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Abstract

Android smartphone platforms have grown rapidly and become ubiquitous due to the fact that they have opened
up new possibilities in every aspect of modern life. However, as a consequence of their widespread, such systems
suffer an increasing frequency of malware attacks. New malware or modifications to existing malware are increasingly
being used by attackers in such operations. Security researchers deal with a continually evolving threat environment
that is broad, complicated, and ever-changing. Conventional detection methods failed to adequately protect such
systems and so the security industry has started to detect systems that use machine learning techniques are becoming
more common. In this work, we used an evolutionary algorithm to identify malware targeting Android smartphones.
In order to evaluate our system, we compared it to different state-of-the-art algorithms. Finally, we demonstrated
our proposed method’s ability to detect zero-day malware. Obtained results show that our method achieved 99.11%
detection accuracy, and is well-suited for detecting zero-day malware.

Keywords: Android, smartphone, malware
2020 MSC: 68M25

1 Introduction

In this era, there is no denying that smartphones have become pervasive and bring huge opportunities and promises
ease of life. Compared to PCs from a decade ago, modern mobile devices are far more powerful. In addition, their size
as compared to in-person computers contributes significantly to their expanding appeal. As the latest Statista report
[14] shows, smartphones users reached more than 6 billion in 2022 and are expected to exceed 7 billion in 2027 (see
Figure .

The most widely used operating systems are Android and i0S, and their simple usage and processing capacity
to operate a broad range of apps draw millions of users globally [I8]. Android also seems to be more popular than
other operating systems. According to a recent report, Android represents 71.7% of the operating systems market
share in 2022 [I7]. Such widespread acceptance brings with it major security and privacy risks, as well as a slew
of other malicious behaviors [9]. Malware assaults have increased in frequency. A recent report revealed that the
total of mobile malware and new malware were doubled between 2019 and 2020 [6]. As a result, malware detection
has become increasingly important for mobile systems. Furthermore, when cybercriminals know their malware will
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Figure 1: The growth of smartphone users from 2016 to 2027 [14]

be identified, cybercriminals use a variety of concealment tactics to trick anti-malware scanners. Thus, there is a
need for adopting solutions that could identify new malicious applications. Although numerous malware detection
methods have been developed, there are common drawbacks to the current solutions. Such as the static analysis uses
statically extracted signatures (behaviors not at runtime) to detect malware. Polymorphism (changing code to avoid
detection by handwriting tools) and concealment are advanced strategies used by advanced malware programs to evade
detection by user defined malware detection (hiding evidence of malicious activities) [I2]. Using the activities taken
by the malware after it has been executed in a sandbox environment, a behavior-based method known as dynamic
analysis determines the functioning of the virus. Traditional strategies must be supplemented with new ones in order
to safeguard mobile systems adequately. This research’s focus is on Machine Learning (ML), which has improved
significantly over the previous several years and is particularly relevant to the work discussed in this paper. ML
algorithms are now being used by several researchers to enhance the security of many systems, including mobile. As
shown below, our research takes a specific methodology.

A subset of Machine Learning (ML) algorithms, Evolutionary Algorithms (EAs) have created intelligent solutions
in several domains, including software testing, computer networks, medicine, and art [16]. Additionally, EA-based
approaches have been successfully applied for research areas on security [2, B, 16]. EA-created solutions have a
number of desirable properties, including being easy to understand, lightweight, and utilising fewer features than
conventional ML techniques [16]. These properties are especially important when dealing with security issues. Evtree,
an evolutionary algorithm, is used in this article to develop solutions for identifying malware targeting Android devices.
To the best of our knowledge, this is the first work to investigate how well the evtree algorithm protects mobile devices.
In addition, a recent report showed that mobile devices have been targeted through new ways of attacks to bypass
security screening [6]. Consequently, we’ll examine how the evtree method performs in the context of this problem.

The following is the structure of this work: Section [2] provides a background of the study including an overview
of previous research; Section [3] discusses the methodology; Section [4] outlines the experiments undertaken and the
outcomes; and Section 5| summarizes the findings and includes some future research directions.

2 Background of study

History of Android

Google’s Android operating system was developed by Rich Miner, Nick Sears, Chris White, and Andy Rubin in
2003 as part of the Android Inc firm [5]. Android’s origins date back to its days as a camera OS, designed to improve
wireless communication between cameras and personal computers (PCs). The operating system was tailored to make
mobile phones smarter within a few months of the company’s inception [I]. In August 2005, Google bought Android.
The Linux kernel was used to build the Android operating system, which is free for mobile phone makers to use [5].
Android OS 1.0 was launched in November 2007 and the first Android phone went on sale in September of that year.
With each passing year, Android OS has progressed to better and better versions. However, the closed framework
provides more data protection and is more pristine than the open-source ones.

Security in Android

From a simplistic SMS sending Trojan, Android malware has advanced to more futuristic codes that can corrupt
other applications, encrypt user data, gain root privileges, download, and install more applications that are malicious
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bypassing the knowledge of the users, and load a payload from a remote server to cellular phones. These threats could
lead to personal information theft, loss of privacy, monitoring of the users, financial loss through ransomware, and
remote operation of the phones. Several works have been carried out by researchers in detecting android malware
detection including static analysis, dynamic Analysis, machine learning. A recent study showed that ML achieved a
better approach with higher detection accuracy than other approaches [I5].

A considerable amount of literature has been conducted in the detection of malware using ML algorithms, part of
which includes:

Murad et al. (2014) used feature selection with a genetic algorithm (GA), a method for detecting Android malware.
was presented (GA). For recognizing and investigating malicious software on Android, three deferent classier techniques
were created using different characteristic subsets which were identified using GA. This dataset included 1740 samples,
including 1119 malwares as well as 621 benigns, and the highest accuracy was achieved using a combination of SVM
and GA, at 98% [13].

M. Arif et al. (2018) An algorithm based on biological principles was used to select trustworthy permission
characteristics that are capable of detecting malware attacks. A static analysis method with classifiers has been
developed to identify potentially harmful applications. This method makes use of permission capabilities offered by
Smartphone mobile device. During the evaluation, 5000 Drebin botnets and 3500 innocuous samples were employed,
and also the technique achieved great detection performance, with a predictive performance of 95.6% [4].

Mahdavifar et al. (2020) proposed an effectual Mobile malware categorization classification system made use of
a quasi-pseudo-label recurrent neural network. Because there were just a few training examples datasets available,
their technique outperformed training data that employed a learning algorithm. Their data set included 11,598 inter
applications with features that were spread throughout all five types of malware. (i.e., banking, adware, short message
service (SMS), and benign, riskware) Their approach obtained an accuracy level of 96.7% in the detection of malware
by using a predetermined hidden layer in addition to hidden neurons [12].

Y. Xu et al. (2021) It is suggested that a group Convolution layer that is built upon feature interactions be used in
addition to learning characteristics and reconstruct vulnerability information. First, factor loadings were generated to
quantify the relationships between the characteristics. Next, the values obtained were sorted in highest to the lowest,
and also the data was categorized by columns. Second, the 1D cluster CNN model is built. This model consists
of multiple 1D convolutional with multiple 1D pooled filters. Finally, the rebuilt characteristics are used as input
to shadowing machine learning techniques that anticipate possible threats to the network. Its FLOP, variables, and
runtime of the group CNN was lowered as compared to the standard 1D CNN [19].

E. T. Elkabbash et al. (2021) unique detecting strategy that leverages the synthetic Jellyfish Searching (JS)
optimization to enhance the spontaneous vector copying of iPhone information (RVFL). Using 11,598 inter programs
with 471 kinematical factors, RVFL+JS seeks to reduce the completion times of optimized classes with the highest
performance measures [§].

T. Dong et al. (2022) They construct FEDFOREST, an innovative collaborative training algorithm-based NIDS, by
incorporating FL as well as GBDT. FEDFOREST can accurately identify the cyberwar for various tasks by offering its
exact classification, and zero-day threats could be quickly included within the FEDFOREST structure. Additionally,
two new confidentiality techniques have been suggested to further safeguard the private information inside the FL
scenario. FEDFOREST can provide effectiveness, interpretability, as well as expandability for various cyber warfare
detection methods, which outperform established DNNs-based NIDS according to our numerous tests [7].

3 Proposed approach

Using evolutionary algorithms, we synthesize detection systems using supervised learning modules. Using a collec-
tion of predictor factors, trees are used to predict a class (i.e., extracted features). Other researchers have previously
extracted characteristics from the dataset used in their efforts to create an Android malware detector, which comprises
benign and infected Android samples. Consequently, we’ll begin with the learning phase and evaluate the performance
of each developed rule. All either sample have been successfully identified or the maximum number of generations has
been achieved, at which point the training phase comes to an end. after that, the best-evolved programs are sent into
the testing phase for evaluation. The structure of our approach is shown in Figure



756 Fadel Waheed, Alyasiri

Training
Training Dataset
N
] a8
Features
Extraction
il
"' Testing D:
g Dataset
H H N Testing
o
— — I3
L => st | SO_[—f s ]
....... o e

Figure 2: General Overview of The Proposed Methodology

3.1 Classification using evtree Algorithm

This work aims to create a classification tree that can better identify Android malware. evtree, an evolutionary
algorithm for classifying trees, is used. The evolutionary approach influenced by Darwinian evolution is used to
implement the evtree population algorithm. It was first introduced by Grubinger et al. in 2014 [I0]. An EA’s typical
workflow is shown in Figure
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Figure 3: General Overview of The Evolutionary Algorithm

It produces trees (i.e., candidate solutions) and then alters them regularly after each generation to develop the
classification tree for the target environment. Root nodes are seeded with a random, valid split rule in the early stages
of population growth. The population’s needs are reflected in the evaluation function. Individuals are judged based
on their misclassification rate and complexity using the evtree algorithm (i.e., terminal nodes used). The objective is
to increase accuracy on the training data and reduce complexity. Genetic operators are applied to a different tree once
every iteration. To create new individuals, crossover and mutation operators are used. Our approach makes use of four
different kinds of mutation operators as well as one crossover operator. When two randomly picked trees are crossed
over, the result is two new trees. When using the crossover operator, a random member of the remaining population
is chosen to serve as the second parent. Split picks a random terminal-node and applies a valid, randomly generated
split rule to it in the event of mutation. Consequently, the terminal node chosen becomes an internal node and two
additional terminal nodes are created. To prune, Prune selects a random internal node that has two terminal nodes
as its successors then prunes it. In a major split rule mutation, a random internal node is selected, and the split rule,
described by the related split variable, and the split point are changed. When compared to the operator for major
split rule mutation, a minor split rule mutation is quite similar. Only slightly alters and does not impact, however it
does shift the split point by a little amount. The resulting offspring are then reintroduced into the general population.
Each step of the process is repeated until a predetermined stopping point is reached, such as the completion of the
specified number of generations.

It is possible to imitate evtree by altering various (hyper)parameters. In general, the best parameters for a given
dataset are determined by the specifics of that dataset. Parameter options that have been tested in our work are
discussed here. For instance, setting the probability of genetic operators to c40m30sp30. Utilizing this setting, the
crossover operator has a 40% chance of being selected, the mutation operators have a 30% chance of being selected (the
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minor split rule mutation has a 15% chance, and the major split rule mutation has a 15% chance), and a 30% probability
for selecting one of the split (with 15% probability) or the prune operators (with 15% probability). We tested five
probability settings including: cOmb50sp50, c20m20sp60, c20m40sp40, c20m60sp20, and c40m30sp30. To test the
usefulness of the variable operation parameters, we run it with various of iteration (100, 500, and 1000). Figureshows
evtree’s accomplishment with adopted settings probabilities using various iterations. Using 100 iteration, cOm50sp50
should a better performance than other settings. However, all settings showed similar and better performance when the
iteration was set to 1000. With a search over 1000 iterations gave no improvement in the performance for all variation
operator settings. Additionally, we tested various population of trees to check their effect on the results. Figure
depicts outcomes of evtree algorithm with population sizes of 250, 500, and 1000 trees. It can be seen that, all adopted
setting were similar and better when the population was 1000, however, there is no increase in the performance when
the population size is larger than 1000. Finally, for used dataset, due to no difference among adopted settings, we
used ¢40m30sp30 with 1000 for iteration to report results in this work.
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Figure 4: Results of evtree with different variation operator settings and number of iterations
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Figure 5: Results of evtree with different variation operator settings and population sizes

3.2 Experimental Evaluation

An Intel Core i7-based computer with 8 GB of RAM and macOS Catalina was used for these tests. To develop
the technique, a R package named evtree was used [10].
3.3 Evaluation Metrics

evtree performance can be measured according to how Android applications (i.e., malicious, and benign) are
classified. A true positive (TP) refers to malware application being classified as a malware, whereas true negative
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(TN) indicates benign application being classified as benign. False positives (FP) and false negatives (FN) are the
opposite of each other. A malicious program may alternatively be categorized as a ”"benign” application due to false
positives (FP) and false negatives (FN). We adopted the following metrics:

The detection rate indicates the proportion of values predicted as malware that were malware:

Detection rate (DR) = TP/(TP + FN)

The accuracy shows the percentage of correct classification decisions:

Accuracy (Acc) = (TP +TN)/(TN+ TP+ FN + FP)

The Precision describes the fraction of raised malware that are correct:

Precision = TP/(TP + FP)

Finally, the F1 score is a harmonic average of accuracy and recall:

F1 — score = (2 X Recall x precision)/(Recall + precision)

3.4 Description of CICMalDorid2020 Dataset

Data from the University of New Brunswick’s Canadian Institute for Cybersecurity website was used in this study
(https://www.unb.ca/cic/datasets/maldroid-2020.html). This data collection contains the following characteristics:

1. Big. It has more than 17,341 Android samples.

2. Recent. It includes recent and sophisticated Android samples until 2018.

3. Diverse. It has samples spanning between five distinct categories: Adware, Banking malware, SMS malware,
Riskware, and Benign.

4. Comprehensive. It includes the most complete captured static and dynamic features.

Each category in CICMalDorid2020 dataset is described briefly in the following [111 [12]:

Adware: When a genuine app is infected with malware and infected Mobile Adware, the advertising content (i.e.,
adverts) often hides inside the legitimate app (available on the third-party market). In order to keep the
advertisements running, the ad library employed by the virus performs a sequence of processes repeatedly (even
if the victim tries to force-close the app). For example, malware might infect a device, making it vulnerable to
Adware and letting hackers steal sensitive data.

Banking Malware: Is malware that mimics the actual banking applications or web interface in order to get access
to a user’s online banking accounts. This virus is mostly Trojan based, with the goal of getting into devices,
stealing sensitive information like bank logins and passwords, then sending the data back to a central server for
further use by the criminals behind it.

SMS Malware: Use the SMS service to execute attacks by intercepting the SMS payload. Malware on the attackers’
hosting servers is required before they can connect the SMS. There are several ways that the C&C server is put
to use by the bad guys to carry out their harmful activities.

Mobile Riskware: Riskware is a word used to describe lawful applications that have the potential to do damage if
bad persons use them. So, it may evolve into adware or ransomware, which boosts functionality by installing
additional infected software on the victim’s computer. There is just one version of this category, which is normally
classified as ”Riskware” by Virus Total.

Benign: All additional software that does not fall into one of the categories listed above is considered benign, indi-
cating that it is not harmful.

Android samples were obtained from a variety of sources, including VirusTotal, the Contagio security blog, AMD,
MalDozer, and other recent contributions to research. We used the dataset file with 470 extracted features form
Android based applications. Components in this file (i.e., features) include the description of system call frequencies,
bindings, and composite behaviours. The total number of samples is 11,598 that distributed as detailed in Fig. [6]
Benign samples represent around 15% of the dataset while SMS malware is with the most sample around 33%.
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Figure 6: CICMalDorid2020 Dataset Sample Distribution

4 Results

To eliminate dependency on the random seed and biases estimation in performance evaluation, we used 10-fold
cross-validation approach. The average of the best-evolved rules on the testing dataset are reported. Figure [7] shows
the achieved outcomes of evtree algorithm using different number of trees (i.e., 250, 500, and 1000) in term of precision,
detection rate, Fl-score, and accuracy. Furthermore, each barplot, which shows the average of 10 runs, with an error
bar on top which indicates standard error around the average. The standard error reports the change in average with
various experiments carried each time. It can be calculated using (0/v/N) where N is set to 10 (i.e., total number
of runs). As noted, evtree performance where similar when executed using different number of trees, however, with
favour in some cases towards evolved rules with population of 1000.
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Figure 7: evtree performance results
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When the result of this study is compared with the previous works’ shown in Table[T] the results showed that evtree
algorithm was effective, leading to better or comparable results accomplished by other approaches. Furthermore, evtree
is far less complex than other proposed techniques and it produced lightweight solutions (i.e., reduced tree complexity).

Table 1: Comparing Results Against Existing Security Systems using CICMalDorid2020 Dataset

Reference Classifier Precision DR Fl-score Acc

Mahdavifar et al. (2020) [I2] Pseudo-Label Deep Neural Network 99.16 96.54 97.84 96.7

Xu et al. (2021) [19] Group Convolutional Neural Networks NA NA 7 81.11

Elkabbash et al. (2021) [§]  Random vector functional link and ar- NA 97.29 97.51 97.22
tificial Jellyfish Search optimizer

Dong et al. (2022) [7] Gradient Boosting Decision Tree and NA NA 88.59 89.63

Federated Learning
Proposed Approach evtree 96.14 99.11 97.60 95.89

4.1 evtree Algorithm for Detecting Unknown Malware

Most Android defence systems have been built employing signature-based or standard behaviour of used Apps.
Nevertheless, these are insufficient for detecting unknown malware. We evaluated evtree algorithm’s capability to learn
attributes of known malware which are usually modifications of earlier malware. The CICMalDorid2020 dataset was
used for this investigation. This dataset has 4 types of malware (see Figure . Different malware has been included
into our training and testing sets. Thus, we deleted its training samples and put them to the testing component for
each form of malware that mimics an unknown malware. We ran the algorithm ten times for each investigation, a
total of 40 independent runs for all malwares found in the utilised dataset. Figure [8| shows the range of reactions to
the detection rate of each unknown malwares.
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Figure 8: CICMalDorid2020 Dataset Sample Distribution

The boxplots show that evtree algorithm was capable of detecting unknown malware with high and steady perfor-
mance, specifically Adware, and SMS malware. However, it has accomplished the most inferior detection for Banking
and Riskware malware compared to other unknown malware. Therefore, in the future, we require to include different
features that may contain malware behaviour. Overall, these outcomes indicate that evtree algorithm has successfully
categorised unknown malware that were excluded from training.

5 Conclusions and Future Work

This study provides a preliminary examination of the evtree algorithm for Android malware detection. Such system
has become a favoured target of cyber-attacks. Results show the ability of the proposed method to classify malware
threats. Our proposed method was able to convert extracted features, which describe App behaviour, into a decision
space that distinguishes benign from malware Apps. The results indicated that evtree algorithm demonstrated a strong
performance in identifying malware that was absent from the training phase. Future work includes leveraging evtree
to develop an ensemble model (i.e., a group of detectors) to identify risks to Android environments. Additionally, uses
evtree to classify Android malware into different categories.
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