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Abstract

Portfolio optimization in finance and economy is more than a mathematical model for improving performance under
uncertainty constraints. Practically all organizations seek to create value by selecting the best portfolios that consume
the least resources and obtaining high expected portfolio returns and controlling risk. In the context of the portfolio
selection problem, severe uncertainties would significantly affect the technical and financial aspects. This paper presents
a bi-level information gap decision theory (IGDT) risk averse decision-making tool for robust portfolio optimization
problems to help organizations or investors for managing their portfolios and finding the best transactions with severe
uncertainty variables (price and return) to process the forecast data generated by the learning prediction method in
order to construct the optimal stock portfolios that a target profit is guaranteed. The heuristic solution approach is
constructed and the augmented ε-constraint method is used to solve the proposed bi-level IGDT robust optimization
problem. The effectiveness and efficiency of the proposed model are evaluated on the Iranian Stock Market. The
results show the efficiency and effectiveness of the proposed model for selecting the best stocks. The Mont Carlo
simulation method is applied for the validation of results.

Keywords: robust portfolio optimization, severe uncertainties, information gap decision theory, bi-level model, Mont
Carlo simulationk risk averse
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1 Introduction

Portfolio optimization means that how to selecting the number of items for allocating to assets in different market.
The first mathematical model for portfolio selection was presented by Markowitz [33, 34] that is evaluating the mean
and variance of investments. A basic and important assumption of Markowitz mathematical model is that the investor
knows the exact expected return but in reality, the true expected is not occurred and a lot of factors can change the
results [30]. For this reason, there are not enough historical data about distribution of return and it is not easy to
forecast the investment return accurately [40].

The classical portfolio not considering the estimation error and performing not strongly in uncertain conditions.
Therefore, it is needed to construct a portfolio optimization model considering data uncertainty with statistical methods
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and experts’ experience to forecast return of investment. For this reason, factor models are used for solving and
considering the unexpected return to evaluating the performance of portfolio managers, to assess return risk, to
predict returns, and to construct portfolios [37, 12]. There are some various fund-separation theorems considering
the uncertainty such as Asset pricing models Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT) [42].
Financial time series forecasting method for managing risk of stock price risk analysis is one of the most difficult
problems for researchers and plays important role in trading strategies to identifying opportunities to buy and sell
stock [48].

Uncertainties from various contributing source for predicting and forecasting the future return based on historical
data is the biggest and most important challenge for any investment. Sources of uncertainty may be divided into two
types: aleatory and severe [38, 27].

Aleatory uncertainty is not simplified phenomena that exhibiting natural variation such as different conditions of
random event. Severe or epistemic uncertainty results from a less knowledge about the subjective data of system or
parameters and approximations in the behavior models that caused reduce obtaining information about the system.

Severe uncertainty is a type of model parameters can be defined with reference to a stochastic quantity whose
distribution type or distribution parameters are not precisely known [2], or with reference to a deterministic quantity
whose value is not precisely known [22].

Uncertainty in some cases is appeared with distribution function of a random variable that is available showed as
intervals given by experts. As a result, the stochastic optimization methods with a risk measurement are employed
the uncertain variables are considered by the suitable probability distribution functions. In portfolio optimization
stochastic programming is used for select the best choice for buy and sell [25, 49]. In this paper because severe
uncertainty the stochastic optimization is applied.

One of the best methods for controlling the uncertainty of stock market is prediction methods and data sources
commonly used methods were modeling the relationship between the historical behavior and future movement of the
price, and using historical market samples to predict the future trend or value of the price [51]. For financial time
traditional statistical methods such as linear regression, auto-regression and moving average (ARMA), and GARCH
(Generalized Auto Regressive Conditional Heteroskedasticity) were much used for predict the future.

Robustness methods are another important method for controlling uncertainty as defined the ability of a system to
be insensitive to small departures from the assumptions depending that the system operating correctly in the presence
of uncertain environmental conditions [21, 23, 35, 17, 50].

The essential segments and components in robust optimization methods are: 1. ensuring objective robustness,
2. ensuring feasibility robustness, 3. estimating mean and measure of variation (e.g., variance) of the performance
function, and 4. multiobjective optimization [15].

A detailed description of four elements of robust optimization method can be found in Conditional value at risk
(CVaR) is used as risk measurement tool formulated in the target function or constraints of optimization model to
achieving profit volatility. The optimality of stochastic optimization methods or robust optimization and the results for
dealing with risk by using a measurement index (CVaR) depending on the precision of estimated number of scenarios
considered within the optimization procedure the absence of sufficient historical data leads to inaccurate fitted PDFs
and consequently wrong results [44]. In one hand risk aversion approach is applied for non-expected utility theories
and for uncertainty situation [36]. The risk aversion is a method for decreasing decisions for an increasing risk [45].

In another hand, in related with increasing the number of scenarios for complaining the uncertainty and com-
putational complexity of the optimization problem significantly grows. In due to these reason for risk aversion and
increasing the number of scenarios the information gap decision theory (IGDT) was presented for the first time by
Ben [2] for maximizing the interval solution for achieving to best results. There are a few research in this field. Majidi
et al [32] present review research for applying IGDT method in different aspects. Optimizing the problem for power
energy hub with using the IGDT is presented by Jordehi et al [26]. Applying IGDT method for electric autonomous
hybrid refueling station is a risk-constrained design presented by Sriyakul and Jermsittiparsert [47]. One research is
used for portfolio optimization with IGDT that just optimize basic portfolio model. Table 1 summarizes the portfolio
optimization with severe or epistemic uncertainty and with the methods which applied for considering the uncertainty.

Based on the literature review there is no risk averse study considering severe return and severe price uncertainty
with IGDT. For this reason, this paper presents a novel non-deterministic and non- probabilistic risk averse method
for portfolio selection based on information gap decision theory (IGDT) which has several advantages and requires
forecasted values as well as lower and upper bounds of uncertain variables that are easier to obtain from historical
data. One of another advantage is risk management and profit maximization are simultaneously performed.
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Table 1: Literature review for the portfolio optimization with severe

Authors Year Risk averse Uncertain variables Type Un-
certainty

Method Case Study

Asadujjaman, M.,
Zaman,

2019 No Return Sever Moment
bounding
approach

Chines Market

Berleant et al. 2008 No Return Sever Stochastic
dominance

*

Cheong et al. 2007 No Return Sever Stochastic
dominance

energy markets

Beck et al, 2012 Return Sever Robust
Fuzzy opti-
mization

*

Current reserach - yes Return and Price Sever IGDT Iran Stock Market

The main novel contributions is proposing a novel bi-level model considering severe uncertainty with using utilizing
IGDT as a new non-deterministic and non-probabilistic method for portfolio selection for the first time that has no
assumption on the probabilistic estimation of the uncertain variables and it can be using forecasted variables with
severe uncertainties. For solving the problem an efficient heuristic solution model is presented to defining any kind
of uncertainty measurement index to handle the risk of uncertain variables and guaranteeing a target profit different
from the stochastic optimization methods.

The remainder of proposed paper is organized as follows: In Section 2, a deterministic mathematical formulation of
portfolio selection including the objective function and constraints is described. Robust portfolio optimization recast
into its robust counterpart using IGDT based method and the solution procedure is presented in Sections 3 and 4
respectively. Heuristic solution approach is given in Section 5. Numerical example is shown in Section 6. Validation
result is illustrated in section 7. Finally conclusion of some main findings are shown in section 8.

2 Deterministic model

A flowchart of description framework for this novel paper is illustrated in figure 1. An investor in stock market
for portfolio selection is responsible for economic. The proposed model in this paper following the optimization
processes and decisions. In a time series period the model receives the data from the related of uncertain variables.
The forecasting information including macroeconomic variables such as return and price using predication methods
extreme learning machine method. Then short-term operational decisions such as the quantity of selling and buying
stock price to helping investors in their portfolio management are made by optimal results, including transactions
(purchase/sale/hold) with the selecting best portfolios.

Figure 1: Graphical description of the proposed model
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Table 2: Variables and parameters and indices of paper

Indices p0i The first price for assets i

t, t′ Indices of optimization period λ̃p
t,i Forecasted price of assets i in period t

i Indices for asset i ξ̃rt,i Forecasted expected return of assets i in pe-
riod t

n Number of assets ∆ri ,∆
ri Minimum and maximum quantity l for return

asset i
Parameters ∆pi

,∆pi Minimum and maximum quantity for price as-
set i

ri The expected value of return for asset i Profitexp Expected profit
σij The covariance of the return between

assets i and j
DV 1 Target profit level 1

Vi The maximum allowable portfolio risk DV 2 Target profit level 2
ε Small number

LBi The vectors of lower bound of decision
variables for assets i

Variables

UBi The vectors of upper bound of decision
variables for assets i

∝ i Value of uncertainty horizon of return value of
asset i

F̌ Robustness function in IGDT method βi Value of uncertainty horizon of return value of
price asset i

ri Expected value of return for asset i, λpi Uncertainty horizon of return
σij The covariance of the return for assets

i and j
ξri Uncertainty horizon of price

pi Price of assets i xi Fraction of capital invested in asset i
wi Weighting coefficients for assets i
ϑi Weighting coefficients for covariance i

σijσij Minimum and maximum for covariance

In reality only a small number of data points may be available for the input variables and a lot of lack for missing
the exact values therefore information about random input variables may only be specified as intervals by gathering
data from expert opinions. Based on the first mathematical model for portfolio optimization developed by Markowitz
[33, 34], this paper by considering the severe uncertainty proposes a new methodology for robustness-based portfolio
has to take into account for these input data uncertainty (severe uncertainty), causing uncertainty regarding the
expected value and covariance of the returns and prices. For a given level of severe uncertainty the investor may
choose the portfolio with the highest expected return. Table 1 shows the variables and indices used in this paper.

The basic classical formulation for maximizing the expected return for an upper limit on the variance can be
written as follows:

max f(xi) = w

n∑
i=1

rixi (2.1)

n∑
i=1

n∑
j=1

xixjσij ≤ V (2.2)

n∑
i=1

xi = 1 (2.3)

where xi is the fraction of capital invested in asset i, xj is the fraction of capital invested in asset j, ri is the expected
value of return for asset i, σij is the covariance of the return between assets i and j, and V is the maximum portfolio
risk. There are different risk-return measures for portfolio optimization which can be maximized considering mean or
median and risk.
Some studies are based on different approaches: 1. minimizing variation of variance [8, 11, 14], 2. minimizing lower
semi-variance is another approach for solving the basic portfolio model [6], 3. mean absolute deviation [46, 28].In
robust knowledge sample median is used instead of sample mean because it is not affected by the outlier which are :
Value-at-risk [18], conditional value-at-risk [41, 24, 20], partitioned value-at-risk [20, 7], asymmetry- robust value-at-
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risk [13], worst-case value-at-risk [24, 31], worst-case polyhedral value-at-risk [53], worst-case quadratic valueat-risk
[53], sharp ratio [39].

In the rest of the paper for the proposed model robust optimization model is applied.

3 Robust portfolio optimization

In robustness portfolio optimization all input parameters are estimated using expected values so that the resulting
solution is less sensitive to the differences of the input random variables.

The proposed robustness-based portfolio optimization problem under sever uncertainty for each period t can be
formulated as follows:

max f(xi) = wi

n∑
i=1

rixi − νi

n∑
i,j=1

(xixjσij) ∀ t (3.4)

n∑
i=1

n∑
j=1

xixjσij ≤ Vi ∀ t (3.5)

n∑
i=1

xi = 1 ∀ t (3.6)

LBi ≤ xi ≤ UBi ∀ t (3.7)

ri = Hi(
D1

p0i
+

pti − p0i
p0i

) ∀ t (3.8)

∆ri ≤ ri ≤ ∆ri ∀ t (3.9)

∆pi≤ pi ≤ ∆pi ∀ t

σij ≤ σij ≤ σij ∀ t (3.10)[
σijσij

]
= [

(
rij × σi × σj

)
(rij × σi × σj)] ∀ t (3.11)

where wi ≥ 0 and νi ≥ 0 are the weighting coefficients that represent the relative importance of the target. In some
cases, the investors are preferred by others to invest a specific amount of capital in particular assets, so the fractions
of capital invested in different assets have lower and upper bounds LB and UB are the vectors of lower and upper
bounds of decision variables xi.

4 Proposed IGDT method

The information gap decision theory (IGDT) method maximizes the uncertainty horizons and finds a solution that
guarantees a certain expectation for the objective. The IGDT method helps investors to maximize the robustness of
its decisions, against the uncertain variables. The uncertainty model in this method does not have any assumptions
on the probability distributions therefore it is suitable in the situations with high level of uncertainty or missing of
sufficient historical data [4]. In this paper for portfolio decisions macroeconomic variables return and price forecasts
for every day with machine learning techniques then IGDT-based decisions guarantee a specified target profit.

The IGDT method is essentially based on the gap between actual and forecasted values of uncertain variables.
We model uncertain price and return with IGDT method as a risk aversion method as given in (4.12) and (4.13),
respectively:

λpi

(
∝, λ̃p

t,i

)
=

{
λp
t,i

∣∣∣∣∣− ∝ i ≤
λp
t,i − λ̃p

t,i

λ̃p
t,i

≤∝ i

}
(4.12)

ξri

(
β, ξ̃rt,i

)
=

{
ξrt,i

∣∣∣∣∣−βi ≤
ξrt,i − ξ̃rt,i

ξ̃rt,i
≤ βi

}
(4.13)
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The objective of the IGDT method is to maximize the robustness that a target profit is achieved. In this way, the
uncertainty modelling and optimization are accomplished together:

Γ̂ (DV 1, DV 2, P rofitexp) = maxDV 1

{(
α, β

)∣∣∣∣maxDV 2
Profit(λpi, ξri)

}
≥ Profitexp × (1− σi) ∀ t (4.14)

The IGDT method should handle two kinds of variables: decision variables of portfolio selection as indicated in xi

and uncertainty horizon of macroeconomic variables (αi, βi) as indicated in:

DV 1 = {xi} (4.15)

DV 2 = {αi, βi, λpi, ξri} (4.16)

The proposed IGDT-based formulation in is a bi-level problem which explained in the next section.

4.1 Bi-level IGDT based problem

The risk aversion bi-level IGDT based problem can be formulated as follows:

Profit = max
DV1

(xi) = wi

n∑
i=1

ritxi − νi

n∑
i,j=1

(xixjσij) ∀ ∈ t (4.17)

n∑
i=1

n∑
j=1

xixjσij ≤ Vi ∀ ∈ t (4.18)

n∑
i=1

xi = 1 ∀ ∈ t (4.19)

LBi ≤ xi ≤ UBi ∀ ∈ t (4.20)

ri = Hi(
Di

pi0
+

f(λpi, ξri)− pi0
pi0

) (4.21)

∆ri ≤ ri ≤ ∆ri ∀ t (4.22)

∆pi ≤ pi ≤ ∆pi
∀ t (4.23)

σij ≤ σij ≤ σij ∀ t (4.24)[
σijσij

]
= [(rij × σi × σj) (rij × σi × σj)] ∀ t (4.25)

Level 2:

profit = max
DV2

(αi.βi) (4.26)

Profit (λpi, ξri) ≥ Profitexp × (1− σi) ∀ ∈ t (4.27)

− ∝ i ≤
λp
t,i − λ̃p

t,i

λ̃p
t,i

≤∝ i ∀ ∈ t (4.28)

− βi ≤
ξrt,i − ξ̃rt,i

ξ̃rt,i
≤ βi ∀ ∈ t (4.29)

Since covariance is a concave function with regarding to both variance and correlation coefficient which are estimated
by the methods described above. In this model we have:

[σij , σij ] = [rij × σi × σj , rij × σi × σj ] (4.30)

In reality it is impractical to calculate the correlation coefficients among the asset returns that are described by interval
data [52]. In this paper we assumed interval data of correlations among the input variables are unknown and therefore
can range from −1 to 0 or 0 to +1.
First level in this bilevel model determines the short term operational decision to maximize the robustness while
guaranteeing that the target profit is achieved and the second level determines the worst case of horizons of return
and price respectively. In this paper a heuristic method is applied for solving the problem.
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Figure 2: Heuristic solution 2

5 Solution approach

In this paper we construct for the first time a novel bilevel model with information gap decision theory for robust
optimization portfolio problem. The bilevel programming problem is as an optimization problem which has another
optimization problem in its constraints and includes two level such as leader and follower level. Leader in the upper
level is a robust optimization model and the follower in the lower level is affected hierarchically by the leader’s decisions
[29]. One of the difficult approach in solving bilevel problems is that maybe a solution is optimal for the lower level
but it is not feasible for the overall problem therefore finding optimal distances for α and β is difficult. In this paper
we study the impact of using presented heuristic method in the lower-level problem that how near-optimal solutions
on the lower level can affect the upper-level target function values. This study considers a heuristic method which can
solve the problem and we can arrive to solution. All steps for this heuristic model is illustrated in figure 2.

5.1 Augmented ε-constraint method

The augmented ε-constraint method is a optimization method that the uncertainty horizon of one of the macroe-
conomic variables is maximized and the uncertainty horizon of another macroeconomics is divided into equal intervals
through grid points [16]. Therefore, problems should be optimized to obtain Pareto optimal solutions. The augmented
ε-constraint of macroeconomic variables (return and price) is indicated in:

max (α+ ε× (
Sβ

Rβ
) (5.31)

β − Sβ = lβ ≥ 0 (5.32)

lβ = βmax −
(
βmax − βmin

iNT

)
× b b = 0, 2m. . . int (5.33)
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where, ε is a small number typically between 10−3 and 10−6, Sβ are slack variables and lβ are the maximum and
minimum uncertainty horizons.

The Pareto optimal solutions are obtained by applying different value of b solving the single Pareto set is achieved,
but the computational time is increased. As a result, a trade-off between density of Pareto set and computational
time is needed.

5.2 Forecasting method

In time series forecasting methods Extreme learning machine (ELM) is a powerful training algorithm based on
statistical approaches for single hidden layer feed forward neural network (SLFN) that converges much faster than
traditional models. Another forecasting model like ARIMA models can only be applied to stationary time series which
properties not depend on the time and they fail to capture seasonality [24].
The notations (zRi, z′Pi′) and (oRi′, o′Pi′) show the input and output vectors. F and M represent the weight from
input to hidden layer and the bias of hidden layer and β shows the output weight. The formulations for forecasting
return and price are as follow: ∑

i′

Gi′g(Fi′zRi′ + T ) = oRi′oRi′oRi′ (5.34)∑
i′

Gi′g(Mi′z
′Pi′ + T ′) = o′Pi′o′Pi′o′Pi′ (5.35)

6 Numerical results

In this study, stocks of 10 companies of Tehran Stock Exchange are selected as portfolio. Because of reducing
the correlations between stocks these companies are chosen from among different industries with random techniques.
Time series historical data for uncertainty variable price are collected from archive of Finance information processing
of Iran (FIPIRAN) between 02/01/2010 to 13/07/2022. And returns time series data consists of 1016 observations
which are divided to 472 out sample observations for evaluating estimated risk measures. Table 2 demonstrates names
of these companies and some descriptive statistics of them. Also, figures of daily price and returns for 4 companies as
examples are shown in Figure 2.

Table 3: Companies of iran stock exchange

i Company name Mean Std. dev. Skewness Kurtosis Jarque-Bera
1 Darosazi JAber (IT) 0.00030 0.05000 25.91 859.05 57880990.24
2 Traktorsazi Iran (TI) -0.00080 0.02230 -1.270 13.940 9912.42
3 Nosazi & Sakhteman (NS) -0.00130 0.02818 0.736 9.6900 3687.15
4 Iran Transfor (DJ) -0.00029 0.02807 8.640 200.11 3079971.24
5 Siman Sepahan(SS) 0.00013 0.02220 1.060 13.260 8622.78
6 Pertol Abadan (PD) -0.00010 0.03990 18.090 544.03 23129982.54
7 Mes Shahid Bahonar (MSB) -0.00039 0.02588 -0.990 13.870 9619.58
8 Tooka Fulad (TF) -0.00110 0.02816 2.290 31.100 63785.63
9 Sarmayegozari Alborz (SM) -0.00047 0.02403 2.520 28.980 55128.94
10 Pars Khodro (PK) 0.00035 0.04033 13.34 374.36 10905084.69

The coefficient of each stock is gathered in Table 4.

Table 4: Weight coefficient for each stock

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10
10000 11000 10000 12000 10000 11000 12000 11000 12000 10000

The data time series of companies of Tehran Stock Exchange for priced and returns are illustrated in Figure 3.

All steps for numerical example are calculated as follow:
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Step1: Construct all of n > 0 contributions of xi which
∑

i=1 xi = 1 and 0 ≤ xi ≤ 1 for t = 1.With OR solution
techniques we have 887 feasible solutions for each tj(j = 1− 365). All steps by one and one are implied for each
tj. We start for tj = 1 and fix all steps for all of contributions (tj = 1 . . . 365). Because of large numbers of
outputs table 4is illustrated 10 of 887 contribution results.

Table 5: Ten results of contributions
Contribution X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 X1 0.1 0.9 0 0 0 0 0 0 0 0
2 X2 0.2 0 0.2 0.2 0.1 0.1 0 0 0 0
3 X3 0.2 0.2 0 0.2 0.1 0.1 0 0 0 0
4 X4 0.2 0.2 0.2 0 0.1 0.1 0.2 0 0 0
5 X5 0.2 0.2 0.2 0.2 0 0.1 0.1 0 0 0
6 X6 0 0 0 0.1 0.1 0 0.2 0.2 0.2 0.2
7 X7 0 0 0 0.2 0.1 0.1 0 0.2 0.2 0.2
8 X8 0 0 0 0.1 0.1 0.2 0.2 0 0.2 0.2
9 X9 0 0 0 0.1 0.1 0.2 0.2 0.2 0 0.2
10 X10 0 0 0 0.1 0.1 0.2 0.2 0.2 0.2 0

Step 2: For all days (tj = 1, . . . , 365) stocks price and return are predicted with time series learning prediction
method which illustrated in figure 4.

Step 3: Based on the forecasted price prediction in step 2 the return of each stock is calculated for each contribution.
The results of calculation of forecasted returns for each stock in (x1 = 0.1 and X2 = 0.9) for t = 1 are shown in
figure 5.

For all stocks (i = 1, . . . , 10) the price and return are predicted for all times tj = 1, . . . , 365.

Step 4: The target profit is calculated for level 1. Because of a large number of outputs figure 6 shows the feasible
profit for one contribution in all tj. For this reason, first fix tj = 1 and all contributions are considered for
calculating. For each tj based on the profit the diagrams are illustrated. The target profit for all tj and for
x1 = 0.1, x2 = 0.9 and for all contributions is illustrated in figure 6.

The rest of steps is illustrated just for t = 1 and all contributions. The target profit for all contributions for
t = 1 is shown in figure 7.

Step 5: Applying IGDT method for achieving the α and β. The results of all steps for IGDT method based on ε
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Figure 3: The data time series of companies of tehran stock exchange

constraint. The results for calculating of α and β for t = 1 is showed in figure 8. For this reason, the maximum
profit is selected for each α and β.

Step 6: Applying the step 2-5 for t = 1 for all contributions. Because of large number the results are not shown and
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just illustrated in figure 9.

Step 7: Construct and select best solution for t = 1(Xj, αβ). The best target profit with feasible β is shown in figure
10.

Step 8: Do all steps 1-7 for Step tj = tj + 1.
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Step 9: Construct the feasible solution for all times.

Step8: Select the best optimized output.

The final results for the problem are gathered in table 6. The final result is shown in figure 11.

Table 6: Best solution for problem for each tj

t Number of Optimal Contribution Profit α β
1 40 509 0.2 1.67
2 548 803 0.2 1.67
3 692 968 0.2 1.67
4 676 633 0.2 1.67
5 158 1335 0.2 1.67
6 570 958 0.2 1.67
7 440 447 0.2 1.67
8 778 1442 0.2 1.67
9 353 831 0.2 1.67
10 633 388 0.2 1.67
11 539 1135 0.2 1.67
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12 739 474 0.2 1.67
13 296 845 0.2 1.67
14 528 1593 0.2 1.67
15 556 225.0964687 0.2 1.67
16 781 230.3608104 0.2 1.67
17 463 265.1725357 0.2 1.67
18 554 248.3408415 0.2 1.67
19 778 252.9248582 0.2 1.67
20 613 253.9686586 0.2 1.67
21 583 248.4711594 0.2 1.67
22 604 249.3344403 0.2 1.67
23 256 230 0.2 1.67
24 218 251.7788131 0.2 1.67
25 782 254.0146658 0.2 1.67
26 718 249.6849714 0.2 1.67
27 560 238.8330064 0.2 1.67
28 354 299.1076595 0.2 1.67
29 114 937 0.2 1.67
30 471 851 0.2 1.67
31 678 888 0.2 1.67
32 81 697 0.2 1.67
33 749 786 0.2 1.67
34 707 415 0.2 1.67
35 254 1396 0.2 1.67
36 159 1242 0.2 1.67
37 148 863 0.2 1.67
38 450 464 0.2 1.67
39 15 659 0.2 1.67
40 359 666 0.2 1.67
41 528 977 0.2 1.67
42 22 375 0.2 1.67
43 497 1117 0.2 1.67
44 81 525 0.2 1.67
45 255 1313 0.2 1.67
46 711 868 0.2 1.67
47 588 83.3241774 0.2 1.67
48 257 119.1654191 0.2 1.67
49 175 277.4043853 0.2 1.67
50 691 -203.660962 0.2 1.67
51 158 11.31593277 0.2 1.67
52 345 63.59766879 0.2 1.67
53 389 -298.0722477 0.2 1.67
54 300 157.2893187 0.2 1.67
55 547 134.7599355 0.2 1.67
56 183 112.6330015 0.2 1.67
57 528 269.519282 0.2 1.67
58 576 237.6827702 0.2 1.67
59 193 99.91136966 0.2 1.67
60 148 -113.8605031 0.2 1.67
61 56 416 0.2 1.67
62 367 1244 0.2 1.67
63 585 1087 0.2 1.67
64 20 345 0.2 1.67
65 155 873 0.2 1.67
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66 24 547 0.2 1.67
67 704 901 0.2 1.67
68 239 799 0.2 1.67
69 17 689 0.2 1.67
70 164 878 0.2 1.67
71 139 997 0.2 1.67
72 650 1506 0.2 1.67
73 188 643 0.2 1.67
74 619 993 0.2 1.67
75 500 507 0.2 1.67
76 749 705 0.2 1.67
77 741 552 0.2 1.67
78 798 1430 0.2 1.67
79 471 1288 0.2 1.67
80 127 616 0.2 1.67
81 237 1489 0.2 1.67
82 254 282.5203066 0.2 1.67
83 72 287.3050279 0.2 1.67
84 323 219.7224503 0.2 1.67
85 427 206.6254349 0.2 1.67
86 706 3.228078947 0.2 1.67
87 298 -57.03186009 0.2 1.67
88 582 149.217908 0.2 1.67
89 104 222.4699016 0.2 1.67
90 227 80.8407366 0.2 1.67
91 797 -42.15821698 0.2 1.67
92 102 183.1890889 0.2 1.67
93 513 104.8909549 0.2 1.67
94 323 181.9545776 0.2 1.67
95 177 -70.29534948 0.2 1.67
96 211 300.4756868 0.2 1.67
97 365 -38.19938516 0.2 1.67
98 659 -189.2642334 0.2 1.67
99 357 -26.45090661 0.2 1.67

100 121 37.01044417 0.2 1.67
101 261 234.2974022 0.2 1.67
102 533 492.9254606 0.2 1.67
103 696 217.6547294 0.2 1.67
104 195 -145.9553066 0.2 1.67
105 796 342.0434473 0.2 1.67
106 497 334.9958848 0.2 1.67
107 100 -142.5248766 0.2 1.67
108 438 7.647226163 0.2 1.67
109 293 528.0351693 0.2 1.67
110 681 -247.8567102 0.2 1.67
111 478 201.7017708 0.2 1.67
112 637 277.4457746 0.2 1.67
113 68 287.8898702 0.2 1.67
114 308 298.9877154 0.2 1.67
115 113 272.0264517 0.2 1.67
116 773 298.1893339 0.2 1.67
117 732 276.3685861 0.2 1.67
118 122 -5.520608875 0.2 1.67
119 4 153.7252235 0.2 1.67
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120 617 283.9685065 0.2 1.67
121 180 126.7929822 0.2 1.67
122 527 80.5009828 0.2 1.67
123 411 291.8488915 0.2 1.67
124 520 294.7318412 0.2 1.67
125 536 299.6188975 0.2 1.67
126 227 296.4201087 0.2 1.67
127 84 302.006702 0.2 1.67
128 410 298.5982356 0.2 1.67
129 85 290.4183757 0.2 1.67
130 278 290.4560574 0.2 1.67
131 755 293.2389711 0.2 1.67
132 765 9.263166667 0.2 1.67
133 431 1.982094698 0.2 1.67
134 606 -24.30404213 0.2 1.67
135 46 -19.20692562 0.2 1.67
136 425 7.107974673 0.2 1.67
137 611 260.0013185 0.2 1.67
138 235 283.89262 0.2 1.67
139 277 52.4640072 0.2 1.67
140 596 267.2097221 0.2 1.67
141 665 215.4870953 0.2 1.67
142 254 184.1268173 0.2 1.67
143 541 -41.77733178 0.2 1.67
144 102 264.3599132 0.2 1.67
145 369 43.43537711 0.2 1.67
146 578 15.00110146 0.2 1.67
147 669 -229.5552882 0.2 1.67
148 546 -5.68380303 0.2 1.67
149 557 -109.9435404 0.2 1.67
150 630 66.40883085 0.2 1.67
151 352 -34.79065431 0.2 1.67
152 500 176.62674 0.2 1.67
153 105 217.2155476 0.2 1.67
154 643 130.9171439 0.2 1.67
155 340 190.1887876 0.2 1.67
156 478 65.07295899 0.2 1.67
157 228 105.3097108 0.2 1.67
158 486 183.0113279 0.2 1.67
159 395 236.3932262 0.2 1.67
160 50 155.3722817 0.2 1.67
161 692 289.9293193 0.2 1.67
162 121 286.8280864 0.2 1.67
163 258 294.8143282 0.2 1.67
164 740 307.7690689 0.2 1.67
165 595 286.4357963 0.2 1.67
166 720 138.4721303 0.2 1.67
167 347 -90.70381185 0.2 1.67
168 520 -7.959571666 0.2 1.67
169 7 -9.387531936 0.2 1.67
170 243 -96.74521072 0.2 1.67
171 528 201.5157982 0.2 1.67
172 200 289.6798992 0.2 1.67
173 495 272.1550507 0.2 1.67
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174 652 286.4358519 0.2 1.67
175 686 311.141985 0.2 1.67
176 436 180.0547187 0.2 1.67
177 337 -49.505532 0.2 1.67
178 46 -86.50535444 0.2 1.67
179 449 -3.724557503 0.2 1.67
180 317 37.69467112 0.2 1.67
181 48 208.9501648 0.2 1.67
182 167 176.3349683 0.2 1.67
183 776 282.9965 0.2 1.67
184 160 -19.49410505 0.2 1.67
185 120 -51.83406105 0.2 1.67
186 544 -320.6515999 0.2 1.67
187 191 253.6622419 0.2 1.67
188 423 280.1359852 0.2 1.67
189 78 282.6943867 0.2 1.67
190 187 309.3329807 0.2 1.67
191 580 -7.073589158 0.2 1.67
192 195 6.827290881 0.2 1.67
193 651 128.4505507 0.2 1.67
194 786 240.7621144 0.2 1.67
195 666 10.91286222 0.2 1.67
196 782 -213.5652661 0.2 1.67
197 680 51.38571167 0.2 1.67
198 690 -37.37134807 0.2 1.67
199 586 -164.0017345 0.2 1.67
200 16 0.791903463 0.2 1.67
201 23 174.0274365 0.2 1.67
202 266 -4.185368761 0.2 1.67
203 550 -128.267428 0.2 1.67
204 536 -4.354319672 0.2 1.67
205 431 -80.57061761 0.2 1.67
206 563 -109.114535 0.2 1.67
207 342 237.1089682 0.2 1.67
208 363 0.876801864 0.2 1.67
209 297 -162.1399554 0.2 1.67
210 610 293.1026265 0.2 1.67
211 28 20.47286458 0.2 1.67
212 354 335.8524941 0.2 1.67
213 122 191.748311 0.2 1.67
214 268 290.7859733 0.2 1.67
215 269 218.5718439 0.2 1.67
216 557 127.3324487 0.2 1.67
217 145 209.0604817 0.2 1.67
218 631 310.8944912 0.2 1.67
219 201 289.0779489 0.2 1.67
220 277 314.4727994 0.2 1.67
221 92 -0.419893443 0.2 1.67
222 594 20.27515958 0.2 1.67
223 577 318.3079917 0.2 1.67
224 658 201.9896724 0.2 1.67
225 239 272.915334 0.2 1.67
226 685 298.8984557 0.2 1.67
227 500 292.8397712 0.2 1.67
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228 64 -132.041518 0.2 1.67
229 559 -54.28811538 0.2 1.67
230 672 33.35566308 0.2 1.67
231 246 297.9284895 0.2 1.67
232 303 310.2544961 0.2 1.67
233 183 304.703981 0.2 1.67
234 731 271.2236267 0.2 1.67
235 190 -42.90879843 0.2 1.67
236 484 201.182344 0.2 1.67
237 765 -52.54681723 0.2 1.67
238 789 -79.91126674 0.2 1.67
239 211 62.39977869 0.2 1.67
240 137 -97.09531335 0.2 1.67
241 657 -96.98804322 0.2 1.67
242 452 6.168516461 0.2 1.67
243 429 10.4711564 0.2 1.67
244 137 -62.33073926 0.2 1.67
245 729 306.0873887 0.2 1.67
246 283 -45.03506432 0.2 1.67
247 441 65.41375551 0.2 1.67
248 764 -140.7946228 0.2 1.67
249 37 279.6697474 0.2 1.67
250 287 192.9874109 0.2 1.67
251 693 156.0455185 0.2 1.67
252 343 -144.0541046 0.2 1.67
253 138 262.9879689 0.2 1.67
254 153 -245.9700886 0.2 1.67
255 204 477.1562173 0.2 1.67
256 745 -9.005582762 0.2 1.67
257 770 -24.21005615 0.2 1.67
258 739 159.1306345 0.2 1.67
259 181 102.1182391 0.2 1.67
260 467 196.508958 0.2 1.67
261 477 84.90081124 0.2 1.67
262 81 121.2322895 0.2 1.67
263 491 1368 0.2 1.67
264 209 1313 0.2 1.67
265 786 859 0.2 1.67
266 702 1366 0.2 1.67
267 242 936 0.2 1.67
268 300 344 0.2 1.67
269 55 949 0.2 1.67
270 282 954 0.2 1.67
271 152 564 0.2 1.67
272 374 943 0.2 1.67
273 285 543 0.2 1.67
274 105 850 0.2 1.67
275 336 1238 0.2 1.67
276 442 1387 0.2 1.67
277 488 1458 0.2 1.67
278 761 1576 0.2 1.67
279 248 808 0.2 1.67
280 631 1168 0.2 1.67
281 735 565 0.2 1.67
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282 405 725 0.2 1.67
283 686 320 0.2 1.67
284 457 1043 0.2 1.67
285 511 1377 0.2 1.67
286 91 687 0.2 1.67
287 234 962 0.2 1.67
288 417 1009 0.2 1.67
289 182 1272 0.2 1.67
290 356 521 0.2 1.67
291 339 1363 0.2 1.67
292 725 1059 0.2 1.67
293 580 1317 0.2 1.67
294 769 1071 0.2 1.67
295 252 500 0.2 1.67
296 120 352 0.2 1.67
297 512 1113 0.2 1.67
298 147 835 0.2 1.67
299 109 856 0.2 1.67
300 352 1324 0.2 1.67
301 739 790 0.2 1.67
302 362 389 0.2 1.67
303 622 1345 0.2 1.67
304 735 350 0.2 1.67
305 520 874 0.2 1.67
306 319 364 0.2 1.67
307 725 462 0.2 1.67
308 291 892 0.2 1.67
309 275 941 0.2 1.67
310 68 510 0.2 1.67
311 193 1149 0.2 1.67
312 148 670 0.2 1.67
313 646 1457 0.2 1.67
314 779 703 0.2 1.67
315 628 497 0.2 1.67
316 60 1521 0.2 1.67
317 2 848 0.2 1.67
318 655 309 0.2 1.67
319 442 545 0.2 1.67
320 176 1528 0.2 1.67
321 220 650 0.2 1.67
322 744 636 0.2 1.67
323 651 371 0.2 1.67
324 298 1349 0.2 1.67
325 203 1517 0.2 1.67
326 489 341 0.2 1.67
327 295 366 0.2 1.67
328 407 1202 0.2 1.67
329 586 1054 0.2 1.67
330 420 1098 0.2 1.67
331 453 846 0.2 1.67
332 39 799 0.2 1.67
333 49 1251 0.2 1.67
334 749 607 0.2 1.67
335 722 811 0.2 1.67
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336 578 771 0.2 1.67
337 287 1324 0.2 1.67
338 738 1188 0.2 1.67
339 190 669 0.2 1.67
340 267 302 0.2 1.67
341 222 583 0.2 1.67
342 710 1442 0.2 1.67
343 64 1253 0.2 1.67
344 192 1563 0.2 1.67
345 26 1104 0.2 1.67
346 225 855 0.2 1.67
347 780 1070 0.2 1.67
348 782 1473 0.2 1.67
349 469 558 0.2 1.67
350 128 394 0.2 1.67
351 634 1354 0.2 1.67
352 213 776 0.2 1.67
353 387 433 0.2 1.67
354 746 557 0.2 1.67
355 63 809 0.2 1.67
356 537 611 0.2 1.67
357 578 1174 0.2 1.67
358 521 328 0.2 1.67
359 136 304 0.2 1.67
360 414 1356 0.2 1.67
361 761 848 0.2 1.67
362 746 336 0.2 1.67
363 114 1131 0.2 1.67
364 351 423 0.2 1.67
365 443 374 0.2 1.67

Table 7: Part of simulation result for validation Case A and Case B for number of stock 3
W1 W2 r1x1 r2x2 x1 X2 w1x1r1 w2x2r2 µ∗σij Profit Lower Upper Profit

Case A
Profit
Case B

1000 11000 -0.00048 0.011194 0.1 0.9 -4.82486 123.1343 1.4035 116.9063 0.2 1.2 93.52501 140.2875
1000 11000 -0.00018 0.015292 0.1 0.9 -1.76991 168.2159 1.4035 165.0425 0.2 1.2 132.034 198.51
1000 11000 0.001861 0.032525 0.1 0.9 18.60987 357.7723 1.4035 374.9786 0.2 1.2 299.9829 499.9744
10000 11000 -0.00128 -0.02368 0.1 0.9 -12.7838 -260.526 1.4035 -274.714 0.2 1.2 -219.771 -329.656
10000 11000 0.000931 0.000427 0.1 0.9 9.305493 4.694168 1.4035 12.59616 0.2 1.2 10.07693 15.11539
10000 11000 -0.00016 0.008322 0.1 0.9 -1.57303 91.53953 1.4035 88.56299 0.2 1.2 70.8504 106.2756
10000 11000 -0.00032 -0.03669 0.1 0.9 -3.18182 -403.545 1.4035 -408.13 0.2 1.2 -326.504 -489.756
10000 11000 0.001245 0.018281 0.1 0.9 12.44813 201.0864 1.4035 212.1311 0.2 1.2 169.7049 254.5573
10000 11000 0.000711 0.016132 0.1 0.9 7.106832 177.4528 1.4035 183.1562 0.2 1.2 146.5249 219.7874
10000 11000 0.00018 0.014029 0.1 0.9 1.802208 154.3222 1.4035 154.7209 0.2 1.2 123.7767 185.665
10000 11000 0.001068 0.03253 0.1 0.9 10.68182 357.8313 1.4035 367.1096 0.2 1.2 293.6877 440.5316
10000 11000 -0.00212 0.03253 0.1 0.9 -21.1547 357.8313 1.4035 335.2731 0.2 1.2 268.2185 402.3278
10000 11000 -0.00063 0.013446 0.1 0.9 -6.2514 147.9036 1.4035 140.2487 0.2 1.2 112.199 168.2985
10000 11000 -0.00047 -0.01347 0.1 0.9 -4.69274 -148.176 1.4035 -154.272 0.2 1.2 -123.418 -185.127
10000 11000 0.000754 0.028028 0.1 0.9 7.542857 308.3045 1.4035 314.4439 0.2 1.2 251.5551 377.3326
10000 11000 0.000547 0.032638 0.1 0.9 5.473204 359.0164 1.4035 363.0861 0.2 1.2 290.4689 435.7033
10000 11000 0.000295 0.030849 0.1 0.9 2.948514 339.3443 1.4035 340.8893 0.2 1.2 272.7114 409.0671
10000 11000 0 0.031791 0.1 0.9 0 349.7015 1.4035 348.298 0.2 1.2 278.6384 417.9576
10000 11000 -0.00027 0.032255 0.1 0.9 -2.66667 354.8034 1.4035 350.7332 0.2 1.2 280.5866 420.8799
10000 11000 -0.00082 0.032255 0.1 0.9 -8.16417 354.8034 1.4035 345.2357 0.2 1.2 276.1886 414.2829
10000 11000 -0.00073 0.032255 0.1 0.9 -7.30088 354.8034 1.4035 346.099 0.2 1.2 276.8792 415.3188
10000 11000 0.000156 0.032255 0.1 0.9 1.5625 354.8034 1.4035 354.9624 0.2 1.2 283.9699 425.9549
10000 11000 -0.00049 0.032255 0.1 0.9 -4.85651 354.8034 1.4035 348.5434 0.2 1.2 278.8347 418.252
10000 11000 -0.00026 0.032255 0.1 0.9 -2.62066 354.8034 1.4035 350.7792 0.2 1.2 280.6234 420.9351
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7 Validation result

For the validation of the results of proposed novel bilevel model with IGDT method the Mont Carlo simulation
technique is applied that shows the proposed model is efficient in robust portfolio selection optimization problem.
For this end, the optimal robust operational decision for α = 0.20 and β = 0.35 is named as Case A and α = 0.10
and β = 0.55 is named as Case B as the best compromise solution used for robustness verification. For this problem
without loss of generality suppose that prices and returns follow normal probability distributions. The simulations were
performed on a personal computer with 6 GB of RAM and Intel Core 7 due 2.50 GHz processor using CPLEX solver
in the generalized algebraic modelling systems (GAMS) environment. The optimality gap for solving novel bilevel
IGDT problems is set to 10−5. The computational results of simulation method of the proposed model are affected
by the number of segments used to approximating nonlinear terms by means of the SOS2 technique. Few numbers of
segments may cause not exact results in another wise many segments may make the problem computationally skills
so as a result a trade-off is needed. The final simulation result for validation of proposed model is showed in table 7.
Profit of the versus the number of contributions is shown in figure 12.

As can be seen in figure 12, with increasing the number of contributions the results become more accurate,
nevertheless the computational burden is increased.
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Figure 4: Time series learning prediction method
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Figure 5: Forecasted return for Iran Traktor

Figure 6: Target profit for all tj for x1 = 0.1 and x2 = 0.9

Figure 7: Target profit for all contribution t = 1
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Figure 8: Results of calculating α and β for t = 1

Figure 9: Target profit for t=1 for all contributions

Figure 10: Target profit for t = 1 for β
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Figure 11: final results

Figure 12: Simulation profit for case A and case B



A risk averse robust portfolio optimization ... 383

8 Conclusion

Today portfolio optimization in finance is more than a mathematical problem for improving performance under
risk constraints. Practically all organizations seek to create value by selecting the best portfolios that consume least
resources and obtaining high expected portfolio return and controlling risk. Typically, in the context of portfolio
selection problem severe uncertainties (imprecise probabilistic information) would significantly affect the technical and
financial aspects. This paper presents a risk aversion bi-level information gap decision theory (IGDT) decision making
tool to help organizations or investors for managing their portfolios and finding the best transactions with severe
uncertainty variables (price and return) to process the forecast data generated by the prediction method in order to
construct the optimal stock portfolios that a target profit for the risk averse investors is guaranteed.The results from
Mont Carlo simulation method for validation shows the power of the model for controlling uncertainty in portfolio
selection and also it can be generalized and can be used for another practical problems. The bilevel model based on
IGDT for severe uncertainty compare with traditional scenario-based methods shows that it is more accurate because
of it does not need PDF of uncertain variables that are difficult to estimate. The novel bilevel model is applied in Iran
Stock Market that for the future research this model can be applied in other specs such as electricity market.
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