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Abstract

In this paper, we define relations between the best approximation and the worst approximation. We show that
these relations are equivalence relations if the sets are Chebyshev or uniquely remotal. We obtain cosets sets of best
approximation and cosets sets of worst approximation. We obtain some results on these sets, for example, compactness
and weakly compactness. Finally, we consider the semi-inner products (Lumer-Giles) and semi-inner(usual).
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1 Introduction

Approximation theory, which mainly consists of theory of nearest points (best approximation) and theory of farthest
points (worst approximation), is an old and rich branch of analysis. The theory is as old as Mathematics itself. Starting
in 1853, a Russian mathematician P.L. Chebyshev made significant contributions in the theory of best approximation.
The Weierstrass approximation theorem of 1885 by K. Weierstrass is well known.The study was followed in the first
half of the 20th Century by L.N.H. Bunt (1934) , T.S . Motzkin (1935) and B. Jessen (1940). B. Jessen was the first
to make significant contributions in the theory of farthest points. This theory is less developed as compared to the
theory of best approximation .

Let (X, ∥.∥) be a normed linear space, W a non-empty subset of X. A point y0 ∈ W is said to be a best
approximation point (nearest point) for x ∈ X, if

∥x− y0∥ ≤ ∥x− y∥,

for each y ∈ W .
For each x ∈ X, put

PW (x) = {y0 ∈ W : ∥x− y0∥ = dist(x,W ) = inf
y∈W

∥x− y∥}.

For each x ∈ X, if PW (x) is non-empty (a singleton), we say thatW is proximinal (Chebyshev). For each x ∈ X\W ,
if PW (x) = ∅, we say that W is anti-proximinal. Suppose g ∈ W , we set

Pg = {x ∈ X : g ∈ PW (x)},
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(see [2, 5, 9, 16]).

Let X be a normed linear space and W a bounded non-empty subset of X. A point q(x) ∈ W is said to be a
farthest point for x ∈ X, if

∥x− q(x)∥ ≥ ∥x− y∥,
for each y ∈ W . For each x ∈ X, put

FW (x) = {y0 ∈ W : ∥x− y0∥ = δ(W,x) = sup
y∈W

∥x− y∥}.

For each x ∈ X, if FW (x) is non-empty (a singleton), we say that W is remotal (uniquely remotal). For each
x ∈ X, if FW (x) = ∅, we say that W is anti-remotal. Suppose g ∈ W , we set

Fg = {x ∈ X : g ∈ FW (x)},

(see [4, 5, 7, 9, 10, 13, 14, 15]).

2 Equivalence relations on approximate sets

In this section we define two equivalence relations on approximate sets. We obtains some results on these relations.

Definition 2.1. Let (X, ∥.∥) be a normed space, W a proximinal subset in X and x, y ∈ X. We define two relations
on X, with
(i)

x ▷1 y ⇔ PW (x) = PW (y), dist(x,W ) = dist(y,W )

(ii)
x ▷2 y ⇔ for some g ∈ W : g ∈ PW (x) ∩ PW (y), dist(x,W ) = dist(y,W )

It is clear that if W is a Chebyshev subset of X, then ▷1 = ▷2.
We denoted the equivalence class of x ∈ X under relation ▷1(▷2) by [x]1([x]2)

Theorem 2.2. Let (X, ∥.∥) be a normed space, W a proximinal subset in X. The relations ▷1 is equivalence relation.

Proof . These relation is reflexive and symmetric. We show that transitivity relation ▷1. For all elements a, b, c ∈ X,
if a ▷1 b and b ▷1 c, then PW (a) = PW (b) = PW (c) and dist(a,W ) = dist(b,W ) = dist(c,W ). It follows that a ▷1 c. □

Theorem 2.3. Let (X, ∥.∥) be a normed space, W a proximinal subset in X. Then for every x ∈ X, there exists a
g ∈ W such that [x]1 = Pg.

Proof . Suppose x ∈ X, we have

[x]1 = {y ∈ X : x ▷1 y}
= {y ∈ X : for some g ∈ W g ∈ PW (x) ∩ PW (y), dist(x,W ) = dist(y,W )}
= {y ∈ X : g ∈ PW (y), dist(x,W ) = dist(y,W )}
= {y ∈ X : y ∈ Pg, dist(x,W ) = dist(y,W )}.

□

Theorem 2.4. Let (X, ∥.∥) be a normed space, W a proximinal subset in X. Then for every x ∈ X, there exists a
g ∈ W such that [x]2 = Pg.

Proof . Suppose x ∈ X, we have

[x]2 = {y ∈ X : x ▷1 y}
= {y ∈ X : for some g ∈ W g ∈ PW (x) = PW (y), dist(x,W ) = dist(y,W )}
= {y ∈ X : g ∈ PW (y), dist(x,W ) = dist(y,W )}
= {y ∈ X : y ∈ Pg, dist(x,W ) = dist(y,W )}.

□
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Example 2.5. Suppose X = R2 with the norm ∥(x, y)∥ =
√
x2 + y2 and W = {(x, 0) : x ∈ R}. Since W is closed

and convex, W is Chebyshev and for every (x, y) ∈ X, dist((x, y),W ) = |y|. Therefore

[(0, 1)]1 = [(0, 1)]2

= {(x, y) : PW (0, 1) = PW (x, y), dist((0, 1),W ) = dist((x, y),W )}
= {(x, y) : PW (x, y) = {(0, 0), dist((x, y),W ) = 1}}
= {(0, 1), (0,−1)}.

Theorem 2.6. Let (X, ||.||) be a normed linear space and W a Chebyshev subspace of X, x, y ∈ X and g0 ∈ W . If
g0 = PW (x) and y ∈ [g0, x), then g0 = PW (y) and x ◁i y for i=1,2. (where [g0, x) = {λg0 + (1− λ)x : λ ≥ 0}.)

Proof . Since g0 = PW (x) and y ∈ [g0, x), for some λ > 0, y = λg0 + (1− λ)x and ∥x− g0∥ = d(x,W ). Therefore

∥y − g0∥ = = ∥λg0 + (1− λ)x− λg0 − (1− λ)g0∥
= ∥(1− λ)(x− g0)∥
= (1− λ)∥x− g0∥
= d((1− λ)x,W )

= d(λg0 + (1− λ)x,W )

= d(y,W ).

Therefore g0 = PW (y), dist(x,W ) = dist(y,W ) and x ◁i y. □

Definition 2.7. [13, 16] For any two elements x and y in normed linear space X, x is said to be orthogonal to y in
the sense of Birkhorff-James, written as x⊥y, if ∥x+ λy∥ ≥ ∥x∥ for every real scaler λ.

Definition 2.8. [4, 8] Let (X, ∥.∥) be a normed linear space and G a nonempty subset of X. Then the set {x ∈ X :
x⊥G(B)} is called the Birkhoff orthogonal complement of G, denoted by G⊥(B).

Lemma 2.9. ([4],[8]) Let (X, ∥.∥) be a normed linear space and W a subspace of X, x ∈ X and g0 ∈ W . Then the
following statemnts are equivalence:

i) y0 ∈ PW (x),

ii) x− go − λ(y − y0) ∈ W⊥(B) for every y ∈ W and every λ ∈ [0, 1],

iii) x− g0 ∈ W⊥(B).

Remark 2.10. Let (X, ∥.∥) be a normed linear space and W a subspace of X, α is a scaler and x ∈ W⊥(B). Then
αx ∈ W⊥(B).

Theorem 2.11. Let (X, ∥.∥) be a normed linear space and W a proximinal subspace of X, W⊥(B) a convex set and
x, y ∈ X. If x ▷i y for every i = 1, 2, then x− y ∈ W⊥(B).

Proof . Suppose x ▷i y for every i = 1, 2, then there exists a g0 ∈ PW (x)∩PW (y) and dist(x,W ) = dist(y,W ). From
Lemma 2.1 and Remark 2.1, x− y = 2x−g0+y−g0

2 ∈ W⊥(B). □

3 Equivalence relations on worst approximate sets

In this section we define two equivalence relations on worst best approximate sets. We obtains some results on
these relations.

Definition 3.1. Let (X, ∥.∥) be a normed space, W a bounded subset in X and x, y ∈ X. We define two relations
on X, with
(i)

x ◁1 y ⇔ FW (x) = FW (y), δ(x,W ) = δ(y,W )

(ii)
x ◁2 y ⇔ g ∈ W : g ∈ FW (x) ∩ FW (y), δ(x,W ) = δ(y,W )
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It is clear that if W is a uniquely remotal subset of X, then ◁1 = ◁2. We denoted the equivalence class of x ∈ X
under ralation ◁1(◁2) by [x]′1([x]

′
2).

Theorem 3.2. Let (X, ∥.∥) be a normed space, W a remotal subset in X. The relations ◁1 is equivalance relation.

Proof . These relation is reflexive and symmetric. We show that trnsitivity relation ◁1. For all elements a, b, c ∈ X, if
a ◁1 b, δ(a,W ) = δ(b,W ) and b ◁1 c, δ(b,W ) = δ(c,W ), then FW (a) = FW (b) = FW (c), δ(a,W ) = δ(b,W ) = δ(c,W ).
It follows that a ◁1 c. □

Theorem 3.3. Let (X, ∥.∥) be a normed space, W a remotal subset in X. Then for every x ∈ X, there exists a g ∈ W
such that [x]′2 = Fg.

Proof . Suppose x ∈ X, we have

[x]′2 = {y ∈ X : x ◁2 y}
= {y ∈ X : for some g ∈ W g ∈ FW (x) ∩ FW (y), δ(x,W ) = δ(y,W )}
= {y ∈ X : g ∈ FW (y), δ(x,W ) = δ(y,W )}
= {y ∈ X : y ∈ Fg, δ(x,W ) = δ(y,W )}.

□

Theorem 3.4. Let (X, ∥.∥) be a normed space, W a remotal subset in X. Then for every x ∈ X, there exists a g ∈ W
such that [x]′1 = Fg.

Proof . Suppose x ∈ X, we have

[x]′1 = {y ∈ X : x ◁1 y}
= {y ∈ X : for some g ∈ W g ∈ FW (x) = FW (y), δ(x,W ) = δ(y,W )}
= {y ∈ X : g ∈ FW (y), δ(x,W ) = δ(y,W )}
= {y ∈ X : y ∈ Fg, δ(x,W ) = δ(y,W )}.

□

Theorem 3.5. Let (X, ||.||) be a normed linear space and W a uniquely remotal subset of X, x, y ∈ X and g0 ∈ W .
If g0 = FW (x), αg0 + W = W for every scalar α and y ∈ [g0, x), then g0 = FW (y) and x ◁i y for i=1,2. (where
[g0, x) = {λg0 + (1− λ)x : λ ≥ 0}.)

Proof . Since g0 = FW (x) and y ∈ [g0, x), for some λ > 0, y = λg0 + (1− λ)x and ∥x− g0∥ = δ(x,W ). Therefore

∥y − g0∥ = = ∥λg0 + (1− λ)x− λg0 − (1− λ)g0∥
= ∥(1− λ)(x− g0)∥
= (1− λ)∥x− g0∥
= δ((1− λ)x,W )

= δ(λg0 + (1− λ)x,W )

= δ(y,W ).

Therefore g0 = PW (y), δ(x,W ) = δ(y,W ) and x ◁i y. □

Definition 3.6. Let {xn}n∈L and {yn}n∈L are bounded sequences in the Banach space X, {xn}n∈L is said to be
farthest orthogonal to {yn}n∈L and denote by {xn}n∈L⊥F {yn}n∈L if and only if there exist zk ∈ {xn}n∈L ∪ {yn}n∈L

such that
∥zk∥ ≥ ∥

∑
n∈L

(−1)n(xn − yn)∥.

Also for W ⊂ X and {xn}n∈L, we write {xn}n∈L⊥W if {xn}n∈L⊥{yn}n∈L for all {yn}n∈L ⊂ W .
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It should be noted that if 0 ∈ W , then x0⊥FW if and only if 0 ∈ FW (x0), therefore g0 ∈ FW (x) if and only if
x− g0⊥FW .

Theorem 3.7. Let (X, ∥.∥) be a normed linear space and W a proximinal subspace of X, W⊥(B) a convex set and
x, y ∈ X. If x ▷i y for every i = 1, 2, then x− y ∈ W⊥(B).

Proof . Suppose x ◁i y for every i = 1, 2, then there exists a g0 ∈ PW (x)∩PW (y). From Lemma 2.1 and Remark 2.1,
x− y = 2x−g0+y−g0

2 ∈ W⊥(B). □

4 Properties of the sets Pg and Fg

In this section we are bring some propeties of Pg and Fg.

Theorem 4.1. Let (X, ∥.∥) be a normed linear space.

i) If W is a subset of X. we have

∪g∈WPg = {x ∈ X : for some g ∈ W : ∥x− g∥ = d(x,W )},

and if W is proximinal
X = ∪g∈WPg.

If W is a bounded subset of X. We have

∪g∈WFg = {x ∈ X : for some g ∈ W : ∥x− g∥ = δ(x,W )},

also if W is remotal,
X = ∪g∈WFg.

Proof . We have

x ∈ ∪g∈WPg ⇐⇒ for some g ∈ W x ∈ Pg

⇐⇒ g ∈ W ∥x− g∥ = d(x,W ).

If W is proximinal and x ∈ X, for some g ∈ W , x ∈ Pg. Therefore

X = ∪g∈WPg.

Also

x ∈ ∪g∈WFg ⇐⇒ for some g ∈ W x ∈ Fg

⇐⇒ g ∈ W ∥x− g∥ = δ(x,W ).

If W is remotal and x ∈ X, for some g ∈ W , x ∈ Fg. Therefore

X = ∪g∈WFg.

□

Theorem 4.2. Let (X, ∥.∥) be a normed linear space. If W is a bounded subset of X. We have

∩g∈WPg = ∩g∈WFg = {x ∈ X : δ(x,W ) = d(x,W )},

Proof .

x ∈ ∩g∈WPg ⇐⇒ ∀g ∈ W x ∈ Pg

⇐⇒ ∀g ∈ W∀w ∈ W ∥x− g∥ ≤ ∥x− w∥
⇐⇒ ∀g ∈ W∀w ∈ W ∥x− g∥ ≤ ∥x− w∥
⇐⇒ δ(x,W ) ≤ d(x,W )

⇐⇒ ∀g ∈ W x ∈ Fg

⇐⇒ x ∈ ∩g∈WFg.

□
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Theorem 4.3. Let (X, ∥.∥) be a normed linear space. If W is a subset of X. Then

i) if W = −W , then −Pg = P−g and −Fg = F−g;

ii) for every g ∈ W , Fg and Pg are closed sets;

iii) for every g ∈ W , Pg ∩W = {g};
iv) if for every g ∈ W , Pg ∩W = {g}, then W = {g};
v) the priximinal set W is Chebyshev if and only if for every g1, g2 ∈ W and g1 ̸= g2, we have Pg1 ∩ Pg2 = ∅;
vi) the remotal set W is uniquely remotal if and only if for every g1, g2 ∈ W and g1 ̸= g2, we have Fg1 ∩ Fg2 = ∅;

vii) if W is convex proximinal and P0 is convex, then W is Chebyshev

Proof . The parts i), ii), iii) and iv) are trivial. We proof v), suppose W is Chebyshev, g1, g2 ∈ W , g1 ̸= g2 and
x ∈ Pg1∩Pg2 . Then g1, g2 ∈ PW (x) and that is a contraction. On converse, if g1, g2 ∈ W and g1 ̸= g2 and Pg1∩Pg2 = ∅.
Suppose for x ∈ X, there exist g1, g2 ∈ PW (x). Then x ∈ Pg1 ∩ Pg2 and g1 = g2. It follows that W is Chebyshev.

vi) Suppose W is uniquely remotal, g1, g2 ∈ W , g1 ̸= g2 and x ∈ Fg1 ∩ Fg2 . Then g1, g2 ∈ PW (x) and that is a
contraction. On converse, if g1, g2 ∈ W and g1 ̸= g2 and Fg1 ∩Fg2 = ∅. Suppose for x ∈ X, there exist g1, g2 ∈ PW (x).
Then x ∈ Fg1 ∩ Fg2 and g1 = g2. It follows that W is Chebyshev.

vii) By (iii) for P0 ∩W = {0}. Suppose x ∈ X and g1, g2 ∈ PW (x). Then

g1 − g2 = 2
x− g1 − (x− g2)

2
∈ W ∩ P0.

It follows that g1 = g2. □

Definition 4.4. [9, 12] LetX be a Banach space andW a closed subspace ofX. W is called quasi-Chebyshev(weakly-
Chebyshev) if for every x ∈ X, the set PW (x) is a non-empty compact(weakly compact) subset of X.

Lemma 4.5. [9, 12] Let X be a Banach space and W a proximinal hyperplane subspace of X. Then the following
statements are equivalent:

i) W is quasi-Chebyshev(weakly-Chebyshev).

ii) for every g ∈ W and for every sequence {xn}n≥1 with ∥xn∥ = 1 and 0 ∈ PW (xn) has a convergent subse-
quence(weakly convergent subsequence).

Theorem 4.6. Let X be a Banach space and W a proximinal hyperplane subspace of X. Then the following state-
ments are equivalent:

i) W is quasi-Chebyshev(weakly-Chebyshev).

ii) for every g ∈ W and for every sequence {xn}n≥1 with ∥xn∥ = 1 and xn ∈ Pn has a convergent subse-
quence(weakly convergent subsequence).

Proof . i) ⇒ ii). Suppose g ∈ W and {xn}n≥1 is a sequence with ∥xn∥ = 1 and xn ∈ Pn. Then for every n ≥ 1,
∥xn − g∥ = d(xn,W ), therefore

∥ xn − g

d(xn,W )
∥ = 1 =

d(xn,W )

d(xn,W )
= d(

xn − g

d(xn,W )
,W ).

Therefore 0 ∈ PW ( xn−g
d(xn,W ) and ∥ xn−g

d(xn,W )∥ = 1. From Lemma 4.1, the sequence { xn−g
d(xn,W )}n≥1 has a convergent

subsequence(weakly convergent subsequence). There exists a x0 ∈ X such that

xnk
− g

d(xnk
,W )

→ x0(
xnk

− g

d(xnk
,W )

⇀ x0).

Also
d(xnk

,W ) ≤ ∥xnk
∥ = 1.

Then the sequence {d(xnk
,W )} has a convergent subsequece {d(xnkl

,W )}. Therefore exists k0 ∈ R such that

d(xnkl
,W ) → k0 as l → ∞.
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Since

xnkl
− g = d(xnkl

,W )
xnkl

− g

d(xnkl
,W )

.

We have
xnkl

→ g + k0x0(xnkl
⇀ g + k0x0).

It follows that the sequence {xn}n≥1 has a convergent subsequence(weakly convergent subsequence). ii) ⇒ i). We set
g = 0 and for every sequence {xn}n≥1 with ∥xn∥ = 1 and xn ∈ P0 has a convergent subsequence(weakly convergent
subsequence). From Lemma 4.1, W is quasi-Chebyshev(weakly Chebyshev). □

Theorem 4.7. Let X be a Banach space and W a proximinal subspace of X. Then the following statements are
equivalent:

i) W is quasi-Chebyshev(weakly-Chebyshev).

ii) for every g ∈ W , for every subspace of X of form Wx = W + span{x} and for every sequence {xn}n≥1 ⊂ Wx

with ∥xn∥ = 1 and xn ∈ PWx
n has a convergent subsequence(weakly convergent subsequence).

Proof . i) → ii) If W is quasi-Chebyshev(weakly Chebyshev) in X. Then W quasi-Chebyshev (weakly-Chebyshev)
in every Wx (x ∈ X\W ), Since codim(W ) = 1 in every Wx. From Theorem 4.4, for every sequence {xn}n≥1 ⊂ Wx

with ∥xn∥ = 1 and xn ∈ PWx
n has a convergent subsequence(weakly convergent subsequence).

ii) → i) Assume that we have (ii), codim(W ) = 1 in every Wx. Also W is proximinal in Wx and X = ∪x∈X\WWx. It
follows that W is quasi-Chebyshev in X. □

Theorem 4.8. LetX be a Banach space andW a proximinal subspace ofX. If for every g ∈ W , Pg is compact(weakly
compact). Then W is quasi-Chebyshev(weakly-Chebyshev).

Proof . Suppose g ∈ W and Pg is compact(weakly compact) in X. We know that Pg = g+P0. If x ∈ X and {gn}n≥1

is a sequence in PW (x), then {x−gn}n≥1 ⊂ P0. Therefore there exists a convergence subsequence(weakly convergence
sequence) {x− gnk

}k≥1. It follows that {gnk
}k≥1 is a convergence sequence(weakly convergence sequence). Therefore

From Lemma 4.1, W is quasi-Chebyshev(weakly-Chebyshev). □

Theorem 4.9. Let X be a Banach space, W a remotal subset of X and for every g ∈ W , W − g = W . If for every
g ∈ W , Fg is compact (weakly compact). Then FW (x) is compact (weakly compact).

Proof . Suppose g ∈ W and Fg is compact(weakly compact). Since W − g = W we have Fg = g + F0, becasuse

x ∈ Fg ⇐⇒ ∥x− g∥ = δ(x,W )

= δ(x− g,W − g)

= δ(x− g,W ).

If {gn}n≥1 is a sequence in FW (x). Then {x−gn}n≥1 is a sequence in F0. Since F0 is compact, there exists a conver-
gence subsequence(weakly convergence subsequence) {x−gnk

}k≥1 and {gnk
}k≥1. Therefore FW (x) is compact(weakly

compact). □

Example 4.10. Let (X, ∥.∥) be a normed space, W = {x ∈ X : ∥x∥ = 1} and x ∈ X. We show that

Fg = {−λg : λ ≥ 1},

and
Pg = {λg : λ ≥ 1}.

If g ∈ W, put x = −λg for every λ ≥ 1. Therefore q(x) = g and x ∈ Fg. If x ∈ Fg, since q(x) = − x
∥x∥ = g. Therefore

x = −∥x∥g and ∥x∥ ≥ 1. It follows that
Fg = {−λg : λ ≥ 1}.

Put x = λg, for every λ ≥ 0. Therefore nearest point (x) = g and x ∈ Pg. If x ∈ Pg, since nearest point
(x) = x

∥x∥ = g and ∥x∥ ≥ 1. Therefore x = ∥x∥g and ∥x∥ ≥ 1. It follows that

Pg = {λg : λ ≥ 1}.
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Suppose g = FW (x), then x ∈ Fg. Therefore for some λ0 ≥ 1 : x = −λ0g.

λx+ (1− λ)g = −λλ0g + g − λg

= −(−1 + λ+ λλ0)g,

Note that −1 + λ+ λλ0 ≥ 1. Therefore

FW (λx+ (1− λ)g) = g

and W is a sunrise set. Suppose g = PW (x), then x ∈ Pg. Therefore for some λ0 ≥ 1 we have x = λ0g. For λ ≥ 0, we
have

λx+ (1− λ)g = λλ0g + g − λg

= (λλ0 − λ+ 1)g.

Note that λλ0 − λ+ 1 ≥ 0. Therefore PW (λx+ (1− λ)g) = g and W is a sun set in X.

5 Applications

In what follows, we assume that X is a linear space over the real or complex number field K. The following concept
was introduced in 1961 by G. Lumer [9] but the main properties of it were discovered by J.R. Giles [2,10]. In this
introductory section we give the definition of this concept and point out the main facts which are derived directly
from the definition.

Definition 5.1. The mapping [., .] : X ×X → K will be called the semi-inner product in the sense of Lumer-Giles,
for short, if the following properties are satisfied:

(i) [x+ y, z] = [x, z] + [y, z] for allx, y ∈ X;

(ii) [λx, y] = λ[x, y] for all x, y ∈ X and λ a scalar in K;

(iii) [x, x] ≥ 0 for all x ∈ X and [x, x] = 0 implies that x = 0;

(iv) |[x, y]|2 ≤ [x, x][y, y] for all x, y ∈ X;

(v) [x, λy] = λ̄[x, y] for all x, y ∈ X and λ a scalar in K.

Now, we will state the first result.

Lemma 5.2. Let X be a linear space and [., .] a semi-norm on X. Then the following statements are true:

(i) The mapping x → [x, x]
1
2 is a norm on X;

(ii) For. every y ∈ X the functional x → [x, y] ∈ K is a continuous linear functional on X

In following khnown Lemmas we bring some theorms about best approximation in semi-inner proudact spaces.

Lemma 5.3. Let H be a Hilbert space, C a non-empty closed convex subset of H, x ∈ H and w ∈ C. Then the
following conditions are equivalent:

i) w = PC(x);

ii) [x− w, y − w] ≤ 0 for every y ∈ C.

Lemma 5.4. Let X be a Banach space and [., .] : X ×X → R a semi-inner product on X which generates the norm.
Let C be a nonempty closed convex set, x ∈ X and w ∈ C. Then the following statments are equivalent:

w ∈ PC(x);

[z − w, x− w] ≤ 0 for every z ∈ C.
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Theorem 5.5. Let H be a Hilbert space, W a non-empty closed convex subset of H, x ∈ H and w ∈ W . Then the
following conditions are equivalent: Then the following statments are equivalent:

i) x ∈ Pw;

ii) dist2(x,W ) ≤ [x− z, x− w].

Proof . If w ∈ PW (x), then from Lemma 5.2, [z − w, x− w] ≤ 0 for every z ∈ W . Therefore

∥x− w∥2 = [x− w, x− w]

= [x− w + z − z, x− w]

= [x− z, x− w] + [z − w, x− w]

≤ [x− z, x− w].

Also for every z ∈ W ,

∥x− w∥2 ≤ [x− z, x− w]

≤ ∥x− z∥∥x− w∥.

Therefore ∥x− w∥ ≤ ∥x− z∥ and w ∈ PW (x). □

Theorem 5.6. Let X be a Banach space and [., .] : X × X → R a semi-inner product on X which generates the
norm. Let W be a nonempty bounded subset of X, x ∈ X, w ∈ W and for every z ∈ W , [w− z, x−w] = 0. Then the
following statments are equivalent:

i) x ∈ Fw;

ii) δ2(x,W ) = [x− z, x− w].

Proof . Suppose for z ∈ W [w − z, x− w] = 0, then

x ∈ Fw ⇔ δ2(x,W ) = ∥x− w∥2

⇔ δ2(x,W ) = [x− w, x− w]

⇔ δ2(x,W ) = [x− z − w + z, x− w]

⇔ δ2(x,W ) = [x− z, x− w]− [w − z, x− w]

⇔ δ2(x,W ) = [x− z, x− w].

□

The point of mentioning that a question is ”open” is to:

Theorem 5.7. Let X be a Banach space and W a proximinal subspace of X. Then the following statements are
equivalent:

i) W is quasi-Chebyshev(weakly-Chebyshev).

ii) for every g ∈ W and for every sequence {xn}n≥1 with ∥xn∥ = 1 and xn ∈ Pn has a convergent subse-
quence(weakly convergent subsequence).
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