ∆ (Q̄) = ∆ (Q) ,
(vi) if Qn ∈ MC , Qn = Q̄n, Qn+1 ⊂ Qn for n ∈ N and lim

n→∞
∆ (Qn) = 0 then

⋂∞
n=1 Qn ̸= ∅.

Definition 1.2. [1] Let M be a nonempty subset of a Banach space C and let ∆ be an arbitrary MNC on C . Thus,
T : M → M is a Meir-Keeler condensing operator if,

∀ϵ > 0,∃δ > 0; ϵ ≤ ∆ (Q) < ϵ+ δ =⇒ ∆ (T (Q)) < ϵ

for any bounded subset Q of M.

Theorem 1.3. [1] Let M be a nonempty, bounded, closed and convex subset of a Banach space C and let ∆ be an
arbitrary MNC on C . If T : M → M is a continuous and MKC operator, then T has at least one fixed point and the set
of all fixed points of T in M is compact.

Now, we must define a generalized version of operator MKC and also establish a new fixed point theorem by
employing this new condensing operator.

Definition 1.4. Let M ⊆ C be a nonempty of a Banach space C and ∆ be an arbitrary MNC on C . Also, let
ϕ : R+ → R+ be a nondecreasing mapping. The operator T : M → M is called a generalized operator MKC if,

∀ϵ > 0,∃δ > 0; ϵ ≤ β(∆(X)) [∆(X) + ϕ(∆(X))] < ϵ+ δ =⇒ α(∆(TX)) [∆(TX) + ϕ(∆(TX))] < ϵ, (1.1)

for any bounded X ⊆ M where α : R+ → [1,∞), β : R+ → (0, 1] are mappings.

2 Main Results

Theorem 2.1. Let M be a nonempty, bounded, compact, closed subset of a Banach space C and let ∆ be an arbitrary
MNC C . If T : M → M is continuous and generalized operator MKC then T admits fixed point in M.

Proof . Let {Mn}∞n=1 be a sequence satisfying M1 = M, Mn+1 = Conv (TMn) , n ≥ 1. If ∆(MN ) = 0 for some integer
N ≥ 1, then MN is compact. Schauder’s theorem implies T has a fixed point.

If ∆(Mn) > 0 for any n ≥ 1. Take ϵn = β(∆(Mn)) [∆(Mn) + ϕ(∆(Mn))] > 0 and consider δn = δ(ϵn) such that (2.1)
holds.

Therefore by (1.1) we obtain

α(∆(TMn)) [∆(TMn) + ϕ(∆(TMn))] < β(∆(Mn)) [∆(Mn) + ϕ(∆(Mn))]

for each n ∈ N. By using (1.1) we get,

ϵn+1 = β(∆(Mn+1)) [∆(Mn+1) + ϕ(∆(Mn+1))]

≤ ∆(Mn+1) + ϕ(∆(Mn+1))

= ∆(Conv(TMn)) + ϕ(∆(Conv(TMn)))

≤ α(∆(TMn)) [∆(TMn) + ϕ(∆(TMn))]

< β(∆(Mn)) [∆(Mn) + ϕ(∆(Mn))]

= ϵn,
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which implies that {ϵn} is positive strictly decreasing sequence. Thus there exists r ≥ 0 with lim
n→∞

ϵn = r. If r > 0

then δ(r) > 0 exists satisfying (1.1) so N0 > 0 exists such that

r ≤ ϵn = β(∆(Mn)) [∆(Mn) + ϕ(∆(Mn))] < r + δ(r)

for n ≥ N0. By (1.1) we get,
α(∆(TMn)) [∆(TMn) + ϕ(∆(TMn))] < r

for each n ≥ N0. Hence ϵn+1 < r for any n ≥ N0 which is contradiction so r = 0. From this we get

lim
n→∞

∆(Mn) = 0.

Since Mn ⊇ Mn+1, from Definition 1.1, concludes that M∞ =
⋂∞
n=1 Mn ⊆ M is nonempty, closed and convex. Further-

more, M∞ and is invariant under T1. By Shauder theorem, T has at least a fixed point in M. □

Corollary 2.2. For ϕ ≡ 0, α ≡ 1 and β ≡ 1 the generalized operator MKC transforms into Meir-Keeler theorem so
this theorem is a extended of Theorem 1.3.

In
(
ℓp, ∥ . ∥ℓp

)
for 1 < p <∞, Hausdorff MNC χ is in the form(see [4]):

χ (V) = lim
n→∞

sup
u∈V

( ∞∑
k=n

| uk |p
)1/p


where u(ζ) = (ui(ζ))

∞
i=1 ∈ ℓp, ζ ∈ [0, T] and V ∈ Mℓp . Therefore, the most suitable MNC ∆ in (c, ∥ . ∥c) , is in the

form:

∆ (V) = lim
p→∞

[
sup
u∈V

{sup {| un − um |: n,m ≥ p}}
]
= lim
n→∞

[
sup
u∈V

{
sup
k≥n

{
| uk − lim

m→∞
um |

}}]
,

where u(ζ) = (ui(ζ))
∞
i=1 ∈ c, ζ ∈ [0, ζ] and V ∈ Mc. Note that, the measure ∆ is regular. We use that standard symbol

ω to denotes the set of all complex sequences x = (xk). For any x ∈ ω, one writes ∆x = ∆xk = xk − xk−1. Assume
that space C is,

C = {ς : ς ′s are finite sets of distinct positive integers} ,

Furthermore,

CS′ =

{
ς ∈ C :

∞∑
n=1

cn(ς) ≤ S
′

}
; cn(ς) = 1, n ∈ ς and cn(ς) = 0, in otherwise.

Also,define
Φ = {ψ = (ψk) ∈ ω : 0 < ψ1 ≤ ψn ≤ ψn+1, (n+ 1)ψn ≥ nψn+1} .

For ψ ∈ Φ, the author named Sargent [20] introduced the sequence space n(ψ) which was also considered in
([11, 12]), defined by

n(ψ) =

{
x = (xk) ∈ ω :∥ x ∥n(ψ)= sup

u∈S(x)

( ∞∑
k=1

| uk | ∆ψk

)
<∞

}
,

where S(x) is the space of all sequences that are rearrangements of x. In the Banach space
(
n(ψ), ∥ . ∥n(ψ)

)
, Hausdorff

MNC χ is given as (see [12]):

χ (V) = lim
k→∞

sup
u∈V

(
sup

v∈S(u)

( ∞∑
n=k

| vn | ∆ψn

))
,

where u(ζ) = (ui(ζ))
∞
i=1 ∈ n(ψ) for each ζ ∈ [0, T] and V ∈ Mn(ψ). In our paper, we study the following infinite system,

y
(n)
i (ζ) = fi (ζ, y(ζ)) , n ≥ 1 (2.1)

where y(ζ) = (yi(ζ))
∞
i=1, yi(0) = y

′

i(0) = y
′′

i (0) = ... = y
(n−1)
i (0) = 0, i ∈ N and ζ ∈ [0, T] = I.
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A function y ∈ Cn(I,R) is a solution of (2.1) if and only if y ∈ C(I,R) is a solution of the following system:

yi(ζ) =

∫ ζ

0

G(ζ, η)fi(η, y(η))dη (i = 1, 2, 3, ...), (2.2)

where fi(ζ, y) ∈ C(I,R) and ζ ∈ I, and Green’s function in (2.2) is the following form (see [7])

G(ζ, η) = 1

(n− 1)!
(ζ − η)

n−1
, 0 ≤ η ≤ ζ ≤ T. (2.3)

Thus

y
′

i(ζ) =

∫ ζ

0

∂

∂ζ
G(ζ, η)fi(η, y(η))dη, ..., y(n−1)

i (ζ) =

∫ ζ

0

∂n−1

∂ζn−1
G(ζ, η)fi(η, y(η))dη.

In the next three sections, we will establish existence results for an infinite system (2.1) in ℓp (1 < p <∞), n(ψ),
c.

3 Solvability of (2.1) in ℓp (1 < p < ∞)

Mursaleen at el. [14] established existence of solution of following systems,{
d2yi
dζ2 + p(ζ)dyidζ + q(ζ)yi = fi(ζ, y1(ζ), y2(ζ), . . .), 0 < ζ < T,

i = 1, 2, 3, . . . .
(3.1)

with p, q ∈ C ([0, T],R) and yi(0) = yi(T) = 0 in ℓp by Meir-Keeler fixed point theorem. To formulate our result,
let us assume the following assumptions in a similar manner as done in [14]:

(i) The mapping fi : I × ℓp → R, i = 1, 2, .... and consider the following mapping

(ζ, y) → (fy) (ζ) = (f1(ζ, y), f2(ζ, y), f3(ζ, y), ...)

maps I × ℓp into ℓp and is such that ((fy) (ζ))ζ∈I is equicontinuous in ℓp.

(ii) For any i ∈ N, there exist functions gi, hi : I → R+ satisfying:

| fi (ζ, y1, y2, y3, ...) |p≤ gi(ζ) + hi(ζ) | yi(ζ) |p

for ζ ∈ I and y = (yi) in ℓp. Suppose also that the function series
∑
k≥1

gk(ζ) converges uniformly on I and the

sequence (hi(ζ)) is equibounded on I.

Consider

G = sup
ζ∈I

∑
k≥1

gk(ζ)


and

H = sup
i∈N,ζ∈I

{hi(ζ)}

with
TnH1/p

(n− 1)!
< 1.

Theorem 3.1. If conditions (i)-(ii) hold, the system (2.1) admits a solution y(ζ) = (yi(ζ)) in ℓp for all ζ ∈ I.
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Proof . With (2.2) and (ii), and for arbitrary fixed ζ ∈ I, one writes

∥ y(ζ) ∥pℓp =

∞∑
i=1

∣∣∣∣∣
∫ ζ

0

G(ζ, η)fi(η, y(η))dη

∣∣∣∣∣
p

≤
∞∑
i=1

{∫ ζ

0

|G(ζ, η)fi(η, y(η))|p dη

}1/p(∫ ζ

0

dη

)1/q
p , 1

p
+

1

q
= 1

≤ Tp/q
∞∑
i=1

∫ ζ

0

|G(ζ, η)|p {gi(η) + hi(η) |yi(η)|p} dη

Since y(ζ) ∈ ℓp therefore we have

∞∑
i=1

|yi(ζ)|p ≤M <∞ (say) and |G(ζ, η)| ≤ Tn−1

(n− 1)!
.

Hence

∥ y(ζ) ∥pℓp ≤ Tp/q.Tp(n−1)

{(n− 1)!}p
∫ ζ

0

[ ∞∑
i=1

gi(η) +

∞∑
i=1

hi(η) |yi(η)|p
]
dη

≤ Tp/q.Tp(n−1)

{(n− 1)!}p
∫ T

0

(
G+H

∞∑
i=1

|yi(η)|p
)
dη

≤ Tp/q.Tp(n−1)

{(n− 1)!}p
(G+HM)T

=
(G+HM) Tnp

{(n− 1)!}p
= rp(say).

Thus, ∥ y(ζ) ∥ℓp≤ r. Let y0(ζ) =
(
y0i (ζ)

)
where y0i (ζ) = 0, ∀ ζ ∈ I. Moreover, assume that V = V

(
y0, r

)
={

y ∈ ℓp :∥ y − y0 ∥≤ r
}
, then V is a non-empty, closed, bounded and convex subset of ℓp. Let the operator F = (Fi)

on C (I, V) defined by

(Fy) (ζ) = {(Fiy) (ζ)} =

{∫ ζ

0

G(ζ, η)fi(η, y(η))dη

}
(∀ζ ∈ I),

where y(ζ) = (yi(ζ)) ∈ V and yi(ζ) ∈ C(I,R). As (Fy) (ζ) = ((Fiy) (ζ)) ∈ ℓp for every ζ ∈ I. Since (fi (ζ, y(ζ))) ∈ ℓp
for each ζ ∈ I, we get

∞∑
i=1

|(Fiy) (ζ)|p =
∞∑
i=1

∣∣∣∣∣
∫ ζ

0

G(ζ, η)fi(η, y(η))dη

∣∣∣∣∣
p

≤ rp <∞.

Clearly, (Fiy) (ζ) satisfies boundary conditions, that is,

(Fiy) (0) = (Fiy)
′
(0) = ... = (Fiy)(n−1)

(0) = 0.

Since ∥ (Fy) (ζ)−y0(ζ) ∥ℓp≤ r, F is self function on V. Consequently, F is continuous on C (I, V) by the hypothesis
(i).

For ϵ > 0, we obtain δ > 0 such that the following relation holds:

ϵ ≤ χ (V) < ϵ+ δ ⇒ χ (FV) < ϵ.
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We can write for arbitrary fixed ζ ∈ I,

χ (FV) = lim
m→∞

 sup
y(ζ)∈V

∑
k≥m

∣∣∣∣∣
∫ ζ

0

G(ζ, η)fk(η, y(η))dη

∣∣∣∣∣
p


1
p


≤ T1/q+n−1

(n− 1)!
lim
m→∞

 sup
y(ζ)∈V

∑
k≥m

∫ ζ

0

(
gk(η) + hk(η) |yk(η)|

p)
dη


1
p


≤ T1/q+n−1

(n− 1)!
lim
m→∞

 sup
y(ζ)∈V


∫ T

0

∑
k≥m

gk(η) +H
∑
k≥m

|yk(η)|p
 dη


1
p


≤ T1/q+n−1H1/p

(n− 1)!
lim
m→∞

 sup
y(ζ)∈V


∫ T

0

∑
k≥m

|yk(η)|p
 dη


1
p

 .

Since for arbitrary fixed ζ ∈ [0, T] and y(ζ) = (yi(ζ))
∞
i=1 ∈ V ⊂ ℓp, we have as n→ ∞ that

χ (V) ≥

( ∞∑
k=n

| yk(ζ) |p
)1/p

.

Thus, it hods for all ζ ∈ [0, T]. Hence as m→ ∞ and η ∈ [0, T], y(η) = (yi(η))
∞
i=1 ∈ V, we have

χ (V)
p ≥

∞∑
k≥m

| yk(η) |p,

i.e. ∫ T

0

∑
k≥m

|yk(η)|p
 dη ≤

∫ T

0

χ (V)
p
dη = Tχ (V)

p
.

which yields

χ (FV) ≤ T
1
q+n−1H

1
p T

1
p

(n− 1)!
χ (V) =

TnH1/p

(n− 1)!
χ (V) .

Let ϵ > 0 and δ = ϵ(n−1)!−ϵH1/pTn

H1/pTn
> 0; ϵ ≤ χ (V) < ϵ+ δ. Then,

χ (FV) ≤ TnH1/p

(n− 1)!
.(ϵ+ δ) =

TnH1/p

(n− 1)!
.
ϵ(n− 1)!

TnH1/p
= ϵ.

Therefore, F satisfies conditions of corollary 2.2 on the set V ⊂ ℓp for arbitrary fixed ζ ∈ [0, T]. Thus F has a fixed
point in V. Hence, the proof is completed. □

4 Solvability of (2.1) in the space n (ψ)

Alotaibi at el. [2] established solvability of following systems,

d2yi
dζ2

= −fi(ζ, y1(ζ), y2(ζ), . . .), ζ ∈ [0, T], i ∈ N, (4.1)

and yi(0) = yi(T) = 0 are the boundary conditions in n(ϕ) by Meir-Keeler fixed point theorem. To formulate our
result, let us assume the following assumptions in a similar manner as done in [2]:
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(i) The maps fi : I × R∞ → R (i ∈ N) and f defined on I × n (ψ) as

(ζ, y) → (fy) (ζ) = (f1(ζ, y), f2(ζ, y), f3(ζ, y), ...)

transform I × n (ψ) into n (ψ) and ((fy) (ζ))ζ∈I is equicontinuous at each point of n (ψ) .

(ii) For any i ∈ N, the following inequality holds true:

| fi (ζ, y1, y2, y3, ...) |≤ ĝi(ζ) + ĥi(ζ) | yi(ζ) |

for ζ ∈ I and y = (yi) in n (ψ) , and functions ĝi, ĥi : I → R+ which ĝi (i = 1, 2, ...) is continuous and the

mapping series
∑
k≥1

ĝk(ζ)∆ψk converges uniformly, while the sequence
(
ĥi(ζ)

)
is equibounded on I.

Let us assume

Ĝ = sup
ζ∈I

∑
k≥1

ĝk(ζ)∆ψk


and

Ĥ = sup
i∈N,ζ∈I

{
ĥi(ζ)

}
such that

ĤTn

(n− 1)!
< 1.

Theorem 4.1. Under the conditions (i)-(ii), the system (2.1) admits a solution y(ζ) = (yi(ζ)) ∈ n (ψ) i.e., y(ζ) =
(yi(ζ)) in n (ψ) for each ζ ∈ I.

Proof . Let S (y (ζ)) be the space of all sequences that are rearrangements of y (ζ) . If v(ζ) ∈ S (y (ζ)) then there

exists finite real M > 0 for all y(ζ) = (yi(ζ)) (ζ ∈ I) in n (ψ) such that
∞∑
i=1

| vi(ζ) | ∆ψi ≤ M < ∞. With the help of

(2.2) and (ii), and for arbitrary fixed ζ ∈ I, one obtains

∥ y(ζ) ∥n(ψ) = sup
v∈S(y(ζ))

[ ∞∑
i=1

∣∣∣∣∣
∫ ζ

0

G(ζ, η)fi(η, v(η))dη

∣∣∣∣∣∆ψi
]

≤ sup
v∈S(y(ζ))

[ ∞∑
i=1

{∫ ζ

0

|G(ζ, η)fi(η, v(η))| dη

}
∆ψi

]

≤ sup
v∈S(y(ζ))

[ ∞∑
i=1

{∫ ζ

0

|G(ζ, η)|
{
ĝi(η) + ĥi(η) | vi(η) |

}
dη

}
∆ψi

]

≤ Tn−1

(n− 1)!
sup

v∈S(y(ζ))

[∫ T

0

{ ∞∑
i=1

gi(η)∆ψi

}
dη + Ĥ

∫ T

0

{ ∞∑
i=1

| vi(η) | ∆ψi

}
dη

]

≤ ĜTn

(n− 1)!
+
ĤMTn

(n− 1)!
= r1 (say),

i.e. to say ∥ y(ζ) ∥n(ψ)≤ r1. Let y
0(ζ) =

(
y0i (ζ)

)
where y0i (ζ) = 0, ∀ ζ ∈ I. Therefore, by V1 = V1

(
y0, r1

)
={

y ∈ n(ψ) :∥ y − y0 ∥≤ r1
}
it is clear that V1 is an non-empty, closed, bounded and convex subset of n (ψ) . Assume

F = (Fi) on C (I, V1) given by

(Fy) (ζ) = {(Fiy) (ζ)} =

{∫ ζ

0

Ḡ(ζ, η)fi(η, y(η))dη

}
(∀ζ ∈ I),

where y(ζ) = (yi(ζ)) ∈ V1 and yi(ζ) ∈ C(I,R). Also (Fy) (ζ) = ((Fiy) (ζ)) ∈ n (ψ) for each ζ ∈ I. Since (fi (ζ, y(ζ))) ∈
n (ψ) for each ζ ∈ I, therefore

sup
v∈S(y(ζ))

[ ∞∑
i=1

|(Fiv) (ζ)|∆ψi

]
≤ r1 <∞.
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Also, (Fiy) (ζ) satisfies boundary conditions given by

(Fiy) (0) = (Fiy)
′
(0) = ... = (Fiy)(n−1)

(0) = 0.

Since ∥ (Fy) (ζ) − y0(ζ) ∥n(ψ)≤ r, therefore F is self function on V1. It is clear by the assumption (i) that the
operator F is continuous on C (I, V1) . For ϵ > 0, we find δ > 0 such that the following implication holds:

ϵ ≤ χ (V1) < ϵ+ δ ⇒ χ (FV1) < ϵ.

One writes

χ (FV1)

= lim
k→∞

 sup
y(ζ)∈V1

 sup
v∈S(y(ζ))

∑
i≥k

∣∣∣∣∣
∫ ζ

0

G(ζ, η)fi(η, v(η))dη

∣∣∣∣∣∆ψi



≤ lim
k→∞

 sup
y(ζ)∈V1

 sup
v∈S(y(ζ))

∑
i≥k

∫ ζ

0

|G(ζ, η)fi(η, v(η))| dη∆ψi




≤ lim
k→∞

 sup
y(η)∈V1

 sup
v∈S(y(η))

∑
i≥k

∫ η

0

G(ζ, η)gi(η)∆ψidη +
∑
i≥k

∫ ζ

0

G(ζ, η)hi(η) | vi(η) | ∆ψidη




≤ Tn−1

(n− 1)!
lim
k→∞

 sup
y(ζ)∈V1

 sup
v∈S(y(ζ))

∫ T

0

∑
i≥k

gi(η)∆ψi

 dη + Ĥ

∫ T

0

∑
i≥k

| vi(η) | ∆ψi

 dη


 .

Analogous to Theorem 3.1 it can be shown that as k → ∞, we have

χ(V1) ≥
∑
i≥k

|vi(ζ)|∆ψi,

i.e. ∫ T

0

∑
i≥k

| vi(ζ) | ∆ψi

 dζ ≤ Tχ(V1).

Again, since
∑
i≥1

ĝi(ζ)∆ψi converges uniformly,therefore as k → ∞, we get

∑
i≥k

ĝi(ζ)∆ψi → 0.

Hence

χ (FV1) ≤
ĤTn

(n− 1)!
χ (V1) .

Let ϵ > 0 and δ = ϵ
ĤTn

(
(n− 1)!− ĤTn

)
> 0 such that ϵ ≤ χ(V1) < ϵ+ δ. Then,

χ (FV1) ≤
ĤTn

(n− 1)!
(ϵ+ δ) =

ĤTn

(n− 1)!
.
ϵ(n− 1)!

ĤTn
= ϵ.

Therefore, F satisfies conditions of corollary 2.2 on V1 ⊂ n (ψ) , ζ ∈ I. Thus F has a fixed point in V1 for all ζ ∈ I
and proof is complete. □
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5 Solvability of (2.1) in the space c

Mursaleen at el. [13] established solvability of the following system,

d2yi(ζ)

ζ2
= ai(ζ)yi(ζ) + gi(ζ, y1(ζ), y2(ζ), . . .), 0 < ζ < T, i = 1, 2, 3, . . . (5.1)

with the boundary conditions yi(0) = yi(T) = 0 in c by Darbo’s theorem. To formulate our result, let us assume the
following assumptions in a similar manner as done in [13]:

(i) The maps fi : I × R∞ → R, i ∈ N and f defined on I × c by

(ζ, y) → (fy) (ζ) = (f1(ζ, y), f2(ζ, y), f3(ζ, y), ...)

maps I × c into c and ((fy) (ζ))ζ∈I is equicontinuous for all y ∈ c.

(ii) For any i ∈ N, the following formula holds true:

fi (ζ, y(ζ)) = pi(ζ, y(ζ)) + qi(ζ)yi(ζ) (ζ ∈ I and y = (yi) ∈ c),

where both the real maps pi(ζ, y(ζ)) and qi(ζ) are continuous on I × c and I, respectively. Moreover, there exist
a sequence {Pi} converges to zero with | pi(ζ, y(ζ)) |≤ Pi for any ζ ∈ I, y(ζ) ∈ c and the function sequence
(qi(ζ)) is uniformly convergent on I.

Consider,
P = sup

i∈N
{Pi}

and
Q = sup

ζ∈I,i∈N
{qi(ζ)} .

such that
QTn

(n− 1)!
< 1.

Theorem 5.1. If conditions(i)-(ii) hold, system (2.1) admits a solution y(ζ) = (yi(ζ)) in c for every ζ ∈ I.

Proof . Let M > 0 with supi∈N | yi(ζ) |≤ M < ∞ for all y(ζ) = (yi(ζ)) ∈ c and ζ ∈ I. With the help of (2.2) and
(ii), and for arbitrary fixed ζ ∈ I, one obtains

∥ y(ζ) ∥c = sup
k≥1

∣∣∣∣∣
∫ ζ

0

G(ζ, η)fk(ζ, y(η))dη

∣∣∣∣∣
≤ sup

k≥1

∫ ζ

0

|G(ζ, η)| |pk(η, y(η)) + qk(η)yk(η)| dη

≤ sup
k≥1

∫ ζ

0

|G(ζ, η)| {|pk(η, y(η))|+ |qk(η)| | yk(η) |} dη

≤ Tn−1

(n− 1)!
sup
k≥1

{∫ T

0

(Pk +QM)ds

}
≤ (P +QM)Tn

(n− 1)!
= r2 (say)

Let y0(ζ) =
(
y0i (ζ)

)
where y0i (ζ) = 0, ∀ ζ ∈ I. According to V2 = V2

(
y0, r2

)
=
{
y ∈ c :∥ y − y0 ∥≤ r2

}
, then V2 is

an non-empty, bounded, closed and convex subset of c. Consider F = (Fi) on C (I, V2) defined by:

(Fy) (ζ) = {(Fiy) (ζ)} =

{∫ ζ

0

G(ζ, η)fi(η, y(η))dη

}
(ζ ∈ I),
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where y(ζ) = (yi(ζ)) ∈ V2 and yi(ζ) ∈ C(I,R). Since (fi (ζ, y(ζ))) ∈ c for each ζ ∈ I, thus

lim
i→∞

(Fiy) (ζ) = lim
i→∞

∫ ζ

0

G(ζ, η)fi(η, y(η))dη =

∫ ζ

0

G(ζ, η) lim
i→∞

fi(η, y(η))dη

is unique and finite. It follows that (Fy) (ζ) ∈ c. Further on, (Fiy) (ζ) satisfies the following boundary conditions:

(Fiy) (0) = (Fiy)
′
(0) = ... = (Fiy)(n−1)

(0) = 0.

Since ∥ (Fy) (ζ)−y0(ζ) ∥c≤ r2, the operator F is self function on V2. Clearly, by (i) of this section, F is continuous
on C (I, V2) . For ϵ > 0, we therefore write

∆ (FV2) = lim
p→∞

[
sup

y(ζ)∈V2

{
sup
k≥p

∣∣∣∣∣
∫ ζ

0

G(ζ, η)fk(η, y(η))dη − lim
m→∞

∫ η

0

G(ζ, η)fm(η, y(η))dη

∣∣∣∣∣
}]

≤ Tn−1

(n− 1)!
lim
p→∞

[
sup

y(ζ)∈V2

{
sup
k≥p

∣∣∣∣∣
∫ ζ

0

fk(η, y(η))dη − lim
m→∞

∫ ζ

0

fm(η, y(η))dη

∣∣∣∣∣
}]

≤ Tn−1

(n− 1)!
lim
p→∞

[
sup

y(ζ)∈V2

{
sup
k≥p

∫ ζ

0

∣∣∣pk(η, y(η)) + qk(η)yk(η)− lim
m→∞

(pm(η, y(η)) + qm(η)ym(η))
∣∣∣ dη}]

≤ QTn−1

(n− 1)!
lim
p→∞

[
sup

y(ζ)∈V2

{
sup
k≥p

∫ T

0

∣∣∣yk(η)− lim
m→∞

ym(η)
∣∣∣ dη}] .

Analogous to Theorem 3.1 it can be shown that as p→ ∞, we have

∆(V2) ≥
∣∣∣yk(η)− lim

m→∞
ym(η)

∣∣∣ ,
i.e. ∫ T

0

∣∣∣yk(η)− lim
m→∞

ym(η)
∣∣∣ dη ≤ T∆(V2).

Hence

∆ (FV2) ≤
TnQ∆(V2)

(n− 1)!
.

Let ϵ > 0 and δ = ϵ
TnQ ((n− 1)!− TnQ) > 0, such that ϵ ≤ ∆ (V2) < ϵ+ δ. Then

∆ (FV2) ≤
TnQ(ϵ+ δ)

(n− 1)!
=

TnQ

(n− 1)!
.
ϵ(n− 1)!

TnQ
= ϵ.

It follows that F satisfies all conditions of corollary 2.2 on V2 ⊂ c for arbitrary fixed ζ ∈ I. Thus F has a fixed
point in V2 for all ζ ∈ I. This is a required solution of (2.1) . □

6 Practical Examples

To justify of our results proved in previous sections, we present some examples.

Example 6.1. Consider the fifth-order differential equations system:

d5yi(ζ)

dζ5
= fi (ζ, y(ζ)) (6.1)

with yi(0) = y
′

i(0) = 0 and y
′′

i (0) = y
′′′

i (0) = yivi (0) = 0, where

fi (ζ, y(ζ)) =
ζ

(1 + i)4
+
eζ cos(ζ)yi(ζ)

i2
(∀i ∈ N, ζ ∈ I = [0, 1]).
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Then,
∞∑
k=1

|fk (ζ, y(ζ))|p ≤ 2p
∞∑
k=1

1
i4p + 2pep

∞∑
k=1

|yk(ζ)|p < ∞ if y(ζ) = (yi(ζ)) ∈ ℓp, where 1 < p < ∞ i.e.,

(fi (ζ, y(ζ))) ∈ ℓp.

Let ϵ > 0 be given and z(ζ) ∈ ℓp. Considering z(ζ) ∈ ℓp with the strict inequality ∥ y(ζ)− z(ζ) ∥ℓp< δ =
(
ϵ
ep

)1/p
,

then

|fi(ζ, y(ζ))− fi(ζ, z(ζ))|p =
∣∣∣∣eζ cos(ζ)yi(ζ)i2

− eζ cos(ζ)zi(ζ)

i2

∣∣∣∣p
≤ ep ∥ y(ζ)− z(ζ) ∥pℓp .

Consequently,
|fi(ζ, y(ζ))− fi(ζ, z(ζ))| < ϵ

which gives the equicontinuity of ((fy)(ζ))ζ∈I on Banach space ℓp. Moreover, one writes

|fi(ζ, y(ζ))|p ≤
2p

i4p
+

2pepζ

i2p
|yi(ζ)|p = gi(ζ) + hi(ζ) |yi(ζ)|p (∀i ∈ N, ζ ∈ I),

where gi(ζ) = 2p

i4p and hi(ζ) = 2pepζ

i2p functions are real on I while the function series
∑
k≥1

gk(ζ) =
∑
k≥1

2p

i4p converges

uniformly on I and the function sequence {hi(ζ)} are converges uniformly and equibounded, respectively, on I. We

also obtain H = 2pep and TnH1/p

(n−1)! = e
12 < 1. By taking Theorem 3.1 into account, system (6.1) has unique solution in

ℓp.

Example 6.2. Consider the fourth-order differential equations system in the form:

d4yi(ζ)

dζ4
= fi (ζ, y(ζ)) (6.2)

with y
(n)
i (0) = 0, n = 0, 1, 2, 3 where

fi (ζ, y(ζ)) =
ζ + 1

i2
+

i∑
m=1

yi(ζ))

m2
, (∀i ∈ N, ζ ∈ I = [0, 1]).

If y(ζ) ∈ c then

lim
i→∞

fi (ζ, y(ζ)) = lim
i→∞

[
ζ + 1

i2
+

i∑
m=1

yi(ζ)

m2

]
is unique and finite. Consequently, (fi (ζ, y(ζ))) ∈ c. Let ϵ > 0 be given, and also let z(ζ) ∈ c be such that ∥y(ζ) −
z(ζ)∥c ≤ δ = 6ϵ

π2 . Therefore, one obtains

| fi (ζ, y(ζ))− fi (ζ, z(ζ)) | =

∣∣∣∣∣
i∑

m=1

yi(ζ)− zi(ζ)

m2

∣∣∣∣∣ ≤
i∑

m=1

1

m2
|yi(ζ)− zi(ζ)| ≤ δ

i∑
m=1

1

m2

< δ
π2

6
< ϵ

for any fixed i. Hence, (fi (ζ, y(ζ)))ζ∈I is equicontinuous on the space of convergent sequence c. Further on, one writes

fi (ζ, y(ζ)) =
ζ + 1

i2
+

i∑
m=1

yi(ζ)

m2

=
ζ + 1

i2
+ yi(ζ)

i∑
m=1

1

m2

= pi(ζ, y(ζ)) + qi(ζ)yi(ζ),

where Pi =
2
i2 , pi(ζ, y(ζ)) = ζ+1

i2 and qi(ζ) =
i∑

m=1

1
m2 defined, Pi is convergent to zero, qi(ζ) and (pi(ζ, y(ζ))) are

continuous and {qi(ζ)} is uniformly convergent on I. Moreover, we have Q = π2

6 , P = 2 and T = 1. Consequently,
QTn

(n−1)! =
π2

36 < 1. Hence, by Theorem 5.1, we conclude that (6.2) has unique solution in c.



244 Das, Rabbani, Hazarika, Mohiuddine

7 Constructing an iterative algorithm to approximate solution of Eq.(6.2)

To obtain an approximation of solution of (6.2), we construct an iterative algorithm via a modified homotopy
perturbation method. Some improved and modified homotopy perturbation methods to solve non-linear integral
and differential equations were applied by Rabbani et al. in [18, 19] respectively. Also coupled modified homotopy
perturbation and Adomian decomposition method to solve infinite system of nonlinear integral equations can be seen
in [6, 9]. Consider a general form of nonlinear system of equations

A(yi(ζ))− fi(ζ) = 0,

y
(k)
i (0) = 0, k = 0, 1, · · · , n− 1,
ζ ∈ Ω = [0, 1], i ∈ N,

(7.1)

where A is a general nonlinear operator and fi’s are known analytic functions. We convert operator A to nonlinear
operators as N1 and N2 which in special case N1 or N2 can be linear operator. Also fi’s can be converted to functions
fi,1 and fi,2, thus a modified homotopy perturbation for the above infinite system of equations is defined to this form,{

H(νi, p) = N1(νi(ζ))− fi,1(ζ) + p
(
N2(νi(ζ))− fi,2(ζ)

)
= 0, p ∈ [0, 1]

i = 1, 2, 3, . . . .
(7.2)

where ν′is are approximations of y′is for i ∈ N and p is an embedding parameter. By variations of p = 0 to p = 1 it
concludes that N1(νi(ζ)) = f1,i(ζ) to A(νi(ζ))− fi(ζ) = 0. In fact in (7.2) for p = 1 we approach the solution of (7.1).
Therefore the solution of (7.1) is approximated by the following series

yi(ζ) ≈ νi(ζ) =
∞∑
k=0

pkνi,k(ζ), i ∈ N

yi(ζ) = lim
p→1

νi(ζ).
(7.3)

The system of fourth-order differential equations(6.2) may be written in this form, yi(ζ)− λy
(4)
i (ζ) + λ ζ+1

i2 = 0, (∀i ∈ N, ζ ∈ I = [0, 1])

y
(k)
i (0) = 0, k = 0, 1, 2, 3, and λ = (

i∑
m=1

1
m2 )

−1.
(7.4)

Let us to define operatorsN1 and N2 and functions f ’s for E.q.(7.4)

N1(yi(ζ)) = yi(ζ), N2(yi(ζ)) = −λy(4)i (ζ)

fi,1(ζ) + fi,2(ζ) = fi(ζ) = −λζ + 1

i2
,

y
(k)
i (0) = 0, k = 0, 1, 2, 3.

(7.5)

Substituting (7.5) and (7.3) in (7.2) yields

( ∞∑
k=0

pkνi,k(ζ)− f1,i(ζ)
)
+ p
(
− λ

∞∑
k=0

pkν
(4)
i,k (ζ) + λ

ζ + 1

i2
+ f1,i(ζ)

)
= 0, (7.6)

Rearranging (7.6) respect to p powers, leads to an iterative algorithm.

Algorithm:

νi,0(ζ) = f1,i(ζ), subject to: ν
(k)
i,0 (0) = 0, k = 0, 1, 2, 3.

νi,1(ζ) = λν
(4)
i,0 (ζ)− λ

ζ + 1

i2
− νi,0(ζ)

νi,j(ζ) = λν
(4)
i,j−1(ζ), i ∈ N, j = 2, 3, · · ·

(7.7)
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Convergence of the above algorithm could be proved similar to [10]. Now, we compute terms of sequence
{y1(ζ), y2(ζ), ..} to introduce the solution corresponding to(6.2) by the above algorithm. To choose a suitable start
point of the algorithm (7.7), we solve the first equation of (7.4) for i = 1 analytically and the solution can be given
easily in the form,

y1(ζ) =
1

2
eζ +

1

2
(cos(ζ) + sin(ζ))− ζ − 1. (7.8)

This solution is an effective start point in the above algorithm, because it satisfies in the initial conditions of the
above problem (7.4) and absolute error is zero. Therefore the solution of i-th (i = 1, 5, 25, 50, 100) equations of (7.4)
can be given as,

y1(ζ) ≈
25∑
k=0

ν1,k(ζ) =− 1 + 0.5eζ − ζ + 0.5(cos(ζ) + sin(ζ)),

y5(ζ) ≈
25∑
k=0

ν5,k(ζ) =− 0.0273297 + 0.0000365871eζ − 0.0273297ζ + 0.0000365871(cos(ζ) + sin(ζ)),

y25(ζ) ≈
25∑
k=0

ν25,k(ζ) =− 0.000996436 + 3.60746× 10−6eζ − 0.000996436ζ

+ 3.60746× 10−6(cos(ζ) + sin(ζ)),

y50(ζ) ≈
25∑
k=0

ν50,k(ζ) =− 0.000246134 + 2.67146× 10−6eζ − 0.000246134ζ + 2.67146× 10−6(cos(ζ) + sin(ζ)),

y100(ζ) ≈
25∑
k=0

ν100,k(ζ) =− 0.0000611627 + 2.29685× 10−6eζ − 0.0000611627ζ

+ 2.29685× 10−6(cos(ζ) + sin(ζ)).

(7.9)

According to (7.9), substituting i-th solution in i-th equation (i = 1, 5, 25, 50, 100) of E.q.(7.4) and comparing both
sides of the equations, the absolute errors in some points are shown in the table.1.

Table 1: Absolute errors
y1(ζ) y5(ζ) y25(ζ) y50(ζ) y100(ζ)

ζ for first E.q for 5-th E.q for the 25-th E.q for the 50-th E.q for the 100-th E.q
0.0 0 2.3×10−5 2.7× 10−6 2.0 ×10−6 1.7 ×10−6

0.1 0 2.5×10−5 2.9×10−6 2.2 ×10−6 1.9 ×10−6

0.2 0 2.7×10−5 3.2×10−6 2.4 ×10−6 2.1 ×10−6

0.3 0 3.0×10−5 3.5×10−6 2.6 ×10−6 2.3 ×10−6

0.4 0 3.2×10−5 3.8×10−6 2.8 ×10−6 2.4 ×10−6

0.5 0 3.4×10−5 4.0×10−6 3.0 ×10−6 2.6 ×10−6

0.6 0 3.7×10−5 4.3×10−6 3.3 ×10−6 2.8 ×10−6

0.7 0 3.9×10−5 4.6×10−6 3.5 ×10−6 3.0 ×10−6

0.8 0 4.2×10−5 4.9×10−6 3.7 ×10−6 3.2 ×10−6

0.9 0 4.4×10−5 5.2×10−6 3.9 ×10−6 3.4 ×10−6

1.0 0 4.7×10−5 5.5×10−6 4.2 ×10−6 3.6 ×10−6

8 Conclusions

In this research work, existence of solution for infinite system of nth order ODE is proved. Some examples are
presented to clarify the reliability of our results. Moreover, we constructed an iterative algorithm in order to find an
approximate solution of the examples with high accuracy.
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