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Abstract

In this paper, we study the growth of solutions to complex higher order linear differential equations, where the
coefficients are analytic in the closed complex plane except at a finite singular point. We obtain some results on the
[p, q]-order and on the lower [p, q]-order which improve and extend those of Long and Zeng.
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1 Introduction and main results

For k ≥ 2, we consider the following complex linear differential equation

f (k) +Ak−1(z)f
(k−1) + · · ·+A1(z)f

′ +A0(z)f = 0, (1.1)

where Aj(z) (j = 0, . . . , k − 1) are analytic functions in C− {z0}. By using the concepts of [p, q]-order and [p, q]-type
which were firstly introduced by Juneja and his co-authors for entire functions (see [10, 11]), many authors have
investigated the complex linear differential equation (1.1) for the cases when the coefficients are entire functions,
meromorphic functions, analytic in the unit disk and recently when they are analytic except at a finite singular point
(see e.g. [1, 2, 3, 9, 13, 14, 15, 17, 18, 19, 20]), including Long and Zeng who they made a minor modification to these
concepts for functions which are analytic except at a finite singular point and they also obtained some results about
the growth of solutions of (1.1) ( see [17]). In this paper using these concepts of the [p, q]-order and the [p, q]-type
giving in [17], also using the lower [p, q]-order and lower [p, q]-type which we define them similarly, we study the growth
of solutions of (1.1).

Nevanlinna’s theory is the main tool in this work, so we assume the reader is familiar with its fundamental results
and its standard notations (see [6, 8, 12, 21].
Before stating our results, we need to introduce some notations and definitions which can be found in [4, 5, 17], we also
mention some previous results. Firstly, we define for all r ∈ (0,∞), exp1 r := er and expp+1 r := exp(expp r), we also
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define for all sufficiently large r, log1 r := log r and logp+1 r := log(logp r), p ∈ N. We denote exp0 r := r, log0 r := r,

exp−1 r := log1 r, log−1 r := exp1 r, we also denote the logarithmic measure of a set E ⊂ (0, 1) by ml(E) =
∫
E

dt
t .

Definition 1.1. [4, 5] Let f be a meromorphic function in C − {z0}, where C = C ∪ {∞}, z0 ∈ C. The counting
function of f near z0 is defined by

Nz0(r, f) = −
∫ r

∞

n(t, f)− n(∞, f)

t
dt− n(∞, f) log r,

where n(t, f) counts the number of poles of f in {z ∈ C : t ≤ |z − z0|} ∪ {∞}, each pole according to its multiplicity.
The proximity function of f near z0 is defined by

mz0(r, f) =
1

2π

∫ 2π

0

log+ |f(z0 − reiϕ)|dϕ.

The characteristic function of f near z0 is defined by

Tz0(r, f) = mz0(r, f) +Nz0(r, f).

Definition 1.2. [17] Let f be an analytic function in C − {z0}, p and q be two integers with p ≥ q ≥ 1. The
[p, q]-order of f near z0 is defined by

ρ[p,q](f, z0) = lim sup
r−→0

log+p Tz0(r, f)

logq
1
r

= lim sup
r−→0

log+p+1 Mz0(r, f)

logq
1
r

= lim sup
r−→0

log+p Vz0(r, f)

logq
1
r

,

where Mz0(r, f) = max{|f(z)| : |z−z0| = r} and Vz0(r, f) is the central index of f near z0. If ρ[p,q](f, z0) = ρ ∈ (0,∞),
then the [p, q]-type of f near z0 is defined by

τ[p,q],M (f, z0) = lim sup
r−→0

log+p Mz0(r, f)

(logq−1
1
r )

ρ
.

Similarly, we define the lower [p, q]-order and the lower [p, q]-type by using “ lim inf ” instead of “ lim sup ”.

Definition 1.3. Let f be an analytic function in C − {z0}, p and q be two integers with p ≥ q ≥ 1. The lower
[p, q]-order of f near z0 is defined by

µ[p,q](f, z0) = lim inf
r−→0

log+p Tz0(r, f)

logq
1
r

= lim inf
r−→0

log+p+1 Mz0(r, f)

logq
1
r

= lim inf
r−→0

log+p Vz0(r, f)

logq
1
r

.

If µ[p,q](f, z0) = µ ∈ (0,∞), then the lower [p, q]-type of f is defined by

τ [p,q],M (f, z0) = lim inf
r−→0

log+p Mz0(r, f)

(logq−1
1
r )

µ
.

Long and Zeng investigated the growth of solutions of (1.1) and they obtained the following results on the [p, q]-
order. Firstly, when there is a dominating coefficient A0(z) with [p, q]-order.

Theorem 1.4. [17] Let A0(z), . . . , Ak−1(z) be analytic functions in C− {z0}. Assume that

max{ρ[p,q](Aj , z0) : j = 1, . . . , k − 1} < ρ[p,q](A0, z0) < +∞.

Then every solution f ̸≡ 0 that is analytic in C− {z0} of (1.1) satisfies ρ[p+1,q](f, z0) = ρ[p,q](A0, z0).

Secondly, when there are other coefficients having the same [p, q]-order as A0(z).

Theorem 1.5. [17] Let A0(z), . . . , Ak−1(z) be analytic functions in C− {z0}. Assume that

max{ρ[p,q](Aj , z0) : j = 1, . . . , k − 1} ≤ ρ[p,q](A0, z0) < +∞

and
max{τ[p,q],M (Aj , z0) : ρ[p,q](Aj , z0) = ρ[p,q](A0, z0) > 0} < τ[p,q],M (A0, z0) < +∞.

Then every solution f ̸≡ 0 that is analytic in C− {z0} of (1.1) satisfies ρ[p+1,q](f, z0) = ρ[p,q](A0, z0).
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The aim of this paper is to investigate the growth of solutions of (1.1) under different hypotheses. First, when
A0(z) is a dominating coefficient with lower [p, q]-order instead of [p, q]-order. Next, when there are other coefficients
having [p, q]-order equals the lower [p, q]-order of A0(z), we obtain the following theorems.

Theorem 1.6. Let A0(z), . . . , Ak−1(z) be analytic functions in C− {z0}. Assume that

max{ρ[p,q](Aj , z0) : j = 1, . . . , k − 1} < µ[p,q](A0, z0) ≤ ρ[p,q](A0, z0) < +∞.

Then every solution f ̸≡ 0 that is analytic in C− {z0} of (1.1) satisfies

µ[p,q](A0, z0) = µ[p+1,q](f, z0) ≤ ρ[p+1,q](f, z0) = ρ[p,q](A0, z0).

Theorem 1.7. Let A0(z), . . . , Ak−1(z) be analytic functions in C− {z0}. Assume that

max{ρ[p,q](Aj , z0) : j = 1, . . . , k − 1} ≤ µ[p,q](A0, z0) ≤ ρ[p,q](A0, z0) = ρ < +∞

and
τ1 = max{τ[p,q],M (Aj , z0) : ρ[p,q](Aj , z0) = µ[p,q](A0, z0) > 0} < τ [p,q],M (A0, z0) = τ < +∞.

Then every solution f ̸≡ 0 that is analytic in C−{z0} of (1.1) satisfies µ[p,q](A0, z0) = µ[p+1,q](f, z0) ≤ ρ[p+1,q](f, z0) =
ρ[p,q](A0, z0).

Theorem 1.8. Let A0(z), . . . , Ak−1(z) be analytic functions in C− {z0}. Assume that

max{ρ[p,q](Aj , z0) : j = 1, . . . , k − 1} ≤ µ[p,q](A0, z0) ≤ ρ[p,q](A0, z0) < +∞

and

lim sup
r−→0

∑k−1
j=1 mz0(r,Aj)

mz0(r,A0)
< 1.

Then every solution f ̸≡ 0 that is analytic in C− {z0} of (1.1) satisfies

µ[p,q](A0, z0) = µ[p+1,q](f, z0) ≤ ρ[p+1,q](f, z0) = ρ[p,q](A0, z0).

Remark 1.9. The following example shows that there exists a solution f of (1.1) such that f is not analytic in
C − {z0} provided that all coefficients Aj(z) (j = 0, . . . , k − 1) of (1.1) are analytic in C − {z0}. For instance, we
consider the equation

f ′′ +

(
exp2

{
1

z0 − z

}
+

1

z0 − z

)
f ′ +

2

z0 − z
exp2

{
1

z0 − z

}
f = 0. (1.2)

The function f (z) = (z0 − z)2 solves (1.2), and f is not analytic in C − {z0}. So, in our results, we suppose always
that f is analytic in C− {z0}.

2 Some useful lemmas

The following lemmas are important to prove our results.

Lemma 2.1. Let f be a nonconstant analytic function in C − {z0} with µ[p,q](f, z0) = µ < ∞. Then there exists a
set E ⊂ (0, 1) having infinite logarithmic measure such that for all |z − z0| = r ∈ E, we have

µ = lim
r−→0

log+p Tz0(r, f)

logq
1
r

= lim
r−→0

log+p+1 Mz0(r, f)

logq
1
r

= lim
r−→0

log+p Vz0(r, f)

logq
1
r

,

and for any given ε > 0 and all |z − z0| = r ∈ E

Mz0(r, f) ≤ expp

{(
logq−1

1

r

)µ+ε
}
.
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Proof . We use a similar proof as in ([16], Lemma 2.5). By the definition of the lower [p, q]-order, there exists a
sequence {rn}∞n=1 tending to 0 satisfying rn+1 < n

n+1rn and

lim
n−→∞

log+p+1 Mz0(rn, f)

logq
1
rn

= µ.

Therefore, there exists an integer n0 ≥ 1 such that for all n ≥ n0 and for any r ∈ [ n
n+1rn, rn], we get

log+p+1 Mz0(rn, f)

logq
1

n
n+1 rn

≤
log+p+1 Mz0(r, f)

logq
1
r

≤
log+p+1 Mz0(

n
n+1rn, f)

logq
1
rn

.

Since

lim
n−→+∞

log+p+1 Mz0(rn, f)

logq
1

n
n+1 rn

= lim
n−→+∞

log+p+1 Mz0(
n

n+1rn, f)

logq
1
rn

= µ,

for any r ∈
[

n
n+1rn, rn

]
, we get

lim
r−→0

log+p+1 Mz0(r, f)

logq
1
r

= µ.

Set E =
+∞⋃
n=n0

[
n

n+1rn, rn

]
. Then for any given ε > 0 and |z − z0| = r ∈ E

Mz0(r, f) ≤ expp

{(
logq−1

1

r

)µ+ε
}
,

where

ml(E) =

+∞∑
n=n0

∫ rn

n
n+1 rn

dt

t
=

+∞∑
n=n0

log

(
1 +

1

n

)
= +∞.

Similarly, we can prove the other results. □

Lemma 2.2. [17] Let f be a nonconstant analytic function in C− {z0} with ρ[p,q](f, z0) = ρ < ∞. Then there exists
a set E1 ⊂ (0, 1) having infinite logarithmic measure such that for all |z − z0| = r ∈ E1, we have

ρ = lim
r−→0

log+p Tz0(r, f)

logq
1
r

= lim
r−→0

log+p+1 Mz0(r, f)

logq
1
r

= lim
r−→0

log+p Vz0(r, f)

logq
1
r

,

and for any given ε > 0 and all |z − z0| = r ∈ E1

Tz0(r, f) ≥ expp

{
(ρ− ε) logq

1

r

}
.

Lemma 2.3. Let f be a nonconstant analytic function in C − {z0} with 0 < µ[p,q](f, z0) = µ < ∞ and 0 <
τ [p,q],M (f, z0) = τ < ∞. Then there exists a set E2 ⊂ (0, 1) having infinite logarithmic measure such that for all
|z − z0| = r ∈ E2, we have

Mz0(r, f) < expp

{
(τ + ε)

(
logq−1

1

r

)µ}
.

Proof . By the definition of lower [p, q]-order and lower [p, q]-type, there exists a sequence {rm}∞m=1 tending to 0
satisfying rm+1 < m

m+1rm and

lim
m→+∞

log+p Mz0(rm, f)(
logq−1

1
rm

)µ = τ .
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For any r ∈
[

m
m+1rm, rm

]
, we have

log+p Mz0(r, f)(
logq−1

1
r

)µ ≤
log+p Mz0(

m
m+1rm, f)(

logq−1
1
rm

)µ =
log+p Mz0(

m
m+1rm, f)(

logq−1
1

m
m+1 rm

)µ ·

(
logq−1

1
m

m+1 rm

)µ
(
logq−1

1
rm

)µ −→
m→+∞

τ .

Then, for any given ε > 0, there exists a positive integer m0 such that for all m ≥ m0 and for all r ∈
[

m
m+1rm, rm

]
,

we have

Mz0(r, f) < expp

{
(τ + ε)

(
logq−1

1

r

)µ}
.

Set E2 =
+∞⋃

m=m0

[
m

m+1rm, rm

]
. Then for any given ε > 0 and all |z − z0| = r ∈ E2

Mz0(r, f) < expp

{
(τ + ε)

(
logq−1

1

r

)µ}
,

where

ml(E2) =

+∞∑
m=m0

∫ rm

m
m+1 rm

dt

t
=

+∞∑
m=m0

log

(
1 +

1

m

)
= +∞.

□

Lemma 2.4. [5] Let f be a nonconstant meromorphic function in C− {z0}, let α > 1, ε > 0 be given real constants
and j ∈ N. Then there exist a set E3 ⊂ (0, r0] , (r0 ∈ (0, 1)) having finite logarithmic measure and a constant λ > 0
that depends on α and j such that for all |z − z0| = r ∈ (0, r0] \ E3, we have∣∣∣∣f (j)(z)

f(z)

∣∣∣∣ ≤ λ

[
1

r2
Tz0(

1

α
r, f) log Tz0(

1

α
r, f)

]j
.

Lemma 2.5. [7] Let f be a nonconstant analytic function in C− {z0}. Then, there exists a set E4 ⊂ (0, 1) that has
finite logarithmic measure, such that for all j = 0, 1, . . . , k, we have

f (j)(zr)

f(zr)
= (1 + o(1))

(
Vz0(r, f)

z0 − zr

)j

,

as r −→ 0, r /∈ E4, where zr is a point in the circle |z − z0| = r that satisfies |f(zr)| = max{|f(z)| : |z − z0| = r}.

Lemma 2.6. [17] Let g : (0, 1) → R, h : (0, 1) → R be monotone decreasing functions such that g(r) ≥ h(r) possibly
outside an exceptional set E5 ⊂ (0, 1) that has finite logarithmic measure. Then for any given δ > 1, there exists a
constant 0 < r1 < 1, such that for all r ∈ (0, r1), we have g(rδ) ≥ h(r).

Lemma 2.7. [17] Let f be a nonconstant meromorphic function in C− {z0}. Then the following statements hold:

(i) Tz0

(
r, 1

f

)
= Tz0 (r, f) +O (1) ;

(ii) Tz0 (r, f
′) < O

(
Tz0 (r, f) + log

1

r

)
, r ∈ (0, r2] \ E6, where E6 ⊂ (0, r2] with ml(E6) < +∞, r2 ∈ (0, 1) is a

constant.

3 Proof of theorems

Proof of Theorem 1.6.

Proof . We only need to prove that every solution f ̸≡ 0 that is analytic in C−{z0} of (1.1) satisfies µ[p+1,q](f, z0) =
µ[p,q](A0, z0), because we already have from Theorem 1.4, ρ[p+1,q](f, z0) = ρ[p,q](A0, z0). We rewrite (1.1) as

|A0(z)| ≤
∣∣∣∣f (k)(z)

f(z)

∣∣∣∣+ |Ak−1(z)|
∣∣∣∣f (k−1)(z)

f(z)

∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣f ′(z)

f(z)

∣∣∣∣ . (3.1)
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Set max{ρ[p,q](Aj , z0) : j = 1, . . . , k − 1} = ρ1 < µ[p,q](A0, z0). Then for any given ε (0 < 2ε < µ[p,q](A0, z0) − ρ1),
there exists r3 ∈ (0, 1) such that for all |z − z0| = r ∈ (0, r3), we have

Mz0(r,A0) ≥ expp

{(
logq−1

1

r

)µ[p,q](A0,z0)−ε
}

(3.2)

and

Mz0(r,Aj) ≤ expp

{(
logq−1

1

r

)ρ1+ε
}
, (j = 1, 2, . . . , k − 1). (3.3)

By Lemma 2.4, there exist a set E3 ⊂ (0, r0] , (r0 ∈ (0, 1)) that has a finite logarithmic measure and a constant λ > 0
that depends on α > 1 and j = 1, 2, . . . , k such that for all r = |z − z0| satisfying r ∈ (0, r0] \ E3, we obtain∣∣∣∣f (j)(z)

f(z)

∣∣∣∣ ≤ λ

[
1

r2
Tz0(

1

α
r, f) log Tz0(

1

α
r, f)

]j
, (j = 1, 2, . . . , k). (3.4)

Substituting (3.2)-(3.4) into (3.1), for the above ε and r ∈ (0, r0] ∩ (0, r3) \ E3, we have

expp

{(
logq−1

1

r

)µ[p,q](A0,z0)−ε
}

≤ λk expp

{(
logq−1

1

r

)ρ1+ε
}[

1

r2
Tz0(

1

α
r, f) log Tz0(

1

α
r, f)

]k
. (3.5)

By (3.5), we get

expp

{(
logq−1

1

r

)µ[p,q](A0,z0)−ε
}

≤ λk expp

{(
logq−1

1

r

)ρ1+ε
}[

1

r
Tz0(

1

α
r, f)

]2k
, (3.6)

for all |z−z0| = r ∈ (0, r0]∩ (0, r3)\E3 and |A0(z)| = Mz0(r,A0). By (3.6) and Lemma 2.6, we obtain µ[p+1,q](f, z0) ≥
µ[p,q](A0, z0)− ε. Since ε > 0 is arbitrary, we get

µ[p+1,q](f, z0) ≥ µ[p,q](A0, z0). (3.7)

By (1.1), we have ∣∣∣∣f (k)(z)

f(z)

∣∣∣∣ ≤ |Ak−1(z)|
∣∣∣∣f (k−1)(z)

f(z)

∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣f ′(z)

f(z)

∣∣∣∣+ |A0(z)|. (3.8)

By Lemma 2.5, there exists a set E4 ⊂ (0, 1) that has a finite logarithmic measure, such that for all j = 0, 1, . . . , k
and r ̸∈ E4, we have ∣∣∣∣f (j)(z)

f(z)

∣∣∣∣ = |1 + o(1)|
(
Vz0(r, f)

r

)j

, r −→ 0, (3.9)

where z is a point in the circle |z−z0| = r that satisfies |f(z)| = Mz0(r, f). By Lemma 2.1, there exists a set E ⊂ (0, 1)
having infinite logarithmic measure, such that for any given ε > 0 and for all |z − z0| = r ∈ E, we have

|A0(z)| ≤ Mz0(r,A0) ≤ expp

{(
logq−1

1

r

)µ[p,q](A0,z0)+ε
}
. (3.10)

By substituting (3.3), (3.9) and (3.10) into (3.8), for any given ε > 0 and for all |z − z0| = r ∈ E ∩ (0, r3) \ E4 and
|f(z)| = Mz0(r, f), we get

|1 + o(1)| (Vz0(r, f))
k ≤ kr expp

{(
logq−1

1

r

)µ[p,q](A0,z0)+ε
}
|1 + o(1)| (Vz0(r, f))

k−1
, (3.11)

then we obtain

Vz0(r, f) ≤ kr expp

{(
logq−1

1

r

)µ[p,q](A0,z0)+ε
}
|1 + o(1)|, r ∈ E ∩ (0, r3) \ E4. (3.12)

By Lemma 2.1, Lemma 2.6 and (3.12), we get µ[p+1,q](f, z0) ≤ µ[p,q](A0, z0) + ε. Since ε > 0 is arbitrary, we obtain

µ[p+1,q](f, z0) ≤ µ[p,q](A0, z0), (3.13)
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from (3.7) and (3.13), we obtain µ[p+1,q](f, z0) = µ[p,q](A0, z0). The proof is complete. □

Proof of Theorem 1.7

Proof . By Theorem 1.5, we have ρ[p+1,q](f, z0) = ρ[p,q](A0, z0). We only need to prove that µ[p+1,q](f, z0) =
µ[p,q](A0, z0). We set ρ2 = max{ρ[p,q](Aj , z0), ρ[p,q](Aj , z0) < µ[p,q](A0, z0) : j = 1, . . . , k − 1}. If ρ[p,q](Aj , z0) <

µ[p,q](A0, z0), then for any given ε
(
0 < 2ε < µ[p,q](A0, z0)− ρ2

)
, there exists r4 ∈ (0, 1) such that for all |z − z0| =

r ∈ (0, r4), we have

Mz0(r,Aj) ≤ expp

{(
logq−1

1

r

)ρ2+ε
}

≤ expp

{(
logq−1

1

r

)µ[p,q](A0,z0)−ε
}
, (j = 1, 2, . . . , k − 1). (3.14)

If ρ[p,q](Aj , z0) = µ[p,q](A0, z0), τ[p,q],M (Aj , z0) ≤ τ1 < τ = τ [p,q],M (A0, z0), then for any given ε (0 < 2ε < τ − τ1),
there exists r5 ∈ (0, 1) such that for all |z − z0| = r ∈ (0, r5), we have

Mz0(r,Aj) ≤ expp

{
(τ1 + ε)

(
logq−1

1

r

)µ[p,q](A0,z0)
}

(3.15)

and

Mz0(r,A0) ≥ expp

{
(τ − ε)

(
logq−1

1

r

)µ[p,q](A0,z0)
}
. (3.16)

By substituting (3.4) and (3.14)-(3.16) into (3.1), then for any given ε (0 < 2ε < min{µ[p,q](A0, z0)− ρ2, τ − τ1}), we
obtain

expp

{
(τ − ε)

(
logq−1

1

r

)µ[p,q](A0,z0)
}

≤ λk expp

{
(τ1 + ε)

(
logq−1

1

r

)µ[p,q](A0,z0)
}[

1

r
Tz0(

1

α
r, f)

]2k
, (3.17)

for all |z − z0| = r ∈ (0, r0] ∩ (0, r4) ∩ (0, r5) \ E3, r −→ 0 and |A0(z)| = Mz0(r,A0), where λ > 0 is a constant. By
Lemma 2.6 and (3.17), we have

µ[p+1,q](f, z0) ≥ µ[p,q](A0, z0). (3.18)

By Lemma 2.3, there exists a set E2 ⊂ (0, 1) having infinite logarithmic measure, such that for all |z − z0| = r ∈ E2,
we have

|A0(z)| ≤ Mz0(r,A0) ≤ expp

{
(τ + ε)

(
logq−1

1

r

)µ[p,q](A0,z0)
}
. (3.19)

By combining (3.8), (3.9), (3.14), (3.15) and (3.19), for all |z − z0| = r ∈ E2 ∩ (0, r4) ∩ (0, r5) \ E4, r −→ 0 and
|f(z)| = Mz0(r, f), we have

|1 + o(1)| (Vz0(r, f))
k ≤ kr expp

{
(τ + ε)

(
logq−1

1

r

)µ[p,q](A0,z0)
}
|1 + o(1)| (Vz0(r, f))

k−1
,

so

Vz0(r, f) ≤ kr expp

{
(τ + ε)

(
logq−1

1

r

)µ[p,q](A0,z0)
}
|1 + o(1)|. (3.20)

By Lemma 2.1, Lemma 2.6 and (3.20), we obtain

µ[p+1,q](f, z0) ≤ µ[p,q](A0, z0). (3.21)

Thus, from (3.18) and (3.21) we have
µ[p+1,q](f, z0) = µ[p,q](A0, z0),

which completes the proof. □

Proof of Theorem 1.8
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Proof . By (1.1), we have

mz0(r,A0) ≤
k−1∑
j=1

mz0(r,Aj) +

k∑
j=1

mz0

(
r,
f (j) (z)

f (z)

)
+O (1) . (3.22)

By Lemma 2.7, for a constant r2 ∈ (0, 1) , there is a set E6 ⊂ (0, r2] with ml(E6) < +∞ such that for all |z − z0| =
r ∈ (0, r2] \ E6, we have

k∑
j=1

mz0

(
r,
f (j) (z)

f (z)

)
≤ O

(
Tz0 (r, f) + log

1

r

)
. (3.23)

Setting lim supr−→0

∑k−1
j=1 mz0

(r,Aj)

mz0
(r,A0)

< β < 1. Then for r → 0, we have

k−1∑
j=1

mz0(r,Aj) < βmz0(r,A0). (3.24)

By substituting (3.23) and (3.24) into (3.22), we obtain for all |z − z0| = r ∈ (0, r2] \ E6, r → 0

(1− β)mz0(r,A0) ≤ O

(
Tz0 (r, f) + log

1

r

)
. (3.25)

By the definition of lower [p, q]−order, for any given ε > 0, there exists r6 ∈ (0, 1) such that for all |z−z0| = r ∈ (0, r6),
we have

mz0(r,A0) = Tz0(r,A0) ≥ expp

{(
µ[p,q](A0, z0)− ε

)
logq

1

r

}
. (3.26)

By (3.25) and (3.26), for any given ε > 0 and |z − z0| = r ∈ (0, r2] ∩ (0, r6) \ E6, r → 0, we obtain

(1− β) expp

{(
µ[p,q](A0, z0)− ε

)
logq

1

r

}
≤ O

(
Tz0 (r, f) + log

1

r

)
. (3.27)

By Definition 1.3, Lemma 2.6 and (3.27), we have µ[p+1,q](f, z0) ≥ µ[p,q](A0, z0)−ε. Since ε > 0 is arbitrary, we obtain

µ[p+1,q](f, z0) ≥ µ[p,q](A0, z0). (3.28)

Set max{ρ[p,q](Aj , z0) : j = 1, . . . , k − 1} = ρ3 ≤ µ[p,q](A0, z0) ≤ ρ[p,q](A0, z0). Then for any given ε > 0, there exists
r7 ∈ (0, 1) such that for all |z − z0| = r ∈ (0, r7), we have

Mz0(r,Aj) ≤ expp

{(
logq−1

1

r

)ρ3+ε
}

≤ expp

{(
logq−1

1

r

)µ[p,q](A0,z0)+ε
}
, (j = 1, 2, . . . , k − 1). (3.29)

By substituting (3.9), (3.10) and (3.29) into (3.8), for any given ε > 0 and for all |z − z0| = r ∈ E ∩ (0, r7) \ E4 and
|f(z)| = Mz0(r, f), we get

|1 + o(1)| (Vz0(r, f))
k ≤ kr expp

{(
logq−1

1

r

)µ[p,q](A0,z0)+ε
}
|1 + o(1)| (Vz0(r, f))

k−1
. (3.30)

By (3.30), for above ε, we get

Vz0(r, f) ≤ kr expp

{(
logq−1

1

r

)µ[p,q](A0,z0)+ε
}
|1 + o(1)|, (3.31)

where |z − z0| = r ∈ E ∩ (0, r7) \ E4 and |f(z)| = Mz0(r, f). By (3.31), Lemma 2.6 and Lemma 2.1, we obtain
µ[p+1,q](f, z0) ≤ µ[p,q](A0, z0) + ε. Since ε > 0 is arbitrary, we obtain

µ[p+1,q](f, z0) ≤ µ[p,q](A0, z0). (3.32)

Thus, from (3.28) and (3.32) we have
µ[p+1,q](f, z0) = µ[p,q](A0, z0).
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By using similar method, from (3.25) we have for |z − z0| = r ∈ (0, r2] \ E6, r → 0

(1− β)Tz0(r,A0) = (1− β)mz0(r,A0) ≤ O

(
Tz0 (r, f) + log

1

r

)
. (3.33)

By Lemma 2.2, there exists a set E1 ⊂ (0, 1) having infinite logarithmic measure such that for any given ε > 0 and all
|z − z0| = r ∈ E1

Tz0(r,A0) ≥ expp

{(
ρ[p,q](A0, z0)− ε

)
logq

1

r

}
. (3.34)

By substituting (3.34) into (3.33), we obtain for any given ε > 0 and all |z − z0| = r ∈ E1 ∩ (0, r2] \ E6, r → 0

(1− β) expp

{(
ρ[p,q](A0, z0)− ε

)
logq

1

r

}
≤ (1− β)Tz0(r,A0) ≤ O

(
Tz0 (r, f) + log

1

r

)
. (3.35)

Making use of Lemma 2.6 and Lemma 2.1, from (3.35), we get

ρ[p+1,q](f, z0) ≥ ρ[p,q](A0, z0). (3.36)

By the definition of the [p, q]-order of ρ[p,q](A0, z0) for any given ε > 0, there exists r8 ∈ (0, 1) such that for all
|z − z0| = r ∈ (0, r8), we have

Mz0(r,A0) ≤ expp

{(
logq−1

1

r

)ρ[p,q](A0,z0)+ε
}
. (3.37)

Also by substituting (3.9), (3.29), (3.37) into (3.8), for any given ε > 0 and for all |z − z0| = r ∈ (0, r7) ∩ (0, r8) \ E4

and |f(z)| = Mz0(r, f), we can find that

Vz0(r, f) ≤ kr expp

{(
logq−1

1

r

)ρ[p,q](A0,z0)+ε
}
|1 + o(1)|. (3.38)

By using Definition 1.2, Lemma 2.6 and (3.38), we get

ρ[p+1,q](f, z0) ≤ ρ[p,q](A0, z0). (3.39)

Thus, from (3.36) and (3.39), we conclude that

ρ[p+1,q](f, z0) = ρ[p,q](A0, z0).

The proof is complete. □

4 Examples

Example 4.1. f(z) = exp3

{
1

(z0−z)2n+1

}
solves the following equation

f ′′ +A1(z)f
′ +A0(z)f = 0, (4.1)

where

A0(z) = − (2n+ 1)2

(z0 − z)4n+4
exp

{
2 exp

(
1

(z0 − z)2n+1
+

2

(z0 − z)2n+1

)}
and

A1(z) =
2n+ 1

(z0 − z)2n+2
exp

{
1

(z − z0)2n+1

}
+

2n+ 1

(z0 − z)2n+2
+

2n+ 2

z0 − z
.

We have
ρ[2,1](A1, z0) = 0 < µ[2,1](A0, z0) = ρ[2,1](A0, z0) = 2n+ 1

Obviously, the conditions of Theorem 1.6 are satisfied and we see that

µ[2,1](A0, z0) = ρ[2,1](A0, z0) = µ[3,1](f, z0) = ρ[3,1](f, z0) = 2n+ 1.
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Example 4.2. f(z) = 1
(z0−z)n exp2

{
1

(z0−z)n+1

}
solves the following equation

f ′′′ +A2(z)f
′′ +A1(z)f

′ +A0(z)f = 0, (4.2)

where

A0(z) =
n(n+ 1)2

(z0 − z)3n+6
exp

{
3

(z0 − z)n+1

}

+

(
(n+ 1)2(3n+ 2)

(z0 − z)3n+6
+

(n+ 1)
(
5n2 + 7n+ 3

)
(z0 − z)2n+5

)
exp

{
2

(z0 − z)n+1

}

+

(
(n+ 1)3

(z0 − z)3n+6
+

6(n+ 1)3

(z0 − z)2n+5
+

6(n+ 1)3

(z0 − z)n+4

)
exp

{
1

(z0 − z)n+1

}
+

n(n+ 1)(n+ 2)

(z0 − z)3
,

A1(z) = − (n+ 1)2

(z0 − z)n+3
exp

{
1

(z0 − z)n+1

}
and

A2(z) =
1

(z0 − z)n+2
exp

{
1

(z0 − z)n+1

}
.

We have
max

{
ρ[1,1](A2, z0), ρ[1,1](A1, z0)

}
= max {n+ 1, n+ 1} = n+ 1

= µ[1,1](A0, z0) = ρ[1,1](A0, z0)

and
max

{
τ[1,1],M (A2, z0), τ[1,1],M (A1, z0)

}
= 1 < τ [1,1],M (A0, z0) = 3.

It is clear that the conditions of Theorem 1.7 are satisfied and we see that

µ[1,1](A0, z0) = ρ[1,1](A0, z0) = µ[2,1](f, z0) = ρ[2,1](f, z0) = n+ 1.

Example 4.3. f(z) = exp2

{
1

2(z0−z)

}
is a solution to equation (4.2) for the following coefficients

A0(z) =
1

8(z0 − z)6
exp

{
3

2(z0 − z)

}
,

A1(z) =

(
− 3

(z0 − z)3
− 1

2(z0 − z)4

)
exp

{
1

2(z0 − z)

}
− 2

(z0 − z)3
− 6

(z0 − z)2

and

A2(z) =
1

2(z0 − z)2
.

We have
max

{
ρ[1,1](A2, z0), ρ[1,1](A1, z0)

}
= max {0, 1} = 1

= µ[1,1](A0, z0) = ρ[1,1](A0, z0),

lim sup
r−→0

mz0(r,A2) +mz0(r,A1)

mz0(r,A0)
=

1

3
< 1.

Obviously the conditions of Theorem 1.8 are verified and we see that

µ[1,1](A0, z0) = ρ[1,1](A0, z0) = µ[2,1](f, z0) = ρ[2,1](f, z0) = 1.
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[2] B. Beläıdi, Growth and oscillation theory of p, q]-order analytic solutions of linear equations in the unit disc, J.
Math. Anal. 3 (2012), no. 1, 1–11
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[13] Z. Latreuch and B. Beläıdi. Linear differential equations with analytic coefficients of [p,q]-order in the unit disc,
Sarajevo J. Math. 9(21) (2013), no. 1, 71–84.

[14] L. M. Li and T. B. Cao, Solutions for linear differential equations with meromorphic coefficients of [p, q]-order
in the plane, Electron. J. Diff. Equ. 2012 (2012), no. 195, 1–15.

[15] J. Liu, J. Tu and L. Z. Shi, Linear differential equations with entire coefficients of [p, q]-order in the complex
plane, J. Math. Anal. Appl. 372 (2010), 55–67.

[16] Y. Liu, J. Long and S. Zeng, On relationship between lower-order of coefficients and growth of solutions of complex
differential equations near a singular point, Chin. Quart. J. of Math. 35 (2020), no. 2, 163–170.

[17] J. Long and S. Zeng, On [p,q]-order of growth of solutions of complex linear differential equations near a singular
point, Filomat 33 (2019), no. 13, 4013–4020.

[18] J. Tu and Z. X. Xuan, Complex linear differential equations with certain analytic coefficients of [p,q]-order in the
unit disc, Adv. Difference Equ. 2014 (2014), Paper No 167, 12 pages.

[19] J. Tu and H. X. Huang, Complex oscillation of linear differential equations with analytic coefficients of [p,q]-order
in the unit disc, Comput. Methods Funct. Theory 15 (2015), no. 2, 225–246.

[20] H.Y. Xu, J. Tu and Z.X. Xuan, The oscillation on solutions of some classes of linear differential equations with
meromorphic coefficients of finite [p, q]-order, Sci. World J. 2013 (2013), Article ID 243873, 8 pages.

[21] C.C. Yang and H.X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557.
Kluwer Academic Publishers Group, Dordrecht, 2003.


	Introduction and main results
	Some useful lemmas
	Proof of theorems
	Examples

