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Abstract

In this research work, we demonstrate the Hyers-Ulam stability for functions that are homogeneous of degree k, in
multi-Banach lattice by fixed point method.
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1 Introduction

The stability problem of functional equations originated from a question of Ulam [22] in 1940. Hyers is the first
mathematician who answered the question of Ulam [12] in 1941. The Hyers stability theorem was developed by
other mathematicians Hyers theorem was generalized by Aoki [8] for additive mappings and by Rassias [19] for linear
mappings by considering an unbounded Cauchy difference. The paper [19] of Rassias has significantly influenced
the development of what we now call the Hyers-Ulam Rassias stability of functional equations. During the past
decades,Several stability problems of functional equations have been extensively investigated by a number of authors(
see [9, 13, 14, 21, 15])

H. G. Dales and M. E. Polyakov [10] introduced the concept of multi-normed space in their article. Multi normed
space has a relation with ordered vector spaces and operator spaces. Furthermore, this concept is somewhat similar
to that of the operator sequence space. We have collected some properties of multi-normed spaces which will be used
in this article. We refer readers to [11, 16, 17, 10] for more details.

Agbeko has studied the stability of maximum preserving functional equations motivated by the optimal average
(see [1, 2, 3, 5, 7, 6, 4]). He has replaced addition operation with the maximum operation on a given Banach lattice.
This new approach can be extended to other branches of mathematics for example see [18].

In [23] the maximum preserving functional equation for cauchy functional equation has been proved by replacing
addition with supremum. In [20] this property has been proved for quadratic functional equation in Banach lattice.
In this paper, we generalized them for homogeneous function of degree m (m ∈ N) in multi-Banach lattice by fixed
point method.
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Definition 1.1. A Banach lattice (E, ∥ · ∥) is a partially ordered real Banach space for which
(i) If x, y ∈ E such that x ≤ y then x+ z ≤ y + z for all z ∈ E,
(ii) If x, y ∈ E such that x ≤ y then αx ≤ αy for all α ≥ 0,
(iii) the least upper bound x ∨ y and the greatest lower bound x ∧ y exist for every x, y ∈ E,
(iv) ∥x∥ ≤ ∥y∥ whenever |x| ≤ |y| (where |x| = x ∨ (−x)).

Definition 1.2. Let X be a set. A function d : X2 → [0,∞] is called a generalized metric on X if and only if d
satisfies

(M1) d(x, y) = 0 if and only if x = y;

(M2) d(x, y) = d(y, x), for all x, y ∈ X;

(M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We remark that the only difference between the generalized metric and the usual metric is that the range of the
former is permitted to include the infinity. We now introduce one of the fundamental results of the fixed point theory.

Theorem 1.3. Let (X,d) be a generalized complete metric space. Assume that Λ : X → X is a strictly contractive
operator with the Lipschitz constant L < 1. If there exists a nonnegative integer n0 such that d(Λn0+1x,Λn0x) < ∞
for some x ∈ X, then the following statements are true:

(i) The sequence {Λnx} converges to a fixed point x∗ of Λ;

(ii) x∗ is the unique fixed point of Λ in X∗ = {y ∈ X|d(Λn0x, y) <∞};
(iii) If y ∈ X∗, then

d(y, x∗) ≤ 1

1− L
d(Λy, y)

Now, recalling the notion of a multi-normed space from [11, 10]. In this paper, (E, ∥ · ∥) denotes a complex
normed space and let k ∈ N. We denote by Ek the linear space E ⊕ · · · ⊕E consisting of k-tuples (x1, . . . , xk), where
x1, . . . , xk ∈ E the linear operations Ek are defined coordinatewise. The zero element of either E or Ek is denoted by
0. We denote by Nk the set {1, 2, . . . , k} and by Sk the group of permutations on k symbols.

Definition 1.4. A multi-norm on {Ek : k ∈ N} is a sequence (∥ · ∥k) = (∥ · ∥) : k ∈ N) such that ∥ · ∥k is a norm on
Ek for each k ∈ N, such that ∥x∥1 = ∥x∥ for each x ∈ E , and such that the following axioms are satisfied for each
k ∈ N with k ≥ 2:

N1 ∥(xσ(1), . . . , xσ(k))∥k = ∥x1, . . . , xk)∥k (σ ∈ Sk;x1, . . . , xk ∈ E);

N2 ∥(α1x1, . . . , αkxk)∥k ≤ (max
i∈Nk

|αi|)∥(x1, . . . , xk)∥k (α1, . . . , αk ∈ C;x1, . . . xk ∈ E);

N3 ∥(x1, . . . , xk−1, 0)∥k = ∥(x1, . . . , xk−1)∥k−1 (x1, . . . , xk−1 ∈ E);

N4 ∥(x1, . . . , xk−1, xk−1)∥k = ∥(x1, . . . , xk−1)∥k−1 (x1, . . . , xk−1 ∈ E).

In this case, we say that ((Ek, ∥·∥) : k ∈ N) is a multi-normed space. The motivation for the study of multi-normed
spaces (and multi-normed algebras) and many examples are detailed in the earlier investigation [11]. Suppose that
((Ek, ∥ · ∥k) : k ∈ N) is a multi-normed space, and take k ∈ N. The following properties are almost immediate
consequences of the axioms.
(a) ∥(x, . . . , x)∥k = ∥x∥ (x ∈ E);

(b) max
i∈Nk

∥xi∥ ≤ ∥(x1, . . . , xk)∥k ≤
k∑

i=1

∥xi∥ ≤ kmax
i∈Nk

∥xi∥ (x1, . . . , xk ∈ E).

It follows from the item (b) above that, if (E, ∥ · ∥) is a Banach space, then (Ek, ∥ · ∥k) is a Banach space for each
k ∈ N; in this case, ((Ek, ∥ · ∥k) : k ∈ N) is a multi-Banach space.

Example 1.5. Let (E, ∥ · ∥) be Banach lattice and define

∥(x1, . . . , xk)∥k := ∥|x1| ∨ · · · ∨ |xk|∥ (x1, . . . , xk) ∈ E

Then ((Ek, ∥ · ∥k) : k ∈ N) is a multi-Banach space(see [11]). We say it multi-Banach lattice.



Stability of maximum preserving in multi-Banach ... 65

2 Main Results

Throughout this section, let (Ek
1 , ∥ · ∥k) : k ∈ N) be a multi-Banach lattice and p : [0,∞) → [0,∞) be continuous

function, fixed m ≥ 1 and τ, η ∈ R+ . For convenience, we use the following abbreviation for a given mapping
f : E1 → E2

Df(x, y) = f(τ |x| ∨ η|y|)− (τmp(τ)f(|x|) ∨ ηmp(η)f(|y|))
p(τ) ∨ p(η)

.

Let us recall some necessary definitions. If B is a Banach lattice, then B+ stands for its positive cone, i.e.

B+ = {x ∈ B : x ≥ 0} = {|x| : x ∈ B}.

Definition 2.1. Let X and Y be Banach lattices, a mapping f : X → Y is called cone-related if f(X+) = {f(|x|) :
x ∈ B} ⊂ Y +(see [3]).

Let X and Y be two Banach lattices and f : X → Y be a cone-related functional, with following properties:

I) Minimum Preserving Functional Equation: f(|x| ∨ |y|) = f(|x|)∨ f(|y|) for all members x, y ∈ X(see [3]).

II) Homogeneity of degree m: f(α|x|) = αmf(|x|) for all x ∈ X and every number α ∈ [0,∞).

We shall use the technics in [3] to prove the following two theorems.

Theorem 2.2. Let E1 and E2 be two Banach lattices and ((Ek
1 , ∥ · ∥k) : k ∈ N) be a multi-Banach lattice . Suppose

ϕ : E2k
1 → [0,∞) is a given function and there exist constants m ≥ 1 and L, 0 < L < 1, such that

ϕ(2x1, 2y1, . . . , 2xk, 2yk) ≤ 2mLϕ(x1, y1, . . . , xk, yk) (2.1)

for all x1, . . . , xk, y1, . . . , yk ∈ E1. Furthermore, let f : E1 → E2 be a cone-related function with f(0) = 0 which
satisfies

∥Df(x1, y1), . . . , Df(xk, yk)∥k ≤ ϕ(τx1, ηy1, . . . , τxk, ηyk) (2.2)

for all x1, . . . , xk, y1, . . . , yk ∈ E1, then there is a unique cone-related mapping T : E1 → E2 which satisfies properties
I, II and the inequality.

∥T (|x1|)− f(|x1|), . . . , T (|xk|)− f(|xk|)∥k ≤ L

1− L
ϕ(x1, x1, . . . , xk, xk) (2.3)

Proof . If we define
X = {g : E1 → E2| g(0) = 0}

and introduce a generalized metric on X as follows:

d(g, h) = inf{c ∈ [0,∞] :∥g(x1)− h(x1), . . . , g(xk)− h(xk)∥k
≤ cϕ(x1, x1, . . . , xk, xk), for all x1, . . . , xk ∈ E1}

then (X, d) is complete. We define an operator Λ : X → X by

(Λg)(x) =
g(2x)

2m

for all x ∈ E1. First, we assert that Λ is strictly contractive on X. Given g, h ∈ X, let c ∈ [0,∞) be an arbitrary
constant with d(g, h) ≤ c, i.e.,

∥g(x1)− h(x1), . . . , g(xk)− h(xk)∥k ≤ cϕ(x1, x1, . . . , xk, xk),

for all x1, . . . , xk ∈ E1. If we replace x in the last inequality with 2x and make use of (2.1), then we have

∥Λg(x1)− Λh(x1), . . . ,Λg(xk)− Λh(xk)∥k =2−m ∥g(2x1)− h(2x1), . . . , g(2xk)− h(2xk)∥k
≤2−m cϕ(2x1, 2x1, . . . , 2xk, 2xk)

≤Lcϕ(x1, x1, . . . , xk, xk)
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for every x1, . . . , xk ∈ E1, i.e., d(Λg,Λh) ≤ Lc. Hence, we conclude that d(Λg,Λh) ≤ Ld(g, h) for any g, h ∈ X. Next,
we assert that d(Λf, f) <∞. If we substitute x for y in (2.2) and τ = η = 2, then (2.1) establishes

∥f(2|x1|)− 2mf(|x1|), . . . , f(2|xk|)− 2mf(|xk|)∥k ≤ ϕ(2x1, 2x1, . . . , 2xk, 2xk)

then ∥∥∥∥f(2|x1|)2m
− f(|x1|), . . . ,

f(2|xk|)
2m

− f(|xk|)
∥∥∥∥
k

≤ 2−m ϕ(2x1, 2x1, . . . , 2xk, 2xk)

≤ Lϕ(x1, x1, . . . , xk, xk)

and so,

∥Λf(|x1|)− f(|x1|), . . . ,Λf(|xk|)− f(|xk|)∥ ≤ Lϕ(x1, x1, . . . , xk, xk)

for any x1, . . . , xk ∈ E1, i.e.,
d(Λf, f) ≤ L ≤ ∞. (2.4)

Now, it follows from Theorem 1.3 (i) that there exists a function T : E1 → E2 with T (0) = 0, which is a fixed
point of Λ, such that Λnf → T , i.e.,

T (x) = lim
n→∞

f(2nx)

2nm

for all x ∈ E1. Since the integer n0 of Theorem 1.3 is 0 then f ∈ X∗ which

X∗ = {y ∈ X : d(Λn0f, y) <∞}.

By Theorem 1.3 (iii) and (2.4) we obtain

d(f, T ) ≤ 1

1− L
d(Λf, f) ≤ L

1− L

i.e., the inequality (2.3) is true for all x ∈ E. Clearly, T is a cone-related operator. Let us show that T is maximum
preserving. Let τ = η = 2n in (2.2) we have

∥f(2n(|x1| ∨ |y1|))− 2nm(f(|x1|) ∨ f(|y1|)), . . . , f(2n(|xk| ∨ |yk|))
− 2nm(f(|xk|) ∨ f(|yk|))∥k ≤ ϕ(2nx1, 2

ny1, . . . , 2
nxk, 2

nyk).

Substituting x1, . . . , xk with 2nx1, . . . , 2
nxk and y1, . . . , yk with 2ny1, . . . , 2

nyk in the last inequality:

∥f(22n(|x1| ∨ |y1|))− 2nm(f(2n|x1|) ∨ f(2n|y1|)), . . . , f(22n(|xk| ∨ |yk|))− 2nm(f(2n|xk|) ∨ f(2n|yk|))∥k
≤ ϕ(22nx1, 2

2ny1, . . . , 2
2nxk, 2

2nyk).

Thus

∥4−nmf(22n(|x1| ∨ |y1|))− 2−nm(f(2n|x1|) ∨ f(2n|y1|)), . . . , 4−nmf(22n(|xk| ∨ |yk|))− 2−nm(f(2n|xk|) ∨ f(2n|yk|))∥k
≤ 4−nmϕ(22nx1, 2

2ny1, . . . , 2
nmxk, 2

2nyk).

with use of (2.1)

∥4−nmf(22n(|x1| ∨ |y1|))− 2−nm(f(2n|x1|) ∨ f(2n|y1|)), . . . , 4−nmf(22n(|xk| ∨ |yk|))− 2−nm(f(2n|xk|) ∨ f(2n|yk|))∥k
≤ 2−nmLnϕ(2nx1, 2

ny1, . . . , 2
nxk, 2

nyk).

By inequality (2.1) , we have
lim
n

2−nmϕ(2nx1, 2
ny1, . . . , 2

nxk, 2
nyk) = 0 (2.5)

By letting n → ∞ and considering (2.2), replace x1, . . . , xk with x and y1, . . . , yk with y in the last inequality
conclude

lim
n→∞

∥4−nmf(4n(|x| ∨ |y|))− 2−nm(f(2n|x|) ∨ f(2n|y|))∥ = 0
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we get for all x, y ∈ X the equality
∥T (|x| ∨ |y|)− T (|x|) ∨ T (|y|)∥ = 0

or equivalently
T (|x| ∨ |y|) = T (|x|) ∨ T (|y|),

because,
lim

n→∞
4−nmf(4n|z|) = lim

p→∞
2−pmf(2p|z|) = T (|z|), z ∈ X

Now, we must show T (r|x|) = rmT (|x|) for all x ∈ X and r ∈ [0,∞). Using the inequality (2.2) with η = τ ,
y1, . . . , yk = 0 and substituting τ with 2nτ :

∥f(2nτ(|x1|))− 2nmτm(f(|x1|)), . . . , f(2nτ(|xk|)− 2nmτm(f(|xk|))∥k ≤ ϕ(2nτx1, 2
nτx1, . . . , 2

nτxk, 2
nτxk).

If we replace x1, . . . , xk with 2nx1, . . . , 2
nxk respectively, then:

∥f(22nτ(|x1|))− 2nmτ2(f(2n|x1|)), . . . , f(22nτ(|xk|)− 2nmτ2(f(2n|xk|))∥k ≤ ϕ(22nτx1, 2
2nτx1, . . . , 2

2nτxk, 2
2nτxk).

Divide by 4mn both side of above inequality and use the inequality (2.1) :

∥4−nmf(22nτ(|x1|))− 2−nmτm(f(2n|x1|)), . . . , 4−nmf(22nτ(|xk|)− 2−nmτm(f(2n|xk|))∥k
≤ 4−nmϕ(22nτx1, 2

2nτx1, . . . , 2
2nτxk, 2

2nτxk)

≤ 2−nmLnϕ(2nτx1, 2
nτx1, . . . , 2

nτxk, 2
nτxk).

By letting n→ ∞ and considering (2.1), replace x1, . . . , xk with x in the last inequality conclude

lim
n→∞

∥4−nmf(4n(τ |x|))− 2−nmτm(f(2n|x|))∥ = 0

we get for all x ∈ X the equality

lim
n→∞

4−nmf(4nτ |x|) = τm lim
n→∞

2−nmf(2n|x|) = τmT (|x|),

by taking z = τ |x|, we have

τmT (|x|) = lim
n→∞

4−nmf(4nτ |x|) = lim
n→∞

4−nmf(4n|z|) = T (|z|) = T (τ |x|).

For uniqueness of T : Assume that the inequality (2.3) is also satisfied with another homogeneous function of degree
two S : E1 → E2 besides T . (As S is a homogeneous function of degree two, S satisfies that

S(x) =
S(2x)

2m
= ΛS(x)

for all x ∈ E1. That is, S is a fixed point of Λ.) In view of (2.3) and the definition of d, we know that

d(f, S) ≤ L

1− L
<∞

i.e., S ∈ X∗. (In view of (2.4), the integer n0 of Theorem 1.3 is 0.) Thus, Theorem 1.3 (ii) implies that S = T . This
proves the uniqueness of T . □

Theorem 2.3. Let E1 and E2 be two Banach lattices and ((Ek
1 , ∥ · ∥k) : k ∈ N) be a multi-Banach lattice . Suppose

ϕ : E2k
1 → [0,∞) is a given function and there exist constants m ≥ 1 and L, 0 < L < 1, such that

ϕ(x1, y1, . . . , xk, yk) ≤ 2−mLϕ(2x1, 2y1, . . . , 2xk, 2yk) (2.6)

for all x1, . . . , xk, y1, . . . , yk ∈ E1. Furthermore, let f : E1 → E2 be a cone-related function with f(0) = 0 which
satisfies

∥Df(x1, y1), . . . , Df(xk, yk)∥k ≤ ϕ(τx1, ηy1, . . . , τxk, ηyk) (2.7)

for all x1, . . . , xk, y1, . . . , yk ∈ E1, then there is a unique cone-related mapping T : E1 → E2 which satisfies properties
I, II and the inequality.

∥T (|x1|)− f(|x1|), . . . , T (|xk|)− f(|xk|)∥k ≤ L

1− L
ϕ(x1, x1, . . . , xk, xk) (2.8)
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Proof . We use the definitions for X and d, the generalized metric on X, as in the proof of Theorem 2.2. Then,
(X, d) is complete. We define an operator Λ : X → X by

(Λg)(x) = 2mg(
x

2
)

for all x ∈ E1. We apply the same argument as in the proof of Theorem 2.2 and prove that Λ is a strictly contractive
operator. Moreover, we prove that

d(Λf, f) ≤ L (2.9)

instead of (2.4) in the proof of Theorem 2.2. According to Theorem 1.3 (i) there exists a function T : E1 → E2 with
T (0) = 0, which is a fixed point of Λ, such that

T (x) = lim
n→∞

2nmf(2−nx)

for each x ∈ E1. Since the integer n0 of theorem 1.3 is 0 and f ∈ X∗ (see Theorem 2.2 for the definition of X∗), using
theorem 1.3 (iii) and (2.9) yields

d(f, T ) ≤ 1

1− L
d(Λf, f) ≤ L

1− L
.

By inequality (2.6) , we have

lim
n

2nmϕ(2−nx1, 2
−ny1, . . . , 2

−nxk, 2
−nyk) = 0 (2.10)

which implies the validity of the inequality (2.8). In the last part of the proof of Theorem 2.2, if we replace
2nx1, . . . , 2

nxk, 2ny1, . . . , 2
nyk, and 4nm with 2−nx1, . . . , 2

−nxk, 2−ny1, . . . , 2
−nyk, and 4−nm , respectively, then

we can prove that T is a unique homogeneous function of degree two satisfying inequality (2.8) for all x ∈ E1. □

Theorem 2.4. Let E1 and E2 be two Banach lattices and ((Ek
1 , ∥ · ∥k) : k ∈ N) be a multi-Banach lattice and

f : E1 → E2 be a cone-related functional for which there are numbers θ > 0 and m ≥ 1 and 0 ≤ r < m such that

∥Df(x1, y1), . . . , Df(xk, yk)∥k ≤ θ

k∑
i=1

(∥xi∥r + ∥yi∥r) (2.11)

for all x1, . . . , xk, y1, . . . , yk ∈ E1; then there is a unique cone-related mapping T : E1 → E2 such that

∥T (|x1|)− f(|x1|), . . . , T (|xk|)− f(|xk|)∥k ≤ 2m+1θ

2m − 2r

k∑
i=1

∥xi∥r (2.12)

and satisfies properties I, II .

Proof . It follows for theorem 2.2 by putting

ϕ(x1, y1, . . . , xk, yk) = θ

k∑
i=1

(
∥xi∥2 + ∥yi∥2

)
,

for all x1, . . . , xk, y1, . . . , yk ∈ E1, L = 2r−m. □

Corollary 2.5. Let E1 and E2 be two Banach lattices and ((Ek
1 , ∥ · ∥k) : k ∈ N) be a multi-Banach lattice and

p : [0,∞) → [0,∞) be a continuous function f : E1 → E2 be a cone-related functional for which there are numbers
θ > 0 and m ≥ 1 and 0 ≤ r < m such that

∥f(τ |x1| ∨ η|y1|)− τmf(|x1|) ∨ ηmf(|y1|), . . . , f(τ |xk| ∨ η|yk|)− τmf(|xk|) ∨ ηmf(|yk|)∥k ≤ θ

k∑
i=1

(∥xi∥r + ∥yi∥r)

for all x1, . . . , xk, y1, . . . , yk ∈ E1 and τ, η ∈ R+ ; then there is a unique cone-related mapping T : E1 → E2 such that

∥T (|x1|)− f(|x1|), . . . , T (|xk|)− f(|xk|)∥k ≤ 2θ

2m − 2r

k∑
i=1

∥xi∥r

and satisfies properties I, II .
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Proof . Enough, we put p(t) = 1 in above theorem for t ∈ [0,∞). In this case, the sense of stability in multi-Banach
lattice is similarity with stability of quadratic functional equation in Banach space. □

Corollary 2.6. Let E1 and E2 be two Banach lattices and ((Ek
1 , ∥ · ∥k) : k ∈ N) be a multi-Banach lattice and

p : [0,∞) → [0,∞) be a continuous function f : E1 → E2 be a cone-related functional for which there are numbers
θ > 0 and m ≥ 1 and 0 ≤ r < m such that∥∥∥∥f(τ |x1| ∨ η|y1|)− τm+1f(|x1|) ∨ ηm+1f(|y1|)

τ ∨ η
., . . . , f(τ |xk| ∨ η|yk|)−

τm+1f(|xk|) ∨ ηm+1f(|yk|)
τ ∨ η

∥∥∥∥
k

≤ θ

k∑
i=1

(∥xi∥r + ∥yi∥r).

for all x1, . . . , xk, y1, . . . , yk ∈ E1 and τ, η ∈ R+ ; then there is a unique cone-related mapping T : E1 → E2 such that

∥T (|x1|)− f(|x1|), . . . , T (|xk|)− f(|xk|)∥k ≤ 2θ

2m − 2r

k∑
i=1

∥xi∥r

and satisfies properties I, II .

Proof . Enough, we put P (t) = t in above theorem. □

Theorem 2.7. Let E1 and E2 be two Banach lattices and ((Ek
1 , ∥ · ∥k) : k ∈ N) be a multi-Banach lattice and

f : E1 → E2 be a cone-related functional for which there are numbers θ > 0 and m ≥ 1 and 0 ≤ r < m such that

∥Df(x1, y1), . . . , Df(xk, yk)∥k ≤ θ

k∑
i=1

k∑
j=1

∥xiyj∥r (2.13)

for all x1, . . . , xk, y1, . . . , yk ∈ E1; then there is a unique cone-related mapping T : E1 → E2 such that

∥T (|x1|)− f(|x1|), . . . , T (|xk|)− f(|xk|)∥k ≤ 4rθ

2m − 4r

(
k∑

i=1

∥xi∥r
)2

(2.14)

and satisfies properties I, II .

Proof . It follows for theorem 2.2 by putting

ϕ(x1, y1, . . . , xk, yk) = θ

k∑
i=1

k∑
j=1

∥xiyj∥r,

for all x1, . . . , xk, y1, . . . , yk ∈ E1, L = 22r−m. □

Corollary 2.8. Let E be Banach algebra and ((Ek, ∥ · ∥k) : k ∈ N) be a multi-Banach algebra . Suppose r ∈ (0, 1)
and θ ∈ [0,∞) and f : E → E with f(1) = 1, such that

∥Dτηf(x1, y1), . . . , Dτηf(xk, yk)∥k ≤ θ

k∑
i=1

(∥xi∥r + ∥yi∥r)

∥f(x1y1)− f(y1)f(x1), . . . , f(xkyk)− f(yk)f(xk)∥k ≤ θ

k∑
i=1

(∥xi∥r + ∥yi∥r)

lim
m

2−mf(2m lim
n

2−nf(2nx)) = x

for all x1, . . . , xk, y1, . . . , yk ∈ E and τ, η ∈ T1
1
n0

, then there is a unique involution mapping I : E → E which satisfies

∥I(x1)− f(x1), . . . , I(xk)− f(xk)∥k ≤ 2θ

2− 2r

k∑
i=1

∥xi∥r
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moreover if ∣∣∣∥x1f(x1), . . . , xkf(xk)∥k − ∥x1, . . . , xk∥2k
∣∣∣ ≤ 2θ

k∑
i=1

∥xi∥r

for all x1, . . . , xk ∈ E, then E is a C∗-algebra with involution x∗ = I(x), for all x ∈ E.

Proof . We put

ϕ(x1, y1, . . . , xk, yk) := θ

k∑
i=1

(∥xi∥r + ∥yi∥r),

for all x1, y1, . . . , xk, yk ∈ E and L = 2r−1 in theorem (2.2), then as a result, the sentence is obtained. □

Corollary 2.9. Let E be Banach algebra and ((Ek, ∥ · ∥k) : k ∈ N) be a multi-Banach algebra . Suppose r ∈ (0, 1)
and θ ∈ [0,∞) and f : E → E with f(1) = 1, such that

∥Dτηf(x1, y1), . . . , Dτηf(xk, yk)∥k ≤ θ

k∑
i=1

k∑
j=1

∥xiyj∥r

∥f(x1y1)− f(y1)f(x1), . . . , f(xkyk)− f(yk)f(xk)∥k ≤ θ

k∑
i=1

k∑
j=1

∥xiyj∥r

lim
m

2−mf(2m lim
n

2−nf(2nx)) = x

for all x1, . . . , xk, y1, . . . , yk ∈ E and τ, η ∈ T1
1
n0

, then f is unique involution on E, moreover if

∣∣∣∥x1f(x1), . . . , xkf(xk)∥k − ∥x1, . . . , xk∥2k
∣∣∣ ≤ θ

(
k∑

i=1

∥xi∥r
)2

for all x1, . . . , xk ∈ E, then E is a C∗-algebra with involution x∗ = f(x), for all x ∈ E.

Proof . We put

ϕ(x1, y1, . . . , xk, yk) := θ

k∑
i=1

k∑
j=1

∥xiyj∥r,

for all x1, y1, . . . , xk, yk ∈ E and L = 22r−1 in theorem (2.2), then as a result, the sentence is obtained. □
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