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Abstract

The slowly oscillating functions have been used by I. V. Protasov to study of the algebraic structure of the Stone-Česh
compactification. M. Filali and P. Salmi developed the concept of slowly oscillating functions to arbitrary locally
compact topological groups. In this paper, we study the structure of Lmc-compactification of a semitopological
semigroup by the slowly oscillating functions. In fact, we develop the concept of slowly oscillating functions to
semitopological semigroups.
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1 Introduction

The concept of slowly oscillating functions was introduced by Higson for metric spaces (see for example [8, p. 29]).
Protasov used them to study the algebraic structure of the Stone−Čech compactification of a countable discrete group
G (see [6]), and developed by Filali and Salmi to any locally compact group, see [4].

To study left ideals of βG for countable discrete group G, this notion was extended further in [3] to slowly oscillating
functions in the direction of filters in the following way: Let f : G → C be a function and let ϕ be a filter on G such
that ϕ contains the complement of every finite subset of G. Then f is slowly oscillating in the direction of ϕ if for
every ϵ > 0 and for every finite subset F of G containing the identity of G, there exists A ∈ ϕ such that diamf(Ft) < ϵ
for every t ∈ A. Here diamX = sup{|x− y| : x, y ∈ X} for any X ⊆ C. This includes both definitions given in [6] and
[4]. In fact, the functions used in [6] are slowly oscillating in the direction of the filter of co-finite subsets of G, i.e.,
the sets A with |G \A| < ω, and those used in [4] are slowly oscillating in the direction of the filter of the sets A with
|G \A| < |G|.

A ball structure is a triplet B = (X,P,B), where X, P are nonempty sets and B(x, α) is a subset of X which is
called a ball of radius α around x. It is supposed that x ∈ B(x, α) for all x ∈ X and α ∈ P . The set X is the support
of B. Given any x ∈ X, A ⊆ X, α ∈ P , put

B∗(x, α) = {y ∈ X : x ∈ B(y, α)} and B(A,α) =
⋃
a∈A

B(a, α).
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A ball structure is symmetric if for every α ∈ P , there exists β ∈ P such that B(x, α) ⊆ B∗(x, β) for every x ∈ X, and
vice versa. A ball structure is multiplicative if for any α, β ∈ P , there exists γ ∈ P such that B(B(x, α), β) ⊆ B(x, γ)
for every x ∈ X. A ball structure is connected if for any x, y ∈ X, there exists α ∈ P such that y ∈ B(x, α). We say
that a filter φ on X is thick if for any A ∈ φ and α ∈ P there exists H ∈ φ such that, B(H,α) ⊆ A.

Let S be a semigroup and Pf (S) denote the collection of all non-empty finite subsets of S. Then the ball structure
Br(S) = (S, Pf (S), Br), where Br(t, F ) = Ft ∪ {t} for each F ∈ Pf (S) and t ∈ S, is always multiplicative.

Let S be a non-compact Hausdorff semitopological semigroup and let Sd denote semigroup S with discrete topology.
The collection of all bounded complex valued continuous functions on S with uniform norm is denoted by CB(S), and
l∞(Sd) denotes the algebra of all complex valued bounded functions on Sd. Let F be a C∗-subalgebra of CB(S)
containing the constant functions, then the set of all multiplicative means of F (the spectrum of F) is denoted by SF .
SF , equipped with the Gelfand topology, is a compact Hausdorff topological space. For each s ∈ S, the maps rs and
λs are defined by rs(t) = ts and λs(t) = st for all t ∈ S. Let Rsf = f ◦ rs ∈ F and Lsf = f ◦ λs ∈ F for all s ∈ S and
f ∈ F , and the function s 7→ (Tµf(s)) = µ(Lsf) be in F for all f ∈ F and µ ∈ SF , then SF under the multiplication
µν = µ ◦ Tν (µ, ν ∈ SF ), furnished with the Gelfand topology, makes (ε, SF ) a semigroup compactification (called the
F-compactification) of S, where ε : S → SF is the evaluation mapping. (For more details see [2]).

A function f ∈ CB(S) is left multiplicative continuous if and only if Tµf ∈ CB(S) for all µ ∈ βS = SCB(S).
The collection of all left multiplicative continuous functions on S is denoted by Lmc(S). (ε, SLmc) is the universal
semigroup compactification of S (Definition 4.5.1 and Theorem 4.5.2 in [2]).

Now we quote some prerequisite material from [9] for the description of e-filters and relative concepts with Lmc-
compactification. For f ∈ Lmc(S) and ϵ > 0, we define Eϵ(f) = {x ∈ S : |f(x)| ≤ ϵ}. For I ⊆ Lmc(S), we write
E(I) = {Eϵ(f) : f ∈ I, ϵ > 0}. Finally, for any family A of zero sets, we define

E←(A) = {f ∈ Lmc(S) : Eϵ(f) ∈ A for each ϵ > 0}.

Now let A be a z−filter, A is called an e-filter if and only if E(E←(A)) = A. Hence, A is an e-filter if and only if,
whenever Z ∈ A, there exist f ∈ Lmc(S) and ϵ > 0, such that Z = Eϵ(f) and Eδ(f) ∈ A for every δ > 0. For any
z−filter A, E(E←(A)) is the largest e-filter contained in A. A maximal e-filter is called an e-ultrafilter. Zorn’s Lemma
implies that every e-filter is contained in an e-ultrafilter, (see [9]).

The collection of all e-ultrafilters is denoted by E(S). The collection of all A† = {p ∈ E(S) : A ∈ p} for each
A ∈ Z(Lmc(S)) is a basis for open topology of E(S). For each a ∈ S, e(a) = {Eϵ(f) : f(a) = 0, ϵ > 0} is
an e-ultrafilter. Finally, SLmc and E(S) are topologically isomorphism. So for tow e-ultrafilters p and q in SLmc,
p+ q = limαlimβe(xα)e(yβ), where limαe(xα) = p and limβe(yβ) = q. For more details see [9].

Let A be an e-filter, we define A = {p ∈ E(S) : A ⊆ p}. Then A is a closed subset of E(S). Also, A ∈ A if and
only if A ⊆ A†, see [9].

When Sd is a discrete semigroup, every e-ultrafilter is ultrafilter and above concepts coincide with the similar
concepts of ultrafilters. The collection of all ultrafilters on Sd is denoted by βSd and is called the Stone-Čech
compactification of Sd. The collection {A† : A ⊆ Sd} is a basis for topology on βSd. For p, q ∈ βSd, p + q is an
ultrafilter and A ∈ p+ q if and only if {x ∈ Sd : λ−1x (A) ∈ q} ∈ p. Also, if A and B are two filters, then

A+ B = {A ⊆ Sd : {x ∈ Sd : x−1A ∈ B} ∈ A},

is a filter. A family A is a filter base for a filter U on Sd if A ⊆ U and for each B ∈ U there is some A ∈ A such that
A ⊆ B. Let A be a family with finite intersection property on Sd, then A the collection of all ultrafilters containing
A is nonempty subset of βSd, and

⋂
A is the smallest filter containing A.

The Stone-Čech compactification of Sd is l∞(Sd)-compactification of Sd. In fact, it is the universal compactification
of Sd. For more details see [5] and [9].

2 Applications

Let S be a semitopological semigroup and let Pf (S) denote the collection of all non-empty finite subset of S. For
each t ∈ S and each F ∈ Pf (S) we define B(t, F ) = Ft ∪ {t}. Then B(S) = (S, Pf (S), B) is ball structure. B(S) is
always multiplicative. An e-filter A on S is called thick if for each A ∈ A and for each s ∈ S, there exists B ∈ A
such that sB ⊆ A. Clearly, if A is a thick e-filter on S, for A ∈ A, and F ∈ Pf (S) then there exists B ∈ A such that
FB ⊆ A. Two e-ultrafilters r, q ∈ SLmc are parallel (r ∥ q) if there exists F ∈ Pf (S) such that, for every R ∈ r, we
have FR ∈ q.
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Lemma 2.1. Let φ be a e-filter, then φ is a closed left ideal of SLmc if and only if φ is thick.

Proof . Let φ be a left ideal of SLmc. So Sφ ⊆ φ. Pick t ∈ S and A ∈ φ. Then for every p ∈ φ, tp ∈ φ. This implies
that A ∈ tp, and so Bp = t−1A ∈ p. Now {B†p : p ∈ φ} is an open covering of φ of φ. So there exist p1, · · · , pk in φ

such that φ ⊆
⋃k

i=1 B
†
pi
. Now let B =

⋃k
i=1 Bpi

. Then φ ⊆ B. This implies that for every p ∈ φ, B ∈ p. Therefore
B ∈ φ. Since tB ⊆ A we conclude that φ is thick.

Now let φ be thick, pick p ∈ φ and t ∈ S. So for every A ∈ φ and every t ∈ S, there exists B ∈ φ such that
tB ⊆ A. Now B ⊆ t−1A and B ∈ p. So t−1A ∈ p and hence A ∈ tp. Therefore tp ∈ φ for every t ∈ S and every p ∈ φ.
This implies that φ is left ideal. □

Definition 2.2. (i) Let A be an e-filter on S. A function f : S → C is slowly oscillating in the direction of A if for
every ε > 0 and for every F ∈ Pf (S), there exists A ∈ A such that diamf(Ft ∪ {t}) < ε for every t ∈ A.
(ii) Let f : S → C be a function. For every ε > 0 and for every F ∈ Pf (S), define

S(f, ε, F ) = {t ∈ S : diamf(Ft ∪ {t}) < ε}.

We say that f is very oscillating if there exists ε > 0 and F ∈ Pf (S) such that S(f, ε, F ) = ∅. If f is very oscillating
on a non-empty proper subset of S, then f is called oscillating.

For the next definition, note that if F1, F2 ∈ Pf (S) and ε1, ε2 > 0, then S(f, ε, F ) ⊆ S(f, ε1, F1) ∩ S(f, ε2, F2) for any
function f : S → C, where F = F1 ∪ F2 and ε = min{ε1, ε2}.

Definition 2.3. Let f : S → C be a function which is not very oscillating. Then the filter generated by

{S(f, ε, F ) : ε > 0, F ∈ Pf (S)}

is denoted by so(f).

Remark 2.4. (a) Let f : S → C be a function which is not very oscillating. Then tS(f, ε, F t ∪ {t}) ⊆ S(f, ε, F ) for
any F ∈ Pf (S), ε > 0, and t ∈ S. Hence, so(f) is thick.
(b) The filter so(f) is smallest filter φ on S such that f is slowly oscillating in the direction of φ, and it is a unique
filter on S such that f is slowly oscillating in the direction of φ.
(c) For every non-empty proper A in so(f), there are ε > 0 and F ∈ Pf (S) such that diamf(Ft ∪ {t}) ≥ ε for every
t ∈ S\A. In fact f is oscillating on S\A for every A ∈ φ \ {S}.
(d) If φ is the smallest filter generated by an e-filter A, we write φ = ⟨A⟩.

Theorem 2.5. A function f : X → C is slowly oscillating in direction of an e-filter A if and only if f is slowly
oscillating in direction of every e-ultrafilter q containing A.

Proof . If f is slowly oscillating in direction of A, then f is slowly oscillating in direction of every e-filter A′ containing
A.

Assume that f is slowly oscillating in direction of every e-ultrafilter q ∈ A. Fix ϵ > 0 and F ∈ Pf (S). For each
q ∈ A, pick Aq ∈ q such that diamf(Fx∪{x}) < ϵ for each x ∈ Aq. Then we consider the open covering {A†q : q ∈ A}
of the compact space A and choose some finite subcovering {Aq1 , · · · , Aqn}. Then A = Aq1 ∪ · · · ∪ Aqn ∈ A. Since
diamf(Fx ∪ {x}) < ϵ for each x ∈ Aq1 ∪ · · · ∪Aqn ∈ A, we see that f is slowly oscillating in direction of A. □

Theorem 2.6. Let A be a thick e-filter and q ∈ A. If r∥q for some e-ultrafilter r, then r ∈ A.

Proof . Let r /∈ A. So there exists A ∈ A such that A ∩ R = ∅ for some R ∈ r. Since r∥q so there exists F ∈ Pf (S)
such that FR ∪ R =

⋃
t∈R Ft ∪ {t} ∈ q, this implies that FR ∈ q. Also A is thick, so there exists B ∈ A such that

FB ⊆ A. Since FB ∈ q, we have FB ∩ FR = F (B ∩R) = ∅. It is a contradiction. □

Theorem 2.7. Let S be a semitopological semigroup. Suppose that S contains a point s such that λs has no fixed
point in S. Let A be a thick e-filter with a countable basis on S. Then there exists a bounded function f : S → C
such that so(f) = ⟨A⟩.
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Proof . Since A is thick with a countable basis, so φ = ⟨A⟩ is thick with a countable basis. Let ⟨An⟩∞n=0 be a basis of
φ such that A0 = S and An+1 ⊆ An for every n ≥ 0. Since λs has no fixed point in S, by [1, Lemma 3.33], there exist a

partition S = T1∪T2∪T3 such that sTi∩Ti = ∅ for every i ∈ {1, 2, 3}. Now define f(x) =
√
3

2n for x ∈ T1∩ (An \An+1),
f(x) = 1

2n for x ∈ T2 ∩ (An \An+1) and f(x) = −1
2n for x ∈ T3 ∩ (An \An+1) for some n > 0.

First, f is slowlly oscillating. Let ϵ > 0 and let F ∈ Pf (S). Pick n ≥ 0 such that 1
n < ϵ. Since φ is thick, so

there exists Am ∈ φ such that FAm ⊆ An. For each x ∈ Am, Fx ∪ {x} ⊆ An. So f(Fx ∪ {x}) ⊆ f(An). Hence
diamf(Fx ∪ {x}) ≤ diamf(An) and

diam(f(Fx ∪ {x}) ≤ 1

n
< ϵ.

Now we show that f is oscillating on S \ An+1 for each n ∈ N. Let ϵ = 1
2n and F = {s}, then for each x ∈ S \ An+1,

there exists m ∈ {1, · · · , n} such that x ∈ Am \Am+1, and so

diamf(B(x, {s})) = diamf({sx, x})
= |f(sx)− f(x)|

≥ 1

2m

≥ 1

2n
.

Now by Remark 2.4, so(f) = φ. □

Theorem 2.8. Let S be a semitopological semigroup and suppose that S contains a point s such that λs has no fixed
point in S. Let A be an e-filter with a countable basis on S. Then the following statements are equivalent

(i) A is a closed left ideal of SLmc;

(ii) there exists a function f : S → C such that so(f) = ⟨A⟩.

Proof . (i) ⇒ (ii). We show that A is thick. Fixed an arbitrary A ∈ A, x ∈ S. Pick p ∈ A, so e(x)p ∈ A for each
x ∈ S. Therefore A ∈ e(x)p, and by Lemma 3.9 in [9], λ−1x (A) ∈ p. Now let B = λ−1x (A). Hence xB ⊆ A. It is
obvious that B ∈ A, so A is thick, also see Lemma 2.1. Now we can apply Theorem 2.7.

(ii) ⇒ (i). Since so(f) is thick, and so(f) = ⟨A⟩, and so A is thick. Now let q ∈ A, by Theorem 2.6, for each
r ∈ SLmc that r∥q, r ∈ A. So e(x)q ∈ A for each x ∈ S. Since SLmc is right topological semigroup and S is dense in
SLmc, we have pq ∈ A for every p ∈ SLmc. Hence, A is a closed left ideal of SLmc. □
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