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Abstract

The aim of the current research is to analyze the transient thermoelastic bending analysis of a rectangular plate with a
simply supported edge under the heat source. Initially, the plate is kept at a constant temperature. For t > 0, the heat
is produced in the plate at the rate g(W.m−3) and the surfaces at x = 0, a and y = 0, b are kept at zero temperature,
while the surfaces z = 0, c are subjected to heat convection. Using Green’s function approach and integral transform
technique, the analytical solution of the rectangular plate with the simply supported edge is derived. As a preeminent
finding from this investigation, it can be deduced that the accuracy, reliability, and simplicity of these methods are
excellent. Accurate bending solutions to title problems are then obtained using the transform technique. The approach
used in this paper is more reasonable than conventional methods. Numerical results are presented to demonstrate the
validity and efficiency of the approach as compared with those reported in other literature. The outcomes demonstrate
that the temperature profile and the thermal deflection are maximum at the middle part of the plate, due to the heat
source located in the middle, however, the direction of heat flow and the body deformation is the same.
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1 Introduction

The thin rectangular plate is an important structural component that is widely applied in various modern engi-
neering fields, such as aircraft wings, rigid pavements, houses, and bridge decks. Bending analysis of a rectangular
plate with mixed boundary conditions has been studied for many years, but most existing methods are appropriate
only for particular boundary conditions. This study has changed miraculous attention due to the wide application of
the rectangular plate.

Manthena et al. [1, 2] studied the temperature distribution, bending moments and thermal stresses in a functionally
graded rectangular plate under unsteady temperature distribution using integral transform method. Manthena et al. [3]
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analyzed nonlinear thermo mechanical transverse deflection responses of the functionally graded curved structure under
the influence of nonlinear thermal field. Amirpour et al. [4] developed a new analytical solution for elastic deformation
of thin rectangular functionally graded plates with in-plane stiffness variation. Manthena et al. [5] determined the
temperature distribution and thermal stresses of a thin rectangular plate. Tash et al. [6] studied the bending solution
of simply supported transversely isotropic thick rectangular plates with thickness variations. Baghdasaryan et al. [7]
investigated the stability of a rectangular plate in a supersonic flow in the presence of a temperature field. Xiao et
al. [8] derived the governing equations of coupled thermoelasticity in a transversely vibrating rectangular plate by
the modified nonlocal strain gradient theory and the nonlocal heat conductive law. Bajpai et al. [9] determined the
effect of variable thermal conductivity and diffusivity on the transient response of thermoelastic diffusion plate in the
light of two-temperature fractional-order generalized thermoelasticity. Peiyi et al. [10] investigated the convective heat
transfer pattern of molten phase change material in a slender rectangular cavity with constant heat flux boundary
condition. Ghasemi et al. [11] investigated the influences of thermophoresis and Brownian motion on thermo-hydraulic
behavior of nanofluids in a sinusoidal wavy channel. Mahakalkar et al. [12] proposed the thermoelastic analysis of
annular sector plate under restricted boundaries amidst elastic reaction. Jing-yi Liu et al. [12] analysed the effect of
uniform laser irradiation on thermal response of temperature sensitive structures. Miao Wang et al. [14] discussed
the buckling and free vibration analysis of shear deformable graphene-reinforced composite laminated plates. Nguyen
Thi, et al. [15] analysed the nonlinear buckling of higher-order shear deformable stiffened FG-GRC laminated plates
with nonlinear elastic foundation subjected to combined loads.

Ghasemi et al. [16] studied the thermohydraulic behavior of a thin liquid film on an unstable stretching surface
under the influences of solar radiation and a porous medium. Ghasemi et al. [17] used the Joule heating and viscous
dissipation properties to investigate the influences of magnetic field and nonlinear radiation on stagnation-point flow of
nanofluid. Ghasemi et al. [18] discussed the vibration and frequency of single-walled carbon nanotubes with conveyance
a fluid flow. Ghugal et al. [19] considered the effect of transverse shear and normal strain for the static analysis of
laminated composite spherical shells subjected to sinusoidal mechanical/thermal loads with simply supported boundary
conditions. Deepak et al. [20] discussed the analytical solution of a layered thin magneto-electro-elastic rectangular
plate and produced the effect of transverse elastic boundary condition on the thickness variation of electric and
magnetic potential under linear and moderately large deflection. Zahran et al. [21] investigated the turbulent air flow
through a rectangular cross-sectional duct with one corrugated surface. Mohsenian et al. [22] studied the problem
of convective heat transfer for a nanofluid flow between two tubes in the presence of a horizontal magnetized field.
Gouran et al. [23] analyzed the thermal radiation on nanofluid flow between two circular cylinders under influence of
magnetic field using two effectual computational methods. Gouran et al. [24] investigated the mixed convection and
radiation heat transfer for a longitudinal fin with a constant velocity and considering heat source. Some contributors
to this theory are the work in [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39].

The solution of partial differential equations of heat conduction by the classical method of separation of variables
is not always convenient when the equation and the boundary conditions involve non-homogeneities. It is for this
reason that we considered the Green’s function approach for the solution of linear, nonhomogeneous boundary value
problems of heat conduction. The integral transform technique also provides a systematic, efficient, and straightforward
approach for the solution of both homogeneous and nonhomogeneous, steady-state, and time-dependent boundary
value problems of heat conduction.

According to the review of previous studies mentioned above, the research gap and objectives are described com-
prehensively as follows. Howbeit many mathematical analyses have been done on integral transform technique in the
open literature, there is a gap in the simultaneously use of Green’s function approach and integral transform technique
for solving the thermal bending problem of rectangular plate with simply supported edge. The analytical solution of
the rectangular plate with simply supported edge will be utilized for solving the issue. This is the main motivation
behind this computational study, which will be very helpful in recovering some research gap in this field. Another
novelty of our present work is to evaluate the accuracy of these methods to obtain analytic solutions and compare
them with each other.

It is believed that, this particular problem has not been considered by any one. This is a new and novel contribution
to the field of thermoelasticity. The results presented here will be more useful in engineering problems particularly,
in the determination of the state of strain in circular plate constituting foundations of containers for hot gases or
liquids, in the foundations for furnaces, etc. To verify the accuracy and validity of the approach, numerical results are
presented for an easy comparison with those found in the literatures [1, 2, 3].
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2 Basic Relations and Thermal Bending

The equation of equilibrium state:
Nx = Ny = Nxy = 0 (1)

Bending moments:

Mx =

∫ c

0

σxxzdz My =

∫ c

0

σyyzdz Mxy = −
∫ c

0

σxyzdz (2)

The equation of equilibrium in terms of moments as defined in [40].

∂2Mx

∂x2
− 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
+ p = 0 (3)

where p denoted distributed external load.

The resultant moments as [40]:

Mx = −D(ωxx + νωyy)−
1

1− ν
MT

My = −D(ωyy + νωxx)−
1

1− ν
MT

Mxy = (1− ν)Dωxy

(4)

where ν– Poisson’s ratio, D– flexural rigidity.

D =
Eh3

12(1− ν2)

and the NT – thermally induced resultant force, MT – thermally induced resultant moment

NT = αE

∫ c

0

(T − T0)dz, MT = αE

∫ c

0

(T − T0)zdz (5)

where E–Young’s modulus and α– linear coefficient of thermal expansion.

Stress components as [40]

σxx =
1

h
Nx +

12z

h3
Mx +

1

(1− ν)

[
1

h
NT +

12z

h3
MT − αE(T − T0)

]
σyy =

1

h
Ny +

12z

h3
My +

1

(1− ν)

[
1

h
NT +

12z

h3
MT − αE(T − T0)

]
σxy =

1

h
Nxy −

12z

h3
Mxy

(6)

The equations of equilibrium in bending moments as

∂Mx

∂x
+

∂Myx

∂y
= Qx

∂My

∂y
+

∂Mxy

∂x
= Qy

(7)

where Qx and Qy are the shearing forces defined as

Qx =

∫ c

0

σxzdz Qy =

∫ c

0

σyzdz Myx =

∫ c

0

σyxzdz (8)

Putting Eqs. (4) in Eq. (3), one can easily obtain:

∂2

∂x2
[D(ωxx + νωyy)] +

∂2

∂y2
[D(ωyy + νωxx)] + 2(1− ν)

∂2

∂x∂y
(Dωxy) = p− 1

1− ν
∇2MT (9)

Which is the fundamental equation of the bending of the plate due to the thermal load.
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If the flexural rigidity D is not changed over the entire region of the plate, the fundamental equation Eq. (9)
becomes

∇2∇2ω =
1

D

(
p− 1

(1− ν)
∇2MT

)
(10)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

If the distributed external load p is absent then the Eq. (10) becomes

∇2∇2ω =
−1

D(1− ν)
∇2MT (2.1)

3 Problem Formulation

A rectangular thin plate and its coordinate system are illustrated in Figure 1. The plate’s length, width, and
thickness are a, b and c respectively. Initially, the plate is kept at a constant temperature. For t > 0, the heat is
produced in the plate at the rate g (W.m−3) and the surfaces at x = 0, a and y = 0, b kept at zero temperature, while
the surfaces z = 0, c are subjected to heat convection.

The differential equation for the temperature is

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
+

g

kt
=

1

α

∂T

∂t
(12)

with
T = T0 at t = 0

T = 0 at x = 0, a

T = 0 at y = 0, b

−kt
∂T

∂z
= hc[T − T∞] at z = 0

kt
∂T

∂z
= hc[T − T∞] at z = c

(13)

where kt its thermal conductivity, α = kt/ρc its thermal diffusivity with ρ and cp denoting the density and specific
heat. The quantity g(x, y, z, t) = gi(t)δ(x− x0)δ(y − y0)δ(z − z0) represents heat source, where gi instantaneous heat
source, δ is a Dirac delta function that describe the heat source at a point (x0, y0, z0).

Figure 1 shows the thin rectangular plate under simply supported edges under thermal load. The fundamental Eq.
(2.1) and boundary conditions along x and y direction in [40]

ω = 0, ωxx = − 1

(1− ν)D
MT on x = 0, a

ω = 0, ωyy = − 1

(1− ν)D
MT on y = 0, b

(14)

Now, the fundamental Eq. (2.1) is resolved into the following two equation system

∇2ω +
1

(1− ν)D
MT = F

∇2F = 0

(15)

Thus, Eq. (15) is the governing equation for an unknown function F and Eq. (14) is recognized as a boundary
condition for F .

F = ωxx + ωyy +
1

(1− ν)D
MT (16)

We find that the curvature along the boundary surface becomes equal to zero

ωyy = 0 on x = 0, a

ωxx = 0 on y = 0, b
(17)
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Figure 1: Problem Geometry.

Using Eqs. (16) and (17), the conditions Eq. (14) are reduced to the boundary conditions for F

F = 0 on x = 0, a

F = 0 on y = 0, b
(18)

Therefore, the fundamental equation system given by Eqs. (15) and (18) is equal to zero.

F = 0 (19)

Using Eq. (19) in Eq. (15), the governing equation for a simply supported rectangular plate is

∇2ω = − 1

(1− ν)D
MT (20)

with
ω = 0 on x = 0, a

ω = 0 on y = 0, b
(21)

4 Solution of the problem

First, we modified the formulated BVP with the homogeneous boundary conditions. The temperature T (t;x, y, z) =
Ψ(t;x, y, z)+T∞, where the constant ambient component T∞ satisfies Eq. (12) and the dynamic component Ψ satisfies
the following equations:

∂2Ψ

∂x2
+

∂2Ψ

∂y2
+

∂2Ψ

∂z2
+

g(t;x, y, z)

kt
=

1

α

∂Ψ

∂t
(22)

The initial and boundary conditions (13) becomes

Ψ = T0 − T∞ at t = 0

Ψ = 0 at x = 0, a

Ψ = 0 at y = 0, b

−∂Ψ

∂z
+ hs1Ψ = 0 at z = 0

∂Ψ

∂z
+ hs2Ψ = 0 at z = c

(23)
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where hs1 = hc/kt, hs2 = hc/kt are the coefficients of heat transfer.

Consider the homogeneous form of Eq. (22) with g(t;x, y, z) = 0,

∂2Ψ

∂x2
+

∂2Ψ

∂y2
+

∂2Ψ

∂z2
=

1

α

∂Ψ

∂t
(24)

The initial and boundary conditions (23) becomes

Ψ = T0 − T∞ at t = 0

Ψ = 0 at x = 0, a

Ψ = 0 at y = 0, b

−∂Ψ

∂z
+ hs1Ψ = 0 at z = 0

∂Ψ

∂z
+ hs2Ψ = 0 at z = c

(25)

We define the integral transform and its inversion as [41]:(
Triple-integral

Transform

)
Ψ(t;βm, γn, ηp) =

∫ a

x′=0

∫ b

y′=0

∫ c

z′=0

K0(βm, x′).K1(γn, y
′).K2(ηp, z

′)

S(βm)S(γn)S(ηp)

×Ψ(t;x′, y′, z′).dx′dy′dz′
(26)

(
Triple-inversion

formula

)
Ψ(t;x, y, z) =

∞∑
m=0

∞∑
n=0

∞∑
p=0

K0(βm, x).K1(γn, y).K2(ηp, z).Ψ(t;βm, γn, ηp) (27)

where
K0(βm, x) = sinβmx, S(βm) =

a

2
, sinβma = 0

K1(γn, y) = sin γny, S(γn) =
b

2
, sin γnb = 0

K2(ηp, z) = ηp cos ηpz + hs1 sin ηpz, S(ηp) =
A1

2
, tan ηpc =

ηp(hs1 + hs2)

η2p − hs1hs2

where A1 =
[
(η2p + h2

s1)
(
c+ hs2

η2
p+h2

s2

)
+ hs1

]
.

Applying the transforms defined in Eqs. (26–27) on Eq. (24)–(25), one obtains

Ψ(t;x, y, z) =

∞∑
m=1

∞∑
n=1

∞∑
p=1

K0(βm, x).K1(γn, y).K2(ηp, z)

S(βm)S(γn)S(ηp)
. exp(−αλ2

mnpt).F (βm, γn, ηp) (28)

where

F (βm, γn, ηp) =

∫ a

x′=0

∫ b

y′=0

∫ c

z′=0

K0(βm, x′).K1(γn, y
′).K2(ηp, z

′)(T0 − T∞)dx′dy′dz′

λ2
mnp = β2

m + γ2
n + η2p

The function Ψ can be written in the form of Green’s function approach [41]:

Ψ(t;x, y, z) =

∫ a

x′=0

∫ b

y′=0

∫ c

z′=0

G(t;x, y, z, | τ ;x′, y′, z′) |τ=0 (T0 − T∞)dx′dy′dz′ (29)

The Green’s function as:

G(x, y, z, t | x′, y′, z′, τ) =

∞∑
m=1

∞∑
n=1

∞∑
p=1

K0(βm, x).K1(γn, y).K2(ηp, z)

S(βm)S(γn)S(ηp)

×K0(βm, x′).K1(γn, y
′).K2(ηp, z

′) exp(−αλ2
mnpt)

(30)

Finally, the solution of nonhomogeneous problems of Eqs. (12) and (13) as:

T (t;x, y, z) = T∞ +

∫ a

x′=0

∫ b

y′=0

∫ c

z′=0

G(t;x, y, z | τ ;x′, y′, z′) |τ=0 (T0 − T∞)dx′dy′dz′

+
α

kt

∫ t

τ=0

∫ a

x′=0

∫ b

y′=0

∫ c

z′=0

G(t;x, y, z | τ ;x′, y′, z′).g(τ ;x′, y′, z′, )dx′dy′dz′dτ.

(31)
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4.1 Special Case:

Setting, T0 = T∞ and g(t;x, y, z) = 1(t)δ(x − x0)(y − y0)(z − z0) with 1(t) denoting a unit step function in Eq.
(31), the temperature distribution becomes

T (t;x, y, z) = T0 +
1

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

K0(βm, x).K1(γn, y).K2(ηp, z)

S(βm)S(γn)S(ηp)

×K0(βm, x0).K1(γn, y0).K2(ηp, z0)

[
1− exp(−αλ2

mnpt)

λ2
mnp

] (32)

4.2 Thermally Induced Resultant Force and Resultant Moment:

Using Eq. (32) in Eq. (5), we obtain

NT =
αE

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

K0(βm, x).K1(γn, y)

S(βm)S(γn)S(ηp)

[
sin ηpc+

hs1

ηp
(1− cos ηpc)

]

×K0(βm, x0).K1(γn, y0).K2(ηp, z0)

[
1− exp(−αλ2

mnpt)

λ2
mnp

] (33)

MT =
αE

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

K0(βm, x).K1(γn, y)

S(βm)S(γn)S(ηp)

[(
c+

hs1

ηp

)
sin ηpc+

(
1

ηp
− hs1

ηp

)
cos ηpc−

1

ηp

]

×K0(βm, x0).K1(γn, y0).K2(ηp, z0)

[
1− exp(−αλ2

mnpt)

λ2
mnp

] (34)

4.3 The Thermal Deflection:

Using Eq. (34) in Eq. (20), we obtain

ω(x, y) =
αE

(1− ν)Dkt

∞∑
m=1

∞∑
n=1

∞∑
p=1

1

(β2
m + γ2

n)

K0(βm, x).K1(γn, y)

S(βm)S(γn)S(ηp)

×
[(

c+
hs1

ηp

)
sin ηpc+

(
1

ηp
− hs1

ηp

)
cos ηpc−

1

ηp

]
×K0(βm, x0).K1(γn, y0).K2(ηp, z0)

[
1− exp(−αλ2

mnpt)

λ2
mnp

] (35)

4.4 The resultant moments:

Using Eqs. (34) and (35) in Eq. (4), we obtain

Mx =
−αE

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

γ2
n

(β2
m + γ2

n)

K0(βm, x).K1(γn, y)

S(βm)S(γn)S(ηp)

×
[(

c+
hs1

ηp

)
sin ηpc+

(
1

ηp
− hs1

ηp

)
cos ηpc−

1

ηp

]
×K0(βm, x0).K1(γn, y0).K2(ηp, z0)

[
1− exp(−αλ2

mnpt)

λ2
mnp

] (36)

My =
−αE

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

β2
m

(β2
m + γ2

n)

K0(βm, x).K1(γn, y)

S(βm)S(γn)S(ηp)

×
[(

c+
hs1

ηp

)
sin ηpc+

(
1

ηp
− hs1

ηp

)
cos ηpc−

1

ηp

]
×K0(βm, x0).K1(γn, y0).K2(ηp, z0)

[
1− exp(−αλ2

mnpt)

λ2
mnp

] (37)
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Mxy =
αE

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

βmγn
(β2

m + γ2
n)

cosβmx. cos γny

S(βm)S(γn)S(ηp)

×
[(

c+
hs1

ηp

)
sin ηpc+

(
1

ηp
− hs1

ηp

)
cos ηpc−

1

ηp

]
×K0(βm, x0).K1(γn, y0).K2(ηp, z0)

[
1− exp(−αλ2

mnpt)

λ2
mnp

] (38)

4.5 The thermal stresses:

Using Eqs. (32), (33)–(34) and (36)–(38) in Eq. (6), we obtain

σxx =

{
12z

c3

(
−αE

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

γ2
n

(β2
m + γ2

n)

K0(βm, x).K1(γn, y)

S(βm)S(γn)S(ηp)

×
[(

c+
hs1

ηp

)
sin ηpc+

(
1

ηp
− hs1

ηp

)
cos ηpc−

1

ηp

])
+

1

c(1− ν)

(
αE

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

K0(βm, x).K1(γn, y)

S(βm)S(γn)S(ηp)

[
sin ηpc+

hs1

ηp
(1− cos ηpc)

])

+
12z

c3(1− ν)

(
αE

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

K0(βm, x).K1(γn, y)

S(βm)S(γn)S(ηp)

×
[(

c+
hs1

ηp

)
sin ηpc+

(
1

ηp
− hs1

ηp

)
cos ηpc−

1

ηp

])
− αE

(1− ν)

(
1

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

K0(βm, x).K1(γn, y).K2(ηp, z)

S(βm)S(γn)S(ηp)

)}

×K0(βm, x0).K1(γn, y0).K2(ηp, z0)

[
1− exp(−αλ2

mnpt)

λ2
mnp

]

(39)

σyy =

{
12z

c3

(
−αE

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

β2
m

(β2
m + γ2

n)

K0(βm, x).K1(γn, y)

S(βm)S(γn)S(ηp)

×
[(

c+
hs1

ηp

)
sin ηpc+

(
1

ηp
− hs1

ηp

)
cos ηpc−

1

ηp

])
+

1

c(1− ν)

(
αE

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

K0(βm, x).K1(γn, y)

S(βm)S(γn)S(ηp)

[
sin ηpc+

hs1

ηp
(1− cos ηpc)

])

+
12z

c3(1− ν)

(
αE

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

K0(βm, x).K1(γn, y)

S(βm)S(γn)S(ηp)

×
[(

c+
hs1

ηp

)
sin ηpc+

(
1

ηp
− hs1

ηp

)
cos ηpc−

1

ηp

])
− αE

(1− ν)

(
1

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

K0(βm, x).K1(γn, y).K2(ηp, z)

S(βm)S(γn)S(ηp)

)}

×K0(βm, x0).K1(γn, y0).K2(ηp, z0)

[
1− exp(−αλ2

mnpt)

λ2
mnp

]

(40)
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σxy = −12z

c3

{
αE

kt

∞∑
m=1

∞∑
n=1

∞∑
p=1

βmγn
(β2

m + γ2
n)

cosβmx. cos γny

S(βm)S(γn)S(ηp)

×
[(

c+
hs1

ηp

)
sin ηpc+

(
1

ηp
− hs1

ηp

)
cos ηpc−

1

ηp

]
×K0(βm, x0).K1(γn, y0).K2(ηp, z0)

[
1− exp(−αλ2

mnpt)

λ2
mnp

]} (41)

5 Results and discussion

For numerical calculation, we choose copper material with following physical constants as illustrated in Table 1.

Table 1: Material constants

ρ = 8954 kg/m3 α = 112.34(10)−6 m2/s kt = 386 W/(m K)
E = 128 Gpa cp = 383 J/(kg K) at = 16.5(10)−6 K−1

ν = 0.35 µ =26.67 gi= 200 W/m3

hs1 = 10, hs2 = 0 a = 1 m, b = 0.5 m c = 0.1 m, T0 = 0 K

5.1 Roots of the Transcendental Equation

Here β1 = 6.28, β2 = 12.56, β3 = 18.84, β4 = 25.12, β5 = 31.40 are the positive root of

sinβma = 0

and η1 = 1.4289, η2 = 4.3058, η3 = 7.2281, η4 = 10.2003, η5 = 13.2142 are the positive roots of

tan(ηc) =
η(hs1 + hs2)

η2 − hs1hs2

has the form η tan(η) = c, for c = 1, hs1 = c = 10, hs2 = 0 in [41]. The numerical calculations have been presented
by the PTC MATHCAD (Prime-3.1) and the results are depicted graphically.

Notice that
βm = γn = ηp → ∞ as m,n, p → ∞

e−kβ2
m.t = e−kγ2

n.t = e−kη2
p.t → 0 as m,n, p → ∞.

The terms sin(βmx) and cos(βmx) are bounded.

The conditions of convergence are verified by the D-Alemberts ratio test. Hence, all the series in (32) to (41)
are convergent. For a large value of m,n, and p the expression for displacement, temperature, and stress fields are
negligible and it converges to zero at infinity. For the purpose of numerical calculations, the number of terms is used
in Fourier are chosen to be m = n = p = 50. It is assumed that the plate is subject to an instantaneous point heat
source of strength gi = 200 W/m, situated at the middle part of the plate with initially at zero temperature i.e.
T0(x, y, z) = 0

This section presents numerical results of temperature, thermal deflection and stresses profiles for different param-
eters.

The effect of time parameters on distribution of the temperature profile is depicted in Figure 2. It is seen that the
magnitude of temperature is gradually increasing with an increase in time and it attains it peak at x = 0.5, after that
it gradually decreasing with an increase in time, which is according to the boundary conditions.

Figure 3, demonstrates the efficacy of time parameters on deflection profile along the distance X. We observe
that, the magnitude of temperature is gradually increasing with an increase in time and it attains it peak at x = 0.5,
after that it gradually decreasing with an increase in time, which is according to the boundary conditions. Due to
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Figure 2: Temperature distribution.

Figure 3: Thermal deflection.

Figure 4: Stress distribution.
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Figure 5: Stress distribution.

Figure 6: Stress distribution.
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the instantaneous point heat source, the thermal deflection is maximum at the middle of the plate with increasing the
time parameter and decreases towards the outer boundaries.

Figures 4, 5, and 6 predicts the variations of the stresses with respect to the distance X. We observe that the
magnitude of all stresses is maximum at the middle part with increasing time and becomes zero at the origin and
extreme edges in the X-direction. Also, the stress components σxx, σyy, and σxy are compressive throughout the plate.

Due to the instantaneous point heat source of strength gi = 200 W/m, situated at the middle part of the plate,
small deflection and deformation in the middle part of the plate. Due to contemptible amount of deflection, there will
not be any personage crawl or shrinkage in solid.

6 Conclusion

In the present work, the Green’s function approach and integral transform technique have been utilized to analyze
the thermal bending problem of a rectangular plate with simply supported edge. The obtained results were evaluated to
investigate the convective heat transfer coefficient as well as velocity and temperature for various physical parameters.

The important findings are summarized as follows:

1. By D-Alembert’s ratio test, all the series in (32)–(41) are convergent.

2. The temperature profile and the thermal deflection are maximum at the middle part of the plate, due to the
heat source located at the middle.

3. From the graph of temperature and deflection, it is clear that the direction heat of flow and the body deformation
is the same. We conclude that the maximum heat occurs at the middle part of the plate, this is due to the heat
source.

4. The temperature and deflection are proportionate to each other and it shows the normal curve.

5. The stresses σxx, σyy, and σxy develop the compressive stresses.

6. The Green’s function approach and integral transform technique, are our most general and powerful method to
solve nonhomogeneous, time-dependent conduction problems.

7. The simplicity and efficacy of these techniques to find analytical solutions are advantageous in heat transfer
issues.

8. To improve the solution speed and better accuracy of the results, the proposed method offers an alternative for
solving engineering problems.

To further study for this problem, consider a rectangular plate with built in all edges will be suggested. Varying the
boundary condition to a variable heat flux also leads to a new inspiration to continue the current work.
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