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Abstract

Suppose that G is a finite group and X = tG be a conjugacy class of an elements of order 3, t ∈ G.The A4-graph,
is a simple undirected graph stand for A4(G,X), whose vertex set X and two vertices x, y ∈ X are adjacent if they
are different and satisfy xy−1 = yx−1. In this article, the orbits under the action of CG(t) on X are analyzed, along
with the description of the algebraic structure of the subgroup < t,x > such that x is a CG(t) -orbit representative is
provided.
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1 Introduction

Graph theory and group theory are two distinct branches of mathematics with a different sets of rules. However,
when we present some groups as graphs, we can identify and analyze their properties effetely. Since the presentations
are more intelligible and the difficulties are more achievable. Consider, for example, [2, 6, 9] for a list of recent work
on this topic. The involution elements are essential for understanding the algebraic properties of finite simple groups.
Order 3 elements, on the other hand, are equally essential in studying finite simple groups. In [12] for example, the
Frobenius groups generated by two elements of order 3 are provided with a proper description. Maksimenko and
Mamontov [7] also demonstrated that a group created by an element of order 3 conjugacy in which each pair produces
an isomorphic subgroup to Z3, A4, A5, SL2(3), or SL2(4) possesses local finiteness. Additional research on this topic
may be seen in [3, 8]. Aubad [1] launched the concept of A4-graph as a simple undirected graph denoted by A4(G,X)
such that G is a finite group and X is a random conjugacy class of element of order 3 in G. Furthermore, the vertices
x,y ∈ X are adjacent if they are different and fulfill the following criterion xy−1 = yx−1. The A4-graph structure of the
simple group 3D4(3) is analyzed with full information also in [1]. The alternating group A4 is formed by two connected
vertices, which is something noteworthy about the vertices of the A4-graph. As a consequence, the alternating group
A4can be investigated as a subgroup from a group with a big size also the method in which it is created within larger
groups, may be analyzed.
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This paper aims to analyze A4(G,X) where G is a certain Miscellaneous group in particular G isomorphic to one
of the following: 24.A8, 2

5.PSL5(2) and 53.PSL3(5). The diameter, clique number, and girth of the A4-graph are also
calculated as part of the research.

Finally, we should note that G act by conjugation on X is created A4-graph automorphisms, also this action on
the graph vertices is transitive. Moreover, the Atlas [5] is being utilized for the labels of G-conjugacy classes.

2 General Results

The general findings of the A4-graph of a finite simple group are covered in this section. During this work, we
assume that G is a member of the former group, with X being a conjugacy class that has representative t ∈ G of order
3. First, we give the essential properties of the A4-graph in the next result:

Lemma 2.1. [1] The A4(G,X) have the following properties:

1- Simple, undirected and regular graph.

2- Any adjacent vertices created the alternating group A4 and their product of order 3.

Let s ∈ X, the i th disc of s, symbolize by ∆i(s) , (i ∈ Z+.) is identified as following:

⊗i(s) = {wX|d(s,w) = i}.

When employing the standard graph distance function, this distance function is represented by d(, ). The relation
between the discs of the A4-graph and the action of centralizer in G of t which is denoted by CG(t) on the class X is
provided in following result.

The next result associated to the disc structures of the A4-graph and its relation with the CG(t)-orbits.

Lemma 2.2. [1] The discs ∆i(t) of The A4(G,X) breakdown into a collection of specific CG(t)-orbits of X.

From the above result one can conclude that determination the CG(t)-orbits of X led to investigate the A4-graph
structure.

3 Graph Structures

Let x be a representative of a random CG(t)-orbits such CG(t) act on X by conjugation. Then the subgroup

< t,x >? < t,y >,

for any y in same CG(t)-orbit of x, this because there is h ∈ CG(t) satisfy xh=y and hence <t,x>?<t,x>h?<t,y>.
Furthermore, calculating the CG(t)-orbits would be used to investigate the discs structure of the A4-graph, as indicated
in Lemma 2.2. Therefore, during this paper we determine the subgroup structure for the subgroup <t,x> where
x is a representative of CG(t)-orbits and determine the disc of the A4-graph contain such orbit. The technique
we have chosen depends mostly on the computational method and for that purpose, we employed the system for
computational discrete algebra GAP [10]. Besides that, the OnLine Atlas[11] plays a critical role in allocating classes
of X and providing a representation to every group of the A4-graph.

In the tables that come, exponential notation is being used to illustrate the multiple of a size. For example, The
first row in the ∆2(t) part of the graph A4(2

4.A8, 3A) is

1804 24.A5

As we see in Table 3.1 this means there are four CG(t)-orbits each has size of 180 and for any random element x
in these orbit the subgroup <t,x>∼= 24.A5.
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3.1 The A4-graph description of non-split extension 24.A8

First we should note that we use permutation representation on 30 points to deal computationally with this group.
In the finite group 24.A8 there are two classes of order 3 namely 3A and 3B, in the following we give a description for
the A4-graph in both cases:

Case i. G ∼= 24.A8 and X=3A

Let t ∈ G, such that t in 3A. Then we can see that CG(t)GL2(4) and if we let X=tG, Then X has size 1792 and
the action of CG(t) on X by conjugation has 20-orbits. In the table we give the subgroup structure for fixed x in one
of the CG(t) -orbits and t and decided in which disc of the A4(2

4.A8, 3A) to be in:

Table 1: Structure of the A4(2
4.A8, 3A)

∆ii(t) Orbits sizes Subgroup structure
∆1i(t) 60,15 A4

∆2i(t)

60 A4

904 (D8) : Z3

180,60 A5

1804 (D8) : A5

∆3i(t)

20 D3
602 3.A4
180 2.A4

15 A4

1 Z3

Then we conclude the A4(2
4.A8, 3A) is connected with diameter 3.

Case ii. G ∼= 24.A8 and X=3B

For t ∈ G in this case, then t in 3B and CG(t) ∼= 3.S4 and there action on X=tG produce 124 CG(t)-orbits with
size of X is 4480. The description of the A4(2

4.A8, 3B) can be seen in the following table:

In this case the A4(2
4.A8, 3B)is connected has diameter 3.

3.2 The A4-graph description of Dempwolff group 25.PSL5(2)

For the computational calculations inside this group we utilize the permutation representation on 7440 points. The
Dempwolff group has two classes of elements of order 3 namely 3A with size 79360 and 3B with size 888832, in the
next we provide information about for the A4-graph in both classes:

Case i. G ∼= 25.PSL5(2) and X=3A

Take t as a random elements of order 3 in 3A, and set X=tG. Then centralizer in G of t isomorphic to 3.((23) .
PSL(3,2)). Moreover, the number of CG(t)-orbits equal to 116. After computational check we note that A4(2

5.PSL5(2),
3A) is disconnected with 310 connected components each with 256 nodes. We consider these connected components
as individual connected graph and we denoted by CA4(2

5.PSL5(2), 3A). This graph has only five CG(t)-orbits and
the graph describe as follows:

Now as A4(2
5.PSL5(2), 3A) is regular then this results is true for each 310 connected components.

Case ii. G ∼= 25.PSL5(2) and X=3B

Let t be a fixed elements in the class 3B, the we have CG(t) ∼= 3.SL2(5) and if we let X=tG, then the action of CG(t)
on X has 2620-orbits. The A4-graph in this case also as in cases X=3A disconnected. However, in this cases there are
3472 connected components each with 256 nodes. Let we assume that CA4(2

5.PSL5(2), 3B) as particular connected
component. We note that this graph have 7-orbits and can be describe as the following:

The regularity of the A4(2
5.PSL5(2), 3B) ensure that for each 3472 connected components.

3.3 The A4-graph description of Non-split extension 53.PSL3(5)

To investigate structure of the A4-graph of 53.PSL3(5) we apply a permutation representation on 3875 points. We
should note that the group has only one class of elements of order 3 namely 3A, this class has size 387500. Full details
about the A4-graph can be seen in the following case:
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Table 2: Structure of the A4(2
4.A8, 3B)

∆i(t) Orbits sizes Subgroup structure

∆1(t)
18, 92, 6,

24,3
A4

∆2(t)

18 A4

72 A5

722 A7

3610, 722 (Z3
2 ) : (Z7 : Z3)

364 ((Z2x((Z
3
2 ) : (K4))) : Z2) : (Z7 : Z3)

364 Z7 : Z3

362, 724 (K2
4 ).PSL3(2)

242 GL2(4)
242 3.A4

184 (K4.(D8)) : Z3

92, 182 SL2(3)
182 D8 : Z3

∆3(t)

92, 6, 3, 24 A4

722 A7

242 3.A4

8 D3

364 Z7 : Z3

242 GL2(4)
366 SL2(7)

92, 182 SL2(3)
182 D8 : C3

184 (K4.(D8)) : Z3

722 (D16) : (D3)
3610, 724 (3.D8) : (Z7 : Z3)

364 ((((2.Q8) : Z2) : Z2) : Z2) : (Z7 : Z3)
3612, 724 (D3) : (Z7 : Z3)

744 G
1 Z3

Table 3: Structure of the CA4(2
5.PSL5(2), 3A)

∆i(t) Orbits sizes Subgroup structure
∆1(t) 3,42 A4

∆2(t) 42,168 SL2(3)

Table 4: Structure of the CA4(2
5.PSL5(2), 3B)

∆i(t) Orbits sizes Subgroup structure
∆1(t) 152,45,60 A4

∆2(t) 602 SL2(3)

Case i. G ∼= 53.PSL3(5) and X=3A

Assume that G ∼= 53.PSL3(5) and X= X=tG, where t ∈ 3A. Then the centralizer of t in G isomorphic to 3 .(Z5

: 23), moreover, there are 3650 CG(t) –orbits under the action of CG(t) on X by conjugation. The analyses of the
A4(5

3.PSL3(5), 3A) in this case given in the following table:

Then the A4(5
3.PSL3(6), 3A) is connected and the diameter of the graph is 4.

The discs structure along with the diameters of A4(G,X) for G one of 24.A8 , 25.PSL5(2) and 53.PSL3(5) are
outlined in the following theorem:
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Table 5: Structure of the A4(5
3.PSL3(5), 3A)

∆i(t) Orbits sizes Subgroup structure
∆1(t) 120 A4

∆2(t)

12062 G
1205 53 . A5

12016 53 : (Z31 : Z3)
1205 53: A4

24 52 : Z3

1204 Z31 : Z3

∆3(t)

1201274 G
12016 Z31 : Z3

12064 53 : (Z31 : Z3)
2432 ((52) : Z5) : SL2(3)

12040, 24160 ((5 . ((52) : Z5)) : Z5) : SL2(3)
12020, 24100 ((5 .((52) : Z5)) : Z5) : SL2(5)

245 ((52) : Z5) :Z3

1203 (53) : A4

120 A4

248 (52) : SL2(3)
120 ((5 . ((52) : Z5)) : Z5) : Z3

120 (52) : C3

∆4(t)

1201434 G
12020, 2480 ((5 . ((52) : 5)) : 5) : SL2(3)

2422 ((52) : Z5) : SL2(3)
12080 (53) : (Z31 : Z3)
12020 Z31 : Z3

12032 (53) : ((K4) : Z3)
1208 (K4) : Z3

2435 ((52) : 5) : Z3
2410 (52) : Z3

2416 (52) : SL2(3)
1209 ((5 . ((52) : Z5)) : Z5) : Z3

12010, 2450 ((5 . ((52) : Z5)) : Z5) : SL2(5)
6 SL2(5)
62 SL2(3)
1 Z3

Theorem 3.1. Let G stand for one of the Miscellaneous groups stated below. The A4-graph of G then has the
following characteristics:

i. A4(2
4.A8 ,3A) is connected such that Dima(A4(2

4.A8 ,3A))= 3. Furthermore, for t ∈ 3A we have |∆1(t)|=75
(spread out over 2 CG(t)-orbits), |∆2(t)|=1380 (spread out over 11 CG(t)-orbits) and |∆3(t)|=336 (spread out
over 6 CG(t)-orbits).

ii. A4(2
4.A8 ,3B) is connected such that Dima(A4(2

4.A8 ,3A))= 3. Furthermore, for t ∈ 3A we have |∆1(t)|=69
(spread out over 6 CG(t)-orbits), |∆2(t)|=1644 (spread out over 44 CG(t)-orbits) and |∆3(t)|=2766 (spread out
over 73 CG(t)-orbits).

iii. A4(2
5.PSL5(2),3A) is disconnected contains 310 connected components. Furthermore, if we let CA4(2

5.PSL5(2),3A)
to be any a random connected components of the A4(2

5.PSL5(2),3A). Then the graph CA4(2
5.PSL5(2),3A) is

connected has diameter 2.Also, if x be a fixed vertex in CA4(2
5.PSL5(2),3A) then we have |∆1(x )|=45 (spread

out over 2 CG(t)-orbits), |∆2(x )|=210 (spread out over 2 CG(t)-orbits).

iv. A4(2
5.PSL5(2),3B) is disconnected contains 3472 connected components. Furthermore, if we let CA4(2

5.PSL5(2),3B)
to be any a random connected components of the A4(2

5.PSL5(2),3B). Then the graph CA4(2
5.PSL5(2),3B) is

connected has diameter 2.Also, if x be a fixed vertex in CA4(2
5.PSL5(2),3B) then we have |∆1(x )|=135 (spread

out over 4 CG(t)-orbits), |∆2(x )|=120 (spread out over 2 CG(t)-orbits).
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v. A4(5
3.PSL3(5),3A) is connected such that Dima(A4(5

3.PSL3(5),3A))= 4. Furthermore, for t ∈ 3A we have
|∆1(t)|=120 (spread out over 1 CG(t)-orbits), |∆2(t)|=11064 (spread out over 93 CG(t)-orbits), |∆3(t)|=177624
(spread out over 1725 CG(t)-orbits) and |∆4(t)|= 198691 (spread out over 1830 CG(t)-orbits).

Proof . The previous mentioned tables confirm all the results in the above theorem which was obtained computa-
tionally by using the Gap program. In addition to the many features provided by A4-graph properties such as the
regularity of the A4-graph that played an essential role in the analysis of the structure of the graph. □

4 Girth and clique number of the A4-graph

The action by conjugation on the vertices of the A4-graph ensure that the girth and clique number of the A4-graph
on X are isomorphic to the A4-graph on the first disc with t of the graph. The computational approach we use to
calculate the girth and clique number are mainly depend on the gap package YAGS [4].

The next couples figures we present the A4(2
4.A8, {∆1(t),t}) in cases X=3A or 3B respectively. Then we utilizes

to compute the girth and the cliques number of the A4-graphs.

Figure 1 A4( 2
4.A8, {∆1(t),t}), X=3A

Figure 2 A4(2
4.A8,{∆1(t),t} ) ,X=3B

While in next figure the A4(5
3.PSL3(5), {∆1(t), t}) is given below:

Figure 3 A4(5
3.PSL3(5), {∆1(t),t} )

Now let A4(G,X) be a connected A4-graph in the next theorem we provide the girth and the clique number of the
graph.

Theorem 4.1. Let G be one of the groups 24.A8 or 53. PSL3(5). Then girth of their A4-graphs is 4 and the clique
number are given below:

i. The clique number A4(2
4.A8,X) is 16 and the girth is 3 for X ∈ {3A, 3B}.
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ii. The clique number A4(5
3
. PSL3 (5),X) is 4 and the girth is 3 for X ∈ {3A}.

Proof . To calculate the girth and the clique number we only need to compute the girth and the clique number for
the graphs in Figure 4.1, Figure 4.2 and Figure 4.3 .This is executable by using gap programming with YAGS
packages. □

The relation between the connected A4-graphs and the alternating group A4can be seen in the next result.

Corollary 4.2 : Let G represent one of the Miscellaneous groups mentioned below. Then for the connected
A4-graphs we have the following results:

i. Let G ∼= 24.A8 and X=3A. Then there are 10920 subgroups the alternating group A4in first disc of A4(2
4.A8

,3A) and all conjugate in G.

ii. Let G ∼= 24.A8 and X=3B. Then there are 94640 subgroups the alternating group A4in first disc of A4(2
4.A8

,3B) and all conjugate in G.

iii. LetG ∼= 53.PSL3(5) and X=3A. Then there are 40 subgroups the alternating group A4in first disc ofA4(5
3.PSL3(5),

3A) and all conjugate in G.

Proof . The proof follow from the fact the each connected vertices of the clique generated the alternating group A4.
Also from the information about the discs structure of the connected A4-graph in Theorem 3.4. □

5 Conclusions

For t be a random element of order 3 in particular Miscellaneous group Gthe structure of A4(G,X) is studied. The
study involving calculating the diameter, clique number, and girth of A4(G,X) . Furthermore, the subgroup group
structure <t,x> for x is a fixed elements in the CG(t) -orbit of X is offered.
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