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Abstract

The essential purpose of this paper is to obtain the fixed point of different functions by using a modern repetitive
method. We incorporate concepts suggested in the Bisection method and the Moth-Flame Optimization algorithm.
This algorithm is more impressive for finding fixed point functions. We also implement this method for four functions
and finally compare the current method with other methods such as ALO, MVO, SSA, SCA algorithms. the proposed
method shows a decent functionality than the other four methods.
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1 Introduction

Many real-world problems can be modeled as mathematical problems. Many of these problems come in the form
of one or more nonlinear equations that solve a major problem in nature. Therefore, solving equations and gaining
roots of functions, is of special importance in engineering, basic sciences and applied sciences. This reason has led
many researchers in recent years to research to solve these problems and present the results of their efforts in the
form of various articles [17, 1, 37, 8, 41, 59, 46, 3, 54, 26, 30]. The bisection algorithm is a rooting-discovering
procedure. It exerts for each function that is continuous for per identifies two valencies by contrary emblems. The
procedure includes of frequently halving distance determined with these valencies. Afterwards choosing the sub-
distance where in the function shifts emblem. It should include a root. It is a straightforward and sturdy procedure,
however it is as well as comparatively lagging. For this reason, it is frequently utilization to gain a precise estimate
of one solution that is henceforth utilization as a beginning point to rather quickly converging procedures [7, 50,
52, 53, 62, 63]. Accurate algorithms can discover the optimal answer identically. However, they are not impressive
sufficient in strict optimization questions. Their performance period enhances exponentially relevant to the girths of
the problems [6, 20, 33, 36, 38, 34, 35, 16, 11, 57, 51]. Metaheuristic algorithms are divided into two general groups, two
methods based on one answer and population. One-answer algorithms change an answer during the search process,
while population-based algorithms consider a population of answers while searching. One-answer algorithms focus
on local search areas; In contrast, population-based algorithms can search simultaneously in different areas of the
answer space [6, 13, 60, 22, 49, 19, 28, 33, 2, 40, 25, 58, 30]. Various criteria can be used to classify meta-heuristic
algorithms. Some of the one-answer meta-heuristic algorithms that have been introduced in recent years and have
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many applications for solving various problems are: simulated annealing algorithm (SA) [61], tabu search algorithm
(TSA) [15], algorithm GRASP search (GSA) [30], variable neighborhood search (VNS) algorithm [18], guided local
search algorithm (GLS) [32], iterated local search algorithm (ILS) [20]. Also, a number of population-based meta-
innovative algorithms that have been introduced in recent years and have many applications for solving various
problems are: Imperialist Competitive Algorithm (ICA) [4], Artificial Immune System Algorithm (AIS) [10], Harmony
Search Algorithm (HS) [31]. In recent years, researchers have also been able to solve complex problems in the field of
engineering and mathematics using a number of these algorithms. Some of these algorithms are: Cuckoo Optimization
Algorithm (COA) [43], Gravitational Search Algorithm (GSA) [44], Invasive Weed Optimization Algorithm (IWO)
[39], League Championship Algorithm (LCA) [21], Optics Inspired Optimization Algorithm (OIO) [29], Shuffled Frog
Leaping Algorithm (SFL) [14], Stochastic Fractal Search Algorithm (SFS) [47] Teaching Learning Based Optimization
Algorithm (TLBO) [45], Wind Driven Optimization Algorithm (WD) [62] and etc [13, 42, 31, 56, 24, 12, 48, 9, 55, 55]. In
the present article, we bring a novel repetitious method that merges the benefits of both the Moth-Flame Optimization
Algorithm and the Bisection method to dissolve the difficult fixed point problem. The residual segments of the present
paper are organized as follows: at Sect. 2, a short overview is performed on the Bisection procedure. Also Moth-
Flame Optimization mechanism is said. Then the Fixed-point theory is explained. In the following , offered mechanism
communicate in the next section. At Sect. 4, evaluates precision of suggested procedure with distinct procedures on
various functions. Finally, the result is given in the final section.

2 Fundamental implications

By reading this segment, a concise overview is accomplished on the Moth-flame optimization algorithm, and the
Bisection method is clarified. In the continuation of this segment fixed point theory is indicated.

2.1 Moth-Flame Optimization Algorithm

Moth-flame optimization algorithm, which is called MFO for short, is one of the optimization algorithms as if
finds a way to dissolve the problem by the behavior of the impellers next to the flame or fire. This algorithm was
published in 2015 by Seyed Ali Mir Jalili in an article entitled ”Moth-flame optimization algorithm: A novel nature-
inspired heuristic paradigm” in the journal Knowledge-Based Systems [34]. This procedure is a novel exploratory
model retrieved from the nature and treatment of butterflies and their interest in flame or fire. Butterflies fly at night
for long distances while sustaining a constant hermitage via nexus to the moon. But these fantasy insects are trapped
in a useless and deadly spiral path around artificial lights. In the propeller algorithm, this behavior of the propellers
is mathematically used to perform the optimization. The MFO algorithm has many similarities with other known
nature-inspired algorithms, and statistical results on functions show that this algorithm can provide promising and
competitive results. Butterflies are fascinating insects that there are different species of them in our environment. The
life of each butterfly is divided into two main parts: larvae and adults. A cocoon is a place where larvae turn into
butterflies. One of the most critical features of butterflies is their mechanism of movement at night. Butterflies use
the moon to fly at night. They use a structure called orientation. They use the transverse to move at night. Using
this method, the constant angle of a butterfly to the moon when it flies remains constant. This provides an effective
mechanism for butterflies to travel a relatively long distance in a straight line. Despite the transverse orientation of
the propellers, the propellers usually fly in a spiral around the lights, because the propellers are deceived by artificial
light and this movement passes through them. This behavior of impellers is modeled and named in the language
of mathematics as the Moth-Flame Optimization Algorithm (MFO). In the Moth-Flame Optimization algorithm, we
assume that the solutions to the question are the volunteers for the impellers. We also consider the question variables
as the situation of the impellers in the air. The impeller set is displayed as a matrix. This is because the Moth-Flame
Optimization algorithm is population-based. Also, a matrix can be a good option for displaying the performance of
each impeller and its performance (like the M matrix). There is an array for each butterfly to reserve the OM value.
Another key feature in the MFO algorithm is the butterflylike matrix. This matrix is a fire matrix, and OF is an
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array used to reserve the values of the fitness function.

M =


m1,1 m1,2 · · · · · · m1,d

m2,1 m2,2 · · · · · · m2,d

...
...

...
...

...
mn,1 mn,2 · · · · · · mn,d

 =⇒ OM =


OM1

OM2

...
OMn



F =


F1,1 F1,2 · · · · · · F1,d

F2,1 F2,2 · · · · · · F2,d

...
...

...
...

...
Fn,1 Fn,2 · · · · · · Fn,d

 =⇒ OF =


OF1

OF2

...
OFn


It must be prominent where that flames and butterflies are both solutions. The diversity among them is how they are
cliqued and refreshed in per repetition. Butterflies are the probe factors that travel in the probe place, while flames
are the best butterfly situation ever arrived. So, per butterfly probes about a flag and refreshes it if it discovers a
superior solution. This mechanism does not cause a butterfly to lose its best solution [34].
The pseudo-code of the MFO algorithm is as follows:

Algorithm 1 The pseudo-code of the MFO algorithm

Print the best solution
Initialize the parameters for Moth-flames
Initialize Moth position Mi randomly
for i = 1 to n do

Calculate the fitness function fi
end for
while interation ≤ Maxinterations do
Update the position of Mi

Calculate the number of flames using flameno = round
(
N − 1 ∗ N − 1

T

)
Evaluate the fitness function fi
if interation == 1 then
F = sort(M) and OF = sort(OM)

else
F = sort(Mt−1,Mt) and OF = sort(Mt−1,Mt)

end if
for i = 1 to n do
for j = 1 to d do
Update the value of r and t
Calculate the value of D respect to its corresponding moth
using Di = |Fj −Mi|
Update M(i, j) respect to its corresponding moth
using S(Mi, Fj) = Di.e

bt. cos(2πt) + Fj

end for
end for

end while

2.2 Mechanism of fixed point theory

Point (b) is a fixed point for the function g(y), when point (b) holds for g(b) = b. This means that the point
represented by a function on itself can be considered a fixed point for that function. To find the fixed point of a
function, we must convert the relation y = g(y) to the relation f(y) = 0. Then using the recessive connection for
yi+1 = g(yi), i = 0, 1, 2, . . . and using the primary value y0 which is chosen based on conjecture and coincidence, we
obtain the fixed point of the function. For further understanding, the mechanism of the fixed point theory is shown
in the following figure, and to summarize the iterations of the fixed point theory in (FPI).
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Figure 1: (FPI) Mechanism

According to Figure 1, a repetitious procedure that can be used to find the solutions to equation f(y) = y is the
recessive connection f(yi) = yi+1, i = 0, 1, 2, . . . by several premier supposable y0. The mechanism pauses until per
of the tracking pausing scale is available: E1. Confirmation former the whole number of repetitions N . E2. With
examining the position |g(yi) − xi+1| (wherever i is the repetition number) lower than several toleration range, tell
epsilon, fixed former. (Figure 1)

For instance, function f1 = (
y3

150
)− 2 sin(y), y ∈ [−10,+10] has a fixed point, But a series of functions do not have a

fixed point. For instance, Function f(y) = 2y + 3, y ∈ R has no fixed points, Because no number can be found that
establishes the equation y = 2y + 3 [30].

2.3 Definition of the Bisection method

Whenever we want to provide a numerical solution for the equation f(x) = 0, one of its methods is bisection
method. Note that the function f must be a continuous function and the values f(a) and f(b) on the interval [a, b]
must have opposite signs. In this case, we can use the theorem of the mean to say that the function f in the interval
(a, b) has at least one root [30].

In the bisection method, in each step, using the relation c =
(a+ b)

2
, we divide the interval into two parts. Then we

calculate the value of f(c). In this case, two situations may occur:
Case 1: If the values f(a) and f(c) have different symbols, then using the mean value theorem, the function f in the
interval (a, c) has at least one root.
Case 2: If the values f(c) and f(b) have different symbols, then using the mean value theorem, the function f in the
interval (c, b) has at least one root [60].
These steps continue until the interval is small enough and finally we reach a small interval where the two ends of the
interval are the same size.
Note that the values at each end of the interval must have different symbols so that we can select it as a new, smaller
interval [30].
In Algorithm 2, you can see the pseudo-code of the bisection method.

3 The Bisection-Moth-Flame Optimization Algorithm

The main purpose of studying this section is to fully explain the mechanism of our new method, which is a
combination of the MFO algorithm and the bisection method. We show this algorithm briefly as BMFO. The introduced
algorithm provides the ability to obtain fixed points of different functions with very close approximations to the exact
answer. For this purpose, consider the function g(x) = 0. We know that to get the fixed points of this function, it
must be g(x) = x. Now consider the function f(x) as f(x) = g(x)−x. We can obtain the answers of the function f(x)
to obtain the fixed points of the function g(x). Now consider the function h(x) as h(x) = |f(x)|. In simpler terms,
we can say that the minimum solutions of the function h(x) are the same as the fixed point of the function g(x). So
instead of solving the function g(x) = x, we get the minimum answer of the function h(x). In this step, using the MFO
algorithm, consider an answer such as xk that is randomly selected in the range Ik = [ak, bk]. In fact, the selection of
the initial answer xk is completely random and is done using the MFO algorithm. Then, at this stage, the bisection
method is used. We calculate the values of f(xk) and f(ak) and see if the product of them is a negative number or
not. We also do the same for f(xk) and f(bk) and see if the product of these two numerical values is negative. Note
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Algorithm 2 Algorithm of the bisection method

Require: A continuous function f(x), interval [a, b], Tolerance: TOL; maximum number of iterations: n0

if
(b− a)

2
< TOL then

exit
Seti = 1

while i ≤ N0 and
(b− a)

2
≥ TOL do

Setc = a+
(b− a)

2
Compute f(x)

if f(c) = 0 then
output c and exit

end if
if f(a)f(c) > 0 then
set a = c and f(a) = f(c)

else
set b = c and f(b) = f(c)

end if
i = i+ 1

end while

if
(b− a)

2
< TOL then

output c, ’tolerance limit exceeded!’
end if
if i > N0 then

output c, ’number of iterations reached N0’
end if

end if

that the termination condition of the algorithm is that f(xk) = 0.
In Algorithm 3 for per repetition we gain accidentally modern estimation amount xk of the answer equation with

MVO algorithm on Ik, for per k ∈ N. Ik+1 is either [ak,
(xk + ak)

2
] (just bk shifts) or we have [

(ak + xk)

2
, xk] or

[xk,
(xk + bk)

2
] (both ak and bk shifts) or [

(bk + xk)

2
, bk] (just ak shifts). So, we achieve Ik+1 ⊆ Ik.

Afterwards, c belongs to the subscription of all Ik.
Finally, the limit c− xk will be equal to c when k tends to infinity.

4 Using the introduced algorithm for several functions

At present part, clarify proposed method by several examples and compare the outcomes with other evolutionary
optimization methods similar ALO, MVO, SSA and as well as SCA. Consider the following functions.

g1(x) :
x3

150
− 2 sin(x) = x, x ∈ [−10,+10]

g2(x) :− cos(

√
x

50
) + 250 = x, x ∈ [200, 300]

g3(x) :10 +
e

2
− 10e−0.2

√
x2 − 1

2
ecos(2πx)

g4(x) :5 +
x2

2
− 5 cos(2πx) = x, x ∈ [−20, 1)

In Table 1, these functions are categorized and introduced.
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Algorithm 3 the pseudo-code of the Bisection-Moth-Flame Optimization Algorithm

Given fixed point problem g(x) = x, x ∈ [a, b]
End points: a0 = a, b0 = b ; tolerance: TOL(1e−t, t ≫ 0)
Let f(x) = g(x)− x, h(x) = |f(x)|, k = 0
while h(xk) ≤ TOL do
xk ∈ [ak, bk] is generated by MFO algorithm that minimize h(x)
if f(xk)f(ak) < 0 then

bk+1 =
(xk + bk)

2
temp =

(xk + ak)

2
if f(temp)f(xk) < 0 then
ak+1 = temp

else
ak+1 = ak

end if
else

ak+1 =
(xk + ak)

2
temp =

(xk + bk)

2
if f(temp)f(xk) < 0 then
bk+1 = temp

else
bk+1 = bk

end if
end if
k = k + 1

end while
Output : c = xk

Table 1: Category of functions introduced

Function Domain

f1(x) → x3

150
− 2 sinx = 0 [−10,+10]

f2(x) → − cos(
√

x
50 ) + 250 = 0 [200, 300]

f3(x) → 10 + e
2 − 10e−0.2

√
x2 − 1

2e
cos(2πx) = 0 [1, 21]

f4(x) → 5 +
x2

2
− 5 cos(2πx) = 0 [−20, 1)

According to the definitions mentioned in section 2.3, for the function g1, the fixed point is the number 0. Also,
fixed point of g2 function is a number very close to 250 and the fixed point of the g3 function is a number very close
to 10, and finally the fixed point of the function g4 is 0.
Here we want to provide a complete description of solving the function f1(x) = 0 using the mentioned algorithm. First
we produce an accidental initial value for the function f1 at x0 ∈ I0 = [−10,+10] using the MFO algorithm. In the
next step, using the method mentioned in Section 2.3, we gain modern approximate value x1 ∈ I1 ⊆ I0 as a solution.
Then we continue this work until the desired solution is obtained with the favorable accuracy. The outcomes acquired
toward any function via ALO, MVO, SSA, SCA and BMFO mechanisms are presented in Table 2. Shapes 2 to 5
demonstrate scheme of improvement procedure of g1 to g4 functions via BMFO mechanism in (a) and shape of solving
fixed point of g1 to g4 functions via BMFO mechanism in (b). Shapes 6 to 9 demonstrate scheme of the outcome of
ALO, MVO, SSA, SCA algorithms and suggested algorithm to dissolve the fixed point problem of each function in one
graph. The results and figures show that the BMFO algorithm, compared to the other four algorithms, has a better
performance and a more accurate solution for finding fixed points of functions.
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Table 2: The outcomes acquired toward any function via ALO, MVO, SSA, SCA and BMFO

algorithm Components g1(x) g2(x) g3(x) g4(x)
ALO error 9.76E − 12 1.73E − 09 4.24E − 11 1.04E − 09

X-best −3.3E − 12 250.6194 9.64E + 00 0.010084403
mean(e) 3.58E − 05 0.000379 3.13E − 05 1.95E − 05
std(e) 0.000547 0.002278 1.77E − 04 1.11E − 04

MVO error 2.48E − 08 0.014449 1.23E − 05 5.31E − 07
X-best −8.3E − 09 250.6339 9.64E + 00 0.010083872
mean(e) 0.000101 0.014449 0.000164044 4.31E − 05
std(e) 0.001331 0 0.000737533 2.12E − 04

SCA error 2.6E − 129 0.000238 9.07E − 06 8.11E − 128
X-best 8.8E − 130 250.6192 8.831861647 8.11E − 128
mean(e) 0.000211 0.001452 5.40E − 05 1.68E − 05
std(e) 0.006502 0.005189 0.000128074 4.60E − 04

SSA error 4.46E − 10 2.88E − 08 2.54E − 09 1.04E − 10
X-best −1.5E − 10 250.6194 9.640214463 0.010084404
mean(e) 3.32E − 05 0.000101 4.41E − 05 1.31E − 05
std(e) 0.000134 0.000657 0.000531736 1.71E − 05

BMFO error 3.92E − 95 0 0 0
X-best 1.31E − 95 250.6194 9.640214461 0.010084404
mean(e) 6.47E − 22 0 0 4.62E − 15
std(e) 7.03E − 21 0 0 1.14E − 14

Figure 2: Shape of improvement procedure of g1(x) function via BMFO algorithm at form (a) and shape of solving fixed point of the g1(x)
function via BMFO algorithm at form (b)

Figure 3: Shape of improvement procedure of g2(x) function via BMFO algorithm at form (a) and shape of solving fixed point of the g2(x)
function via BMFO algorithm at form (b)
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Figure 4: Shape of improvement procedure of g3(x) function via BMFO algorithm at form (a) and shape of solving fixed point of the g3(x)
function via BMFO algorithm at form (b)

Figure 5: Shape of improvement procedure of g4(x) function via BMFO algorithm at form (a) and shape of solving fixed point of the g4(x)
function via BMFO algorithm at form (b)

Figure 6: Shape of WOA, SSA, ALO, MVO algorithms and suggested algorithm to dissolve the fixed point of function g1
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Figure 7: Shape of WOA, SSA, ALO, MVO algorithms and suggested algorithm to dissolve the fixed point of function g2

Figure 8: Shape of WOA, SSA, ALO, MVO algorithms and suggested algorithm to dissolve the fixed point of function g3

Figure 9: Shape of WOA, SSA, ALO, MVO algorithms and suggested algorithm to dissolve the fixed point of function g4
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The results and figures show that the BMFO algorithm, compared to the other four algorithms, has a better
performance and a more accurate solution for finding fixed points of functions.

5 Conclusion

In present article, the main endeavor is to discover a modern repetitive procedure in order that discovery a fixed
point of a function by utilizing Moth-Flame Optimization Algorithm and Bisection method. Finding the good initial
value in a proportional interval where the fixed point of the function is located can sometimes be difficult for functions
that are hard. In that case, they do not have a derivative or are difficult to calculate. Then obtaining solutions of their
derivative is time-consuming. So finding derivative of the function f(y) = g(y)− y and then finding their solutions for
all functions Not recommended. MFO algorithm aids in detecting an acceptable primary solution. In the following,
suggested procedure does nowhere near via the want to calculate the derivative. This suggested method is ordinary
to utilize and trustworthy. While a collation via alternative methods represents, precision of this suggested algorithm
is acceptable.
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