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Abstract

In this paper, a common zero of a finite family of monotone operators on Hadamard spaces is approximated via
Mann-type proximal point algorithm. Some applications in convex minimization and fixed point theory are also
presented.
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1 Basic definitions and preliminaries

Let (X, d) be a metric space and x, y ∈ X. A geodesic path joining x to y is an isometry c : [0, d(x, y)] −→ X such
that c(0) = x, c(d(x, y)) = y. The image of a geodesic path joining x to y is called a geodesic segment between x and
y. The metric space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is
said to be uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X.

Definition 1.1. A geodesic space (X, d) is a CAT(0) space if satisfies the following inequality:
CN − inequality: If x, y0, y1, y2 ∈ X such that d(y0, y1) = d(y0, y2) =

1
2d(y1, y2), then

d2(x, y0) ≤
1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2).

A complete CAT(0) space is called a Hadamard space.

It is known that a CAT(0) space is an uniquely geodesic space. For other equivalent definitions and basic properties,
we refer the reader to the standard texts such as [5, 8, 11, 16, 20]. Some examples of CAT(0) spaces are pre-Hilbert
spaces (see [8]), R-trees (see [25]), Euclidean buildings (see [9]), the complex Hilbert ball with a hyperbolic metric (see
[15]), Hadamard manifolds and many others.

For all x and y belongs to a CAT(0) space X, we write (1− t)x⊕ ty for the unique point z in the geodesic segment
joining from x to y such that d(z, x) = td(x, y)andd(z, y) = (1 − t)d(x, y). Set [x, y] = {(1 − t)x ⊕ ty : t ∈ [0, 1]}, a
subset C of X is called convex if [x, y] ⊆ C for all x, y ∈ C.
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Lemma 1.2. [8] A geodesic space (X, d) is a CAT(0) space if and only if, for all x, y, z, w ∈ X and all t ∈ [0, 1],

d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y). (1.1)

In this case:

(1) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z); and

(2) d(tx⊕ (1− t)y, tz ⊕ (1− t)w) ≤ td(x, z) + (1− t)d(y, w).

A Hadamard space X is called a flat Hadamard space if and only if the inequality in (1.1) is an equality. Every
closed convex subset of a Hilbert space is a flat Hadamard space.

A notation of convergence in complete CAT(0) spaces was introduced by Lim [27] that is called ∆-convergence as
follows:

Let (xn) be a bounded sequence in complete CAT(0) space (X, d) and x ∈ X. Set r(x, (xn)) = lim supn→∞ d(x, xn).
The asymptotic radius of (xn) is given by r((xn)) = inf{r(x, (xn)) : x ∈ X} and the asymptotic center of (xn) is the
set A((xn)) = {x ∈ X : r(x, (xn)) = r((xn))}. It is known that in the complete CAT(0) spaces, A((xn)) consists
exactly one point (see [26]). A sequence (xn) in the complete CAT(0) space (X, d) is said ∆-convergent to x ∈ X if
A((xnk

)) = {x} for every subsequence (xnk
) of (xn). The concept of ∆-convergence has been studied by many authors

(e.g. [12, 14]).

Berg and Nikolaev [6] have introduced the concept of quasilinearization for CAT(0) space X. They denote a pair

(a, b) ∈ X ×X by
−→
ab and called it a vector. Then the quasilinearization map ⟨.⟩ : (X ×X)× (X ×X) → R is defined

by

⟨
−→
ab,

−→
cd⟩ = 1

2 (d
2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), (a, b, c, d ∈ X).

It can be easily verified that ⟨
−→
ab,

−→
ab⟩ = d2(a, b), ⟨

−→
ba,

−→
cd⟩ = −⟨

−→
ab,

−→
cd⟩ and ⟨

−→
ab,

−→
cd⟩ = ⟨−→ae,

−→
cd⟩ + ⟨

−→
eb,

−→
cd⟩ are

satisfied for all a, b, c, d, e ∈ X. Also, we can formally add compatible vectors, more precisely −→ac +
−→
cb =

−→
ab, for all

a, b, c ∈ X. We say that X satisfies the Cauchy-Schwarz inequality if

⟨
−→
ab,

−→
cd⟩ ≤ d(a, b)d(c, d), (a, b, c, d ∈ X).

It is known [6, Corollary 3] that a geodesically connected metric space is a CAT(0) space if and only if it satisfies
the Cauchy-Schwarz inequality. Ahmadi Kakavandi and Amini [2] have introduced the concept of dual space of a
complete CAT(0) space X, based on a work of Berg and Nikolaev [6], as follows.
Consider the map Θ : R×X ×X → C(X,R) defined by

Θ(t, a, b)(x) = t⟨
−→
ab,−→ax⟩, (t ∈ R, a, b, x ∈ X),

where C(X,R) is the space of all continuous real-valued functions on X. Then the Cauchy-Schwarz inequality implies
that Θ(t, a, b) is a Lipschitz function with Lipschitz semi-norm L(Θ(t, a, b)) = |t|d(a, b) (t ∈ R, a, b ∈ X), where

L(φ) = sup{φ(x)−φ(y)
d(x,y) : x, y ∈ X,x ̸= y} is the Lipschitz semi-norm for any function φ : X → R. A pseudometric D

on R×X ×X is defined by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b)−Θ(s, c, d)), (t, s ∈ R, a, b, c, d ∈ X).

For a Hadamard space (X, d), the pseudometric space (R × X × X,D) can be considered as a subspace of
the pseudometric space of all real-valued Lipschitz functions (Lip(X,R), L). It is obtained [2, Lemma 2.1], that

D((t, a, b), (s, c, d)) = 0 if and only if t⟨
−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩, for all x, y ∈ X. Thus, D can impose an equivalent relation

on R×X ×X, where the equivalence class of (t, a, b) is

[t
−→
ab] = {s

−→
cd : D((t, a, b), (s, c, d)) = 0}.

The set X∗ = {[t
−→
ab] : (t, a, b) ∈ R × X × X} is a metric space with metric D([t

−→
ab], [s

−→
cd]) := D((t, a, b), (s, c, d)),

which is called the dual space of (X, d). It is clear that [−→aa] = [
−→
bb] for all a, b ∈ X. Fix o ∈ X, we write 0 = [−→oo] as

the zero of the dual space. In [2], it is shown that the dual of a closed and convex subset of Hilbert space H with

nonempty interior is H and t(b− a) ≡ [t
−→
ab] for all t ∈ R, a, b ∈ H. Note that X∗ acts on X ×X by
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⟨x∗,−→xy⟩ = t⟨
−→
ab,−→xy⟩, (x∗ = [t

−→
ab] ∈ X,x, y ∈ X).

Also, we use the following notation:

⟨αx∗ + βy∗,−→xy⟩ := α⟨x∗,−→xy⟩+ β⟨y∗,−→xy⟩, (α, β ∈ R, x, y ∈ X, x∗, y∗ ∈ X∗).

Ahmadi Kakavandi [1] proved that (xn) ∆-converges to x ∈ X if and only if lim supn→∞⟨−−→xxn,
−→xy⟩ ≤ 0, ∀y ∈ X.

Definition 1.3. [19] Let X be a Hadamard space with dual space X∗. The multi-valued operator A : X → 2X
∗
with

domain D(A) := {x ∈ X : A(x) ̸= ∅}, is monotone iff for all x, y ∈ D(A), x ̸= y, x∗ ∈ Ax, y∗ ∈ Ay,

⟨x∗ − y∗,−→yx⟩ ≥ 0.

In the following, we present some properties of resolvent operator of a monotone operator in CAT(0) spaces which
verified in [24].

Definition 1.4. [24] Let λ > 0 and A : X → 2X
∗
be a set-valued operator. The resolvent of A of order λ is the

set-valued mapping Jλ : X → 2X defined by Jλ(x) := {z ∈ X | [ 1λ
−→zx] ∈ Az}.

Definition 1.5. [24] Let T : C ⊂ X → X be a mapping. We say that T is firmly nonexpansive if d2(Tx, Ty) ≤
⟨
−−−→
TxTy,−→xy⟩, for any x, y ∈ C.

By the definition and Cauchy-Schwarz inequality, it is clear that any firmly nonexpansive mapping T is nonexpan-
sive.

Theorem 1.6. [24] Let X be a CAT(0) space and Jλ is resolvent of the operator A of order λ. We have;
(i) For any λ > 0, R(Jλ) ⊂ D(A), F (Jλ) = A−1(0).
(ii) If A is monotone then Jλ is a single-valued and firmly nonexpansive mapping.
(iii) If A is monotone and λ ≤ µ then d(x, Jλx) ≤ 2d(x, Jµx).

Remark 1.7. [24, Remark 3.10] It is well-known that if T is a nonexpansive mapping on subset C of CAT(0) space
X then F (T ) is closed and convex. Thus, if A is a monotone operator on CAT(0) space X then, by parts (i) and (ii)
of Theorem 1.6, A−1(0) is closed and convex.

The following lemma is generalization of Opial lemma in CAT(0) space.

Lemma 1.8. [31, Lemma 2.1] Let (X, d) be a CAT(0) space and (xn) a sequence in X. If there exists a nonempty
subset F of X verifying:

(i) For every z ∈ F , limn d(xn, z) exists.

(ii) If a subsequence (xnj
) of (xn) is ∆-convergent to x ∈ X, then x ∈ F .

Then, there exists p ∈ F such that (xn) ∆-converges to p in X.

2 The direction of the research

Monotone operator theory is an area of research in nonlinear and convex analysis that has continued to attract
the interest of many researchers due to the role it plays in mathematical problems such as optimization, equilibrium
problems, variational inequality, evolution equations and semigroup theory. Approximation of a common zero of a
finite family of monotone operators is one of the most important parts in monotone operator theory.

Martinet [28] and, systematically, Rockafellar [33] introduced the proximal point algorithm for approximation of a
zero of a monotone operator which is one of the most popular methods in this field. This algorithm is defined by:

xn−1 − xn ∈ λnA(xn), x0 ∈ H, (2.1)

where (λn) is a sequence of positive real numbers and A is a monotone operator. In fact, Rockafellar [33] showed
the weak convergence of the sequence generated (2.1) to a zero of the maximal monotone operator in Hilbert spaces
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provided λn ≥ λ > 0, ∀n ≥ 1. Another algorithm for approximation a zero of the monotone operator A, is proposed
by Kamimura and Takahashi [21] that is Mann-type proximal point algorithm{

xn+1 = αnxn + (1− αn)J
A
λn

xn,

x0 ∈ H,
(2.2)

where (αn) ⊂ [0, 1]. They proved weak convergence of (2.2) in Hilbert space with the conditions αn ≤ α < 1 and
limλn = ∞ on the control sequences (αn) and (λn). For some generalization of (2.1) in Hilbert spaces the reader
can consult [10, 13, 17, 22, 29]. In the last decade, the development and generalization of the results from the Hilbert
spaces to the Hadamard spaces has attracted the attention of many researchers.

Bačák [4] proved the ∆-convergence of proximal point algorithm in CAT(0) spaces when the operator A is the
subdifferential of a convex, proper, and lower semicontinuous function. Khatbzaedeh and author [24] considered some
properties of a monotone operator and its resolvent operator in CAT(0) spaces and extended the proximal point
algorithm in general case to Hadamrd spaces, as:{

[ 1
λn

−−−−−→xnxn−1] ∈ Axn,

x0 ∈ X.
(2.3)

They proved ∆-convergence of (2.3) to a zero of monotone operator A in Hadamard spaces. Also, w-convergence
(in the sense of Ahmadi Kakavandi and Amini [2]) of (2.3) to a zero of monotone operator A is considered in [30].
Recently, the author and Khatibzadeh [32] improved and generalized the result of Kamimura and Takahashi [21] to
Hadamard spaces. In fact, they proved ∆-convergence of{

xn+1 = αnxn ⊕ (1− αn)J
A
λn

xn,

x0 ∈ X,

to a zero of the monotone operator A on Hadamard space X. Very recently, Heydari, Khadem and the author [18]
considered the modified proximal point algorithm{

xn+1 =
∏k

i=1 J
Ai

λ(n,i)
xn := JA1

λ(n,1)
oJA2

λ(n,2)
o...oJAk

λ(n,k)
xn,

x0 ∈ X,
(2.4)

where {Ai}ki=1 is a finite family of monotone operators on the Hadamard space X with dual X∗ and (λ(n,i)) for
i = 1, 2, ..., k are some sequences of nonnegative real numbers. They established ∆-convergence of (2.4) to a common
zero of finite family {Ai}ki=1 of monotone operators in Hadamard spaces. Motivated and inspired by the research going
on in this direction, our purpose in this paper is to consider the modified Mann-type proximal point algorithm{

xn+1 = αnxn ⊕ (1− αn)
∏k

i=1 J
Ai

λ(n,i)
xn,

x0 ∈ X,
(2.5)

where {Ai}ki=1 is a finite family of monotone operators on the Hadamard space X with dual X∗, (αn) ⊆ [0, 1] and
(λ(n,i)) for i = 1, 2, ..., k are some sequences of nonnegative real numbers. We prove ∆-convergence of the sequence

generated by (2.5) to a common zero of finite family {Ai}ki=1 of monotone operators in Hadamard spaces under
conditions lim supn αn < 1 and λ(n,i) ≥ λ > 0. Some applications in convex minimization and fixed point theory are
also peresented to support our results. Our results improved and extended some results in [7, 12, 18, 21, 24, 32] and
many others in the literatures.

3 ∆-convergence to a common zero of monotone operators

Let X be a Hadamard space with dual X∗. We say that the operator A : X → 2X
∗
satisfies the range condition

if for every λ > 0, D(JA
λ ) = X. It is known that if A is a maximal monotone operator on the Hilbert space H then

R(I + λA) = H, ∀λ > 0, where I is the identity operator. Thus, every maximal monotone operator A on a Hilbert
space satisfies the range condition. Also as it has shown in [3], if A is a maximal monotone operator on a Hadamard
manifold, then A satisfies the range condition. For presenting some examples of monotone operators that satisfy the
range condition in CAT(0) spaces, refer to [24, Sections 5 and 6].
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Let A1, A2, ..., Ak : X → 2X
∗
be a multi-valued monotone operators on the Hadamard space X with dual X∗

that satisfy the range condition and (λ(n,i)) for i = 1, 2, ..., k be some sequences of nonnegative real numbers. In this
section, for approximate a common zero of a finite family of monotone operators in Hadamard spaces, we propose
Mann-type proximal point algorithm

xn+1 = αnxn ⊕ (1− αn)z
1
n, (3.1)

where x0 ∈ X,
zin = JAi

λ(n,i)
zi+1
n , for i ∈ {1, 2, ..., k},

and zk+1
n = xn, for all n ∈ N. In following theorem, ∆-convergence of the sequence generated by (3.1) to a common

zero of a finite family of monotone operators in Hadamard spaces is established.

Theorem 3.1. Let X be a Hadamard space with dual X∗ and A1, A2, ..., Ak : X → 2X
∗
be multi-valued monotone

operators that satisfy the range condition and
⋂k

i=1 A
−1
i (0) ̸= ∅. If (λ(n,i)) for i = 1, 2, ..., k are some sequences of

nonnegative real numbers such that for each (n, i), λ(n,i) ≥ λ for some λ > 0, and (αn) is a sequence in [0, 1] such
that lim supn αn < 1 then the sequence generated by the Mann-type proximal point algorithm (3.1) is ∆-converges to
a point p ∈ A−1(0).

Proof . Let p ∈
⋂k

i=1 A
−1
i (0). Then 0 ∈ Aip for i ∈ {1, 2, ..., k}. By the definition of the resolvent operator, we get

[
1

λ(n,i)

−−−−→
zinz

i+1
n ] ∈ Ai(z

i
n), for i ∈ {1, 2, ..., k},

hence by the monotonicity of Ai, for i ∈ {1, 2, ..., k} one has

⟨[ 1

λ(n,i)

−−−−→
zinz

i+1
n ]− 0,

−→
pzin⟩ ≥ 0,

or equivalently,
d2(zi+1

n , p)− d2(zin, p) ≥ d2(zi+1
n , zin), for i ∈ {1, 2, ..., k}. (3.2)

By summing the inequality (3.2) from i = 1 to i = k, we get

d2(p, xn)− d2(p, z1n) ≥
k∑

i=1

d2(zi+1
n , zin) ≥ 0. (3.3)

This follows that
d(p, z1n) ≤ d(p, xn). (3.4)

Thus,

d(xn+1, p) ≤ αnd(xn, p) + (1− αn)d(z
1
n, p) ≤ d(xn, p).

Therefore, there exists limn d(xn, p) and the sequence (xn) is bounded. Hence,

0 = lim
n
(d(xn+1, p)− d(xn, p))

≤ lim inf
n

(αnd(xn, p) + (1− αn)d(z
1
n, p)− d(xn, p))

= lim inf
n

(1− αn)(d(z
1
n, p)− d(xn, p))

≤ lim sup
n

(1− αn)(d(z
1
n, p)− d(xn, p))

≤ lim sup
n

(1− αn)(d(xn, p)− d(xn, p)) = 0,

which implies limn(1− αn)(d(z
1
n, p)− d(xn, p)) = 0. By the assumptions, we get

lim
n
(d(z1n, p)− d(xn, p)) = 0. (3.5)

which by (3.3) implies
lim

n→∞
d(zin, z

i+1
n ) = 0, for i ∈ {1, 2, ..., k}. (3.6)
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This, together with the convexity of the metric d, follows

lim
n→∞

d(xn, z
i
n) = 0, for i ∈ {1, 2, ..., k}. (3.7)

Moreover, by the assumptions and part (iii) of the Theorem 1.6, we have

d(JAi

λ zi+1
n , zi+1

n ) ≤ 2d(zin, z
i+1
n ), for i ∈ {1, 2, ..., k}, (3.8)

which, by (3.6), implies
lim

n→∞
d(JAi

λ zi+1
n , zi+1

n ) = 0, for i ∈ {1, 2, ..., k}. (3.9)

Now if (xnj
) is a subsequence of (xn) which is ∆-convergent to the point q then for i ∈ {1, 2, ..., k}, by (3.7), we

get

lim sup
j

⟨
−−→
zinj

q,−→xq⟩ = lim sup
j

(⟨
−−−−→
zinj

xnj ,
−→xq⟩+ ⟨−−→xnjq,

−→xq⟩)

≤ lim sup
j

⟨
−−−−→
zinj

xnj
,−→xq⟩+ lim sup

j
⟨−−→xnj

q,−→xq⟩

≤ lim sup
j

d(xnj
, zinj

)d(x, q) + lim sup
j

⟨xnj
q, xq⟩

≤ 0,

which implies the subsequence (zinj
) is ∆-convergent to q for i ∈ {1, 2, ..., k}. Hence by (3.9) and ∆-demicloseness of

nonexpansive mapping JAi

λ , we obtain q ∈ A−1
i (0), for i ∈ {1, 2, ..., k} which follows q ∈

⋂k
i=1 A

−1
i (0). Therefore, we

proved that

(1) for every p ∈
⋂k

i=1 A
−1
i (0), limn d(xn, p) exists,

(2) if subsequence (xnj
) of (xn) is ∆-convergent to q ∈ X, then q ∈

⋂k
i=1 A

−1
i (0).

Hence, Lemma 1.8 completes the proof. □

Remark 3.2. If for every n ∈ N, αn = 0 in theorem 3.1, then the result [18, Theorem 3.1] is obtaind. Therefore
Theorem 3.1 improved and extended several results in [18, 21, 24, 32] and many others in the literatures.

4 Application in convex minimization

Approximation of a common minimizer of a finite family of the proper, convex and lower semicontinuous functions
is one of the most important applications of Theorem 3.1. Let (X, d) be a Hadamard space. In [2], the subdifferential
of a proper function on a Hadamard space X was defined, as follows.

Definition 4.1. [2] Let X be a Hadamard space with dual X∗ and f : X →] −∞,+∞] be a proper function with
efficient domain D(f ) := {x : f (x ) < +∞}, then the subdifferential of f is the multi-valued function ∂f : X → 2X

∗

defined by

∂f(x) = {x∗ ∈ X∗ : f(z)− f(x) ≥ ⟨x∗,−→xz⟩ (z ∈ X)},

when x ∈ D(f ) and ∂f(x) = ∅, otherwise.

Theorem 4.2. [2, Theorem 4.2] and [24, Proposition 5.2] Let f : X →]−∞,+∞] be a proper, lower semicontinuous
and convex function on a Hadamard space X with dual X∗, then

(i) f attains its minimum at x ∈ X if and only if 0 ∈ ∂f(x).

(ii) ∂f : X → 2X
∗
is a monotone operator.

(iii) for any y ∈ X and α > 0, there exists a unique point x ∈ X such that [α−→xy] ∈ ∂f(x). (i.e. D(J∂f
λ ) = X, for

all λ > 0).
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Note that part (iii) of Theorem 4.2 shows that subdifferential of a convex, proper and lower semicontinuous function
satisfies the range condition. Let f : X →] − ∞,+∞] be a proper, lower semicontinuous and convex function on a
Hadamard space X with dual X∗. By [24, Proposition 5.3], for all λ ≥ 0 and x ∈ X, we have

J∂f
λ x = argmin

z∈X
{f(z) + 1

2λ
d2(z, x)},

In the following theorem, ∆-convergence of Mann type proximal point algorithm to a common minimizer of a finite
family of the proper, convex and lower semicontinuous functions is established.

Theorem 4.3. Let (X, d) be a Hadamard space with dual X∗ and f1, f2, ..., fk be proper, convex and lower semi-

continuous functions from Hadamard space X to ]−∞,+∞] such that
⋂k

i=1 Argminfi ̸= ∅. If (λ(n,i)) for i = 1, 2, ..., k
are some sequences of nonnegative real numbers such that for each (n, i), λ(n,i) ≥ λ for some λ > 0 and (αn) is a
sequence in [0, 1] such that lim supn αn < 1 then the sequence generated by

xn+1 = αnxn ⊕ (1− αn)z
1
n, (4.1)

where x0 ∈ X,
zin = J∂fi

λ(n,i)
zi+1
n , for i ∈ {1, 2, ..., k},

and zk+1
n = xn, for all n ∈ N is ∆-convergent to the point p ∈

⋂k
i=1 argmin fi that is a common minimum of fi.

Proof . Define Ai := ∂fi, for i = 1, 2, ..., k, then each operator Ai = ∂fi is a monotone operator that satisfies the
range condition. Therefore we can use Theorem 3.1 to get the desired result. □

Example 4.4. Let (X, d) be a Hadamard space. Given a finite number of points a1, a2, ..., an and (w1, w2, ...wn) ∈ S
where S is the convex hull of the canonical basis e1, e2, ..., en ∈ Rn. Define f : X → R with f(x) =

∑n
k=1 wkd

2(x, ak).
The function f is convex and continuous which has a unique minimizer (see [5, Proposition 2.2.17]) that is called the
mean of the points a1, a2, ..., an. Employing the the Theorems 4.3 for this function, then the sequences generated
by (4.1) is ∆-convergent to the mean of the points a1, a2, ..., an. For some applications of this function, we refer the
reader to the book by Bač’ak [5].

5 Application in fixed point theory

Let I be the identity mapping and T be a nonexpansive selfmapping on Hilbert space H, then I − T is maximal
monotone and hence it satisfies the range condition. Suppose (X, d) is a Hadamard space with dual X∗ and T : X → X

is a nonexpansive mapping. Define A : X −→ 2X
∗
with Az = [

−−→
Tzz], then F (T ) = A−1(0) and Proposition 4.2 of [23]

shows the operator Az = [
−−→
Tzz] is a monotone operator. We refer the reader to [24, Section 6], to consider the range

condition for the operator Az = [
−−→
Tzz].

In the following theorem, we approximate a common fixed point of a finite family of nonexpansive mappings by
a modified version of Mann iteration with condition lim supn αn < 1 on the control sequence (αn). This condition
is better than the condition

∑
αn = ∞ and lim supn αn < 1 and is different from the condition

∑
αn(1 − αn) = ∞

which are used in literatures.

Theorem 5.1. Let (X, d) be a Hadamard space and T1, T2, ..., Tk be nonexpansive selfmappings on X such that⋂k
i=1 F (Ti) ̸= ∅ and the operators Aiz = [

−−→
Tizz], for i = 1, 2, ..., k, satisfy the range condition. If (λ(n,i)) is a sequence

of nonnegative real numbers such that for each (n, i), λ(n,i) ≥ λ for some λ > 0 and (αn) is a sequence in [0, 1] such
that lim supn αn < 1 then the sequence generated by

xn+1 = αnxn ⊕ (1− αn)z
1
n, (5.1)

where x0 ∈ X,
zin = JAi

λ(n,i)
zi+1
n , for i ∈ {1, 2, ..., k},

and zk+1
n = xn, for all n ∈ N is ∆-convergent to the point p ∈

⋂k
i=1 F (Ti).

Proof . The proof is deducted from Theorem 3.1, taking into account that the fixed points of the operators Ti are
the zeroes of the operators Ai for all i ∈ {1, 2, ..., n}. □
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Example 5.2. Let (X, d) be a flat Hadamard space and y ∈ X. For i = 1, 2, 3, ..., k, set Tix =
1

i+ 1
x⊕ i

i+ 1
y. Then

Ti is a nonexpansive mapping for every i ∈ {1, 2, ..., k}. Therefore, by [24, Proposition 6.4.], the monotone operators

Aix = [
−−→
Tixx], for i = 1, 2, ..., k, satisfy the range condition. Set λn,i = n + i, for all n, i ∈ N and αn =

1

n2 + 2
for all

n ∈ N. Then the conditions of Theorem 5.1 are satisfied. Hence the sequence generated by (5.1) ∆-converges to the

point y ∈
⋂k

i=1 F (Ti).
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