Some results of domination on the discrete topological graph with its inverse

Zainab N. Jwair, Mohammed A. Abdlhusein*
Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

(Communicated by Sirous Moradi)

Abstract

Let $G_{\tau}=(V, E)$ be a topological graph which is a finite, simple, undirected, connected graph without isolated vertices. In this paper, several bounds and domination parameters are studied and applied to it: bi-domination, doubly connected bi-domination and pitchfork domination. The dominating set and domination number with its inverse for all these types are calculated. Also, some figures from the topological graph are introduced.

Keywords: Topological graph, discrete topology, dominating set, domination number 2020 MSC: 05C69

1 Introduction

Let $G=(V, E)$ be a graph where the set of vertices of G is $V(G)$ and the set of edges of G is $E(G)$. The vertex u is adjacent to a vertex v if there is an edge between them. The order of a graph G is the number of all elements in $V(G)$, denoted by $|V(G)|$. The size of a graph G is the number of all elements in $E(G)$. The subgraph H of G is induced subgraph denoted by $G[H]$ and constructed by all vertices of $H \subseteq V(G)$ and all edges between vertices of H. A graph G is connected graph if every two vertices are joined by a path, see [32]. The subset D is dominating set if for each vertex of $V-D$ is adjacent to one or more vertices of D. The domination number denoted by $\gamma(G)$ is the cardinality of the minimum dominating set [18]. The inverse dominating set in a graph G is a minimum dominating set exist in the set $V-D$, denoted by D^{-1}. The inverse domination number denoted by $\gamma^{-1}(G)$ is the cardinality of the minimum inverse dominating set [29. The subset D is called bi-dominating set if every vertex in D is adjacent to exactly two vertices in $V-D$. The bi-domination number denoted by $\gamma_{b i}(G)$ [16]. The subset D is a doubly connected bi-dominating set if D is bi-dominating set and both $G[D]$ and $G[V-D]$ are connected. The doubly connected bidomination number denoted by $\gamma_{b i}^{c c}(G)$ 2. The subset D is a pitchfork dominating set if every vertex in D dominates at least $j=1$ and at most $k=2$ vertices of $V-D$. The pitchfork domination number denoted by $\gamma_{p f}(G)$ [1]. For more information about domination see [1-15, 17, 30, 31. The discrete topology is denoted by (X, τ) such that X is a non-empty set and τ is a family of all subsets of X, where $\tau=P(X)$ [33]. There are many papers to linking the graph to topology, see [19]-[28]. In this paper, some types of domination are studied on the discrete topological graph and calculate the inverse domination for it.

[^0]
2 Main Results

In this section, the definition that form a topological graphs is written with different properties and theorems of this graphs are studied.

Definition 2.1. [26] Let X be a non-empty set and τ be a discrete topology on X. The discrete topological graph denoted by $G_{\tau}=(V, E)$ is a graph of the vertex set $V=\{A ; A \in \tau$ and $A \neq \emptyset, X\}$, and the edge set $E=\{A B ; A \nsubseteq B$ and $B \nsubseteq A\}$.

Proposition 2.2. 26] Let X be a non-empty set of order n and let τ be a discrete topology on X. If $n=2$, then $G_{\tau} \cong K_{2}$.

Proposition 2.3. [26] Let X be a non-empty set of order n and let τ be a discrete topology on X. If $n=3$, then $G_{\tau} \cong \overline{C_{6}}$.

Proposition 2.4. [26] Let $|X|=n$ and G_{τ} be a discrete topological graph. Then, the graph G_{τ} has $n-1$ complete induced subgraphs K_{t} such that $t \geq n$.

Theorem 2.5. Let G_{τ} be a discrete topological graph of a non-empty set X. Then, G_{τ} is a connected graph.
Proof. Assume that u_{1} and u_{2} are any two vertices in a graph G_{τ}, let S be a set of all vertices of singleton element. Then, there are three cases as follows:

Case 1: If $u_{1}, u_{2} \in S$, since $G[S]=K_{n}$ from proof of Proposition 2.4. Then, u_{1} adjacent to u_{2} for all elements of S. So, there is an edge $u_{1} u_{2} \in E\left(G_{\tau}\right)$ in a graph G_{τ}.
Case 2: If $u_{1} \in S$ and $u_{2} \notin S$, if $u_{1} \nsubseteq u_{2} \wedge u_{2} \nsubseteq u_{1}$ then $u_{1} u_{2} \in E\left(G_{\tau}\right)$. If u_{1} not adjacent to u_{2}. Then, there is at least one vertex in S say v adjacent to u_{2} such that $v \nsubseteq u_{2}$ and $u_{2} \nsubseteq v$. Since v adjacent with u_{1} from proof of Proposition 2.4, so that v adjacent to u_{1} and u_{2}. Thus, $u_{1}-v-u_{2}$ is a path in a graph G_{τ}.
Case 3: If $u_{1}, u_{2} \notin S$ and u_{1} not adjacent to u_{2}. If there is a vertex $t \in S$ such that $u_{1} \nsubseteq t \wedge t \nsubseteq u_{1}$, also $u_{2} \nsubseteq t \wedge t \nsubseteq u_{2}$. Then, $u_{1} t \in E\left(G_{\tau}\right)$ and $u_{2} t \in E\left(G_{\tau}\right)$ and $u_{1}-t-u_{2}$ is a path in G_{τ}. Otherwise, there is $t_{1}, \quad t_{2} \in S$ where $u_{1} t_{1} \in E\left(G_{\tau}\right)$ and $t_{2} u_{2} \in E\left(G_{\tau}\right)$, then $u_{1}-t_{1}-t_{2}-u_{2}$ is a path in G_{τ}. Hence, G_{τ} is a connected graph.

Proposition 2.6. [26] Let $|X|=n$, then the order of discrete topological graph G_{τ} is $2^{n}-2$.
Corollary 2.7. [28] Let $|X|=n$, then the order of the topological graph G_{τ} is $\sum_{i=1}^{n-1}\binom{n}{i}$.

3 Domination on the Topological Graph

In this section, many results of domination are found on the discrete topological graph.
Observation 3.1. Let G_{τ} be a discrete topological graph of order $2^{n}-2$ has a bi-dominating set. If $\gamma_{b i}\left(G_{\tau}\right)>\frac{2^{n}-2}{2}$, thus it has no inverse bi-dominating set.

Observation 3.2. For any topological graph G_{τ} of order $2^{n}-2$ has a pitchfork domination. If $\gamma_{p f}\left(G_{\tau}\right)>\frac{2^{n}-2}{2}$, then G_{τ} has no inverse pitchfork domination.

Proposition 3.3. [28] Let $|X|=3$ and G_{τ} be a discrete topological graph. Then, G_{τ} has a bi-dominating set and $\gamma_{b i}\left(G_{\tau}\right)=2$.

Theorem 3.4. 28 Let $|X|=n \quad(n \geq 4)$ and G_{τ} be a discrete topological graph. Then, G_{τ} has bi-dominating set and $\gamma_{b i}\left(G_{\tau}\right)=\sum_{i=1}^{n-1}\binom{n}{i}-4$.

Proposition 3.5. [28] Let $|X|=n(n \geq 4)$ and G_{τ} be a discrete topological graph. Then, G_{τ} has no inverse bidominating set.

Proposition 3.6. Let $|X|=3$, then G_{τ} has a doubly connected bi-dominating set and $\gamma_{b i}^{c c}\left(G_{\tau}\right)=2$.
Proof . If $|X|=2$, then $G_{\tau} \cong K_{2}$ by Proposition 2.2, and it is clear K_{2} has no bi-dominating set, also it has no doubly connected bi-dominating set. If $|X|=3$ by the same technique of proof of Proposition 3.3. Let $D=\left\{u, u^{c}\right\}$ such that this two vertices of D dominate only two vertices of $V-D$ and it is bi-dominating set. Now, if we take $D=\{\{1\},\{2,3\}\}$ since $\{1\} \nsubseteq\{2,3\} \wedge\{2,3\} \nsubseteq\{1\}$. Then, there is an edge between them so $G[D]$ form a path and it is connected. Let $V-D=\{\{2\},\{3\},\{1,2\},\{1,3\}\}$ since $\{2\}$ adjacent with $\{3\}$ and $\{1,2\}$ adjacent with $\{1,3\}$ from proof of Proposition 2.3. Also, since $\{3\} \nsubseteq\{1,2\} \wedge\{1,2\} \nsubseteq\{3\}$ so there is an edge between them. Again, since $\{2\} \nsubseteq\{1,3\} \bigwedge\{1,3\} \nsubseteq\{2\}$ also there is an edge between them. Now, since $\{2\}$ adjacent to $\{3\},\{3\}$ adjacent to $\{1,2\},\{1,2\}$ adjacent to $\{1,3\}$ and $\{1,3\}$ adjacent to $\{2\}$. Hence, $G[V-D]$ form a cycle so that it is connected. Since both $G[D]$ and $G[V-D]$ are connected. Hence, D is a doubly connected bi-dominating set and $\gamma_{b i}^{c c}\left(G_{\tau}\right)=2$. See Figure $1(a)$.

Proposition 3.7. Let $|X|=3$, then G_{τ} has inverse doubly connected bi-dominating set and $\gamma_{b i}^{-c c}\left(G_{\tau}\right)=2$.
Proof . By the same technique of proof of Proposition 3.6. Let $D^{-1}=\{\{2\},\{1,3\}\}$ such that $G\left[D^{-1}\right]$ form a path so it is connected. Also, let $V-D^{-1}=\{\{1\},\{3\},\{1,2\},\{2,3\}\}$ where $G\left[V-D^{-1}\right]$ form a cycle and it is connected. Since both $G\left[D^{-1}\right]$ and $G\left[V-D^{-1}\right]$ are connected. Thus, D^{-1} is an inverse doubly connected bi-dominating set and $\gamma_{b i}^{-c c}\left(G_{\tau}\right)=2$. See Figure $1(b)$.

Figure 1: D and D^{-1} of doubly connected bi-domination for $\overline{C_{6}}$.

Theorem 3.8. Let $|X|=n(n \geq 4)$, then G_{τ} has a doubly connected bi-dominating set and $\gamma_{b i}^{c c}\left(G_{\tau}\right)=\sum_{i=1}^{n-1}\binom{n}{i}-4$.
Proof. By the same technique of proof of Theorem 3.4. Let $V-D=\left\{w, v, w^{c}, v^{c}\right\}$ where each vertex of D dominates only two vertices of $V-D$, and it is a bi-dominating set. Now, in $G[D]$ and in similar proof of Theorem 2.5 we get it is connected. The remaining vertices in $V-D=\left\{w, v, w^{c}, v^{c}\right\}$. Such that let w, v be two vertices of singleton element then w^{c}, v^{c} are two vertices have $n-1$ elements. Since $w v \in E\left(G_{\tau}\right)$ and $w^{c} v^{c} \in E\left(G_{\tau}\right)$ from proof of Proposition 2.4. Also, since $w \nsubseteq w^{c} \bigwedge w^{c} \nsubseteq w$, so w adjacent with w^{c}. Again, since $v \nsubseteq v^{c} \bigwedge v^{c} \nsubseteq v$, thus v adjacent with v^{c}. Now, since w adjacent to v, v adjacent to v^{c}, v^{c} adjacent to w^{c} and w^{c} adjacent to w. Then, $G[V-D]$ form a cycle and it is connected. Therefore, D is a doubly connected bi-dominating set and $\gamma_{b i}^{c c}\left(G_{\tau}\right)=\sum_{i=1}^{n-1}\binom{n}{i}-4$. See Figure 2.

Corollary 3.9. Let $|X|=n(n \geq 4)$ and G_{τ} be a discrete topological graph defined on a set X. Then, G_{τ} has a doubly connected bi-dominating set and $\gamma_{b i}^{c c}\left(G_{\tau}\right)=2^{n}-6$.

Proof . From proof of Theorem 3.8. Since D is a doubly connected bi-dominating set and has all vertices of G_{τ} unless four vertices of $V-D$. In addition the order of G_{τ} which is $2^{n}-2$ by Proposition 2.6. Hence, $\gamma_{b i}^{c c}\left(G_{\tau}\right)=2^{n}-6$.

Proposition 3.10. Let $|X|=n(n \geq 4)$, then G_{τ} has no inverse doubly connected bi-dominating set.
Proof. Since G_{τ} has no inverse bi-dominating set for $n \geq 4$ by Proposition 3.5, G_{τ} has no inverse doubly connected bi-dominating set.

Figure 2: The minimum doubly connected bi-domination when $|X|=4$.

Proposition 3.11. Let $|X|=n$, then G_{τ} has a pitchfork dominating set and

$$
\gamma_{p f}\left(G_{\tau}\right)=\left\{\begin{array}{lc}
1, & \text { if } n=2 \\
2, & \text { if } n=3 .
\end{array}\right.
$$

Proof . If $n=2$, then $G_{\tau} \cong K_{2}$ by Proposition 2.2 and it is clear the pitchfork domination number of K_{2} is one, where $\gamma_{p f}\left(G_{\tau}\right)=1$. See Figure $3(a)$. If $n=3$ by the same technique of proof of Proposition 3.3, let $D=\left\{u, u^{c}\right\}$. Since each vertex in D dominates only two vertices in $V-D$. Thus, D is a minimum pitchfork dominating set and $\gamma_{p f}\left(G_{\tau}\right)=2$. See Figure $1(a)$.

Proposition 3.12. Let $|X|=n$, then G_{τ} has inverse pitchfork dominating set and

$$
\gamma_{p f}^{-1}\left(G_{\tau}\right)= \begin{cases}1, & \text { if } n=2 \\ 2, & \text { if } n=3\end{cases}
$$

Proof. If $n=2$, then $G_{\tau} \cong K_{2}$ by Proposition 2.2 and it is clear the inverse pitchfork domination number of K_{2} is one, where $\gamma_{p f}^{-1}\left(G_{\tau}\right)=1$. See Figure $3(b)$. If $n=3$ in similar proof of Proposition 3.3, let $D^{-1}=\left\{v, v^{c}\right\}$ such that the vertices of D^{-1} dominate only two vertices in $V-D^{-1}$. Thus, D^{-1} is a minimum inverse pitchfork dominating set and $\gamma_{p f}^{-1}\left(G_{\tau}\right)=2$. See Figure $1(b)$.

(a)

(b)

Figure 3: D and D^{-1} of pitchfork domination for K_{2}.

Theorem 3.13. Let $|X|=n(n \geq 4)$, then G_{τ} has pitchfork dominating set and $\gamma_{p f}\left(G_{\tau}\right)=\sum_{i=1}^{n-1}\binom{n}{i}-4$.
Proof . By the same technique of proof of Theorem 3.4, let $V-D=\left\{u, w, u^{c}, w^{c}\right\}$. Since each vertex in D dominates only two vertices of $V-D, D$ is a minimum pitchfork dominating set and $\gamma_{p f}\left(G_{\tau}\right)=\sum_{i=1}^{n-1}\binom{n}{i}-4$. See Figure 2 and Figure 4.

Corollary 3.14. Let $|X|=n \quad(n \geq 4)$ and G_{τ} be a discrete topological graph. Then, G_{τ} has a pitchfork dominating set where $\gamma_{p f}\left(G_{\tau}\right)=2^{n}-6$.

Proof . From proof of Theorem 3.13, since D is a pitchfork dominating set and has all vertices of G_{τ} unless four vertices of $V-D$ such that the order of G_{τ} which is $2^{n}-2$ by Proposition 2.6 , we have $\gamma_{p f}\left(G_{\tau}\right)=2^{n}-6$.

Proposition 3.15. Let $|X|=n \quad(n \geq 4)$, then G_{τ} has no inverse pitchfork dominating set.

Proof . Since the order of G_{τ} is $2^{n}-2$ by Proposition 2.6 and $\gamma_{p f}\left(G_{\tau}\right)>\frac{2^{n}-2}{2}$, by Observation 3.2 the graph G_{τ} has no inverse pitchfork dominating set.

Figure 4: The pitchfork domination for $|X|=5$.

4 Conclusions

Many results of domination with it's inverse are applied on the topological graphs and introduced some figures for it.

5 Open problems

Applying other types of domination parameters on the topological graph such as: total pitchfork domination, arrow domination, Hn-domination, co-even domination.

References

[1] M.A. Abdlhusein, New approach in graph domination, Ph. D. Thesis, University of Baghdad, 2020.
[2] M.A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Math. Algorithms Appl. 13 (2021), no. 2, 2150009.
[3] M.A. Abdlhusein, Stability of inverse pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 10091016.
[4] M.A. Abdlhusein, Applying the (1, 2)-pitchfork domination and its inverse on some special graphs, Bol. Soc. Paran. Mat. Accepted to appear, 2021.
[5] M.A. Abdlhusein and M.N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Math. Algorithms Appl. 13 (2021), no. 4, 2150038.
[6] M.A. Abdlhusein and M.N. Al-Harere, New parameter of inverse domination in graphs, Indian J. Pure Appl. Math. 52 (2021), no. 1, 281-288.
[7] M.A. Abdlhusein and M.N. Al-Harere, Doubly connected pitchfork domination and it's inverse in graphs, TWMS J. Appl. and Eng. Math. 12 (2022), no. 1, 82-91.
[8] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and it's inverse for corona and join operations in graphs, Proc. Int. Math. Sci. 1 (2019), no. 2, 51-55.
[9] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and its inverse for complement graphs, Proc. Inst. Appl. Math. 9 (2020), no. 1, 13-17.
[10] M.A. Abdlhusein and M.N. Al-Harere, Some modified types of pitchfork domination and its inverse, Bol. Soc. Paran. Mat. 40 (2022), 1-9.
[11] M.A. Abdlhusein and S.J. Radhi, The arrow edge domination in graphs, Int. J. Nonlinear Anal. Appl, 13 (2022), no. 2, 591-597.
[12] Z.H. Abdulhasan and M.A. Abdlhusein, Triple effect domination in graphs, AIP Conf. Proc. 2022, 060013.
[13] Z.H. Abdulhasan and M.A. Abdlhusein, An inverse triple effect domination in graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 913-919.
[14] Z.H. Abdulhasan and M.A. Abdlhusein, Stability and some results of triple effect domination, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 4, 349-358.
[15] M.N. Al-Harere and M.A. Abdlhusein, Pitchfork domination in graphs, Discrete Math. Algorithms Appl. 12 (2020), no. 2, 2050025.
[16] M.N. Al-Harere and A.T. Breesam, Further results on bi-domination in graphs, AIP Conf. Proc. 2096 (2019), no. 1, pp. 20013.
[17] L.K. Alzaki, M.A. Abdlhusein and A. K. Yousif, Stability of (1, 2)-total pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 265-274.
[18] T.W. Haynes, S.T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, INC. New York, 1998.
[19] M.K. Idan and M.A. Abdlhusein, Some properties of discrete topological graph, J. Phys.: Conf. Series, accepted to appear, 2022.
[20] M.K. Idan and M.A. Abdlhusein, Different types of dominating sets of the discrete topological graph, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 1, 101-108.
[21] M.K. Idan and M.A. Abdlhusein, Some dominating results of the join and corona operations between discrete topological graphs, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 5, 235-242.
[22] M.K. Idan and M.A. Abdlhusein, Topological space generated by edges neighborhoods of topological graph, Preprint, 2022.
[23] M.K. Idan and M.A. Abdlhusein, Topological space generated by vertices neighborhoods of topological graph, Preprint, 2022.
[24] Z.N. Jwair and M.A. Abdlhusein, Applying some dominating parameters on the topological graph, J. Phys.: Conf. Ser., accepted to appear, 2022.
[25] Z.N. Jwair and M.A. Abdlhusein, Some dominating results of the topological graph, Int. J. Nonlinear Anal. Appl. In press, 2022, Doi: 10.22075/IJNAA.2022.6404.
[26] Z.N. Jwair and M.A. Abdlhusein, Constructing new topological graph with several properties, Iraqi J. Sci., to appear, 2022.
[27] Z.N. Jwair and M.A. Abdlhusein, The neighborhood topology converted from the undirected graphs, Preprint, 2022.
[28] Z.N. Jwair and M.A. Abdlhusein, Several parameters of domination and inverse domination of discrete topological graphs, Preprint, 2022.
[29] V.R. Kulli and S.C. Sigarkanti, Inverse domination in graphs, Nat. Acad. Sci. Lett. 14 (1991), 473-475.
[30] S.J. Radhi, M.A. Abdlhusein and A.E. Hashoosh, The arrow domination in graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 473-480.
[31] S.J. Radhi, M. A. Abdlhusein and A. E. Hashoosh, Some modified types of arrow domination, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 1, 1451-1461.
[32] M.S. Rahman, Basic graph theory, Springer, India, 2017.
[33] S. Willard, General topology, Dover Publications, INC. Mineola, New York, 2012.

[^0]: *Corresponding author
 Email addresses: zainab78_neem.math@utq.edu.iq (Zainab N. Jwair), mmhd@utq.edu.iq (Mohammed A. Abdlhusein)

