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Abstract

In this article, we study a new numerical approach to solve some particular class of delay integro-differential equations.
The considered problem is a singularly perturbed Volterra integro-differential equation with a pure delay term. To
solve such equations numerically we adopt the standard Adomian decomposition method followed by a first-order
truncated Taylor approximation. The most appealing advantage of the present method is that it provides an adequate
result for a wide scale of values to the perturbation parameter. The efficiency of the proposed method is illustrated
with an example. Moreover, a vivid realization of the treatment is described by the theoretical study related to error
analysis. Under some relevant assumptions boundedness of solution, and stability analysis are also established in the
agreement of the current method. To strengthen our findings, a comparative study between the proposed technique
and the well-renowned spline method is presented in the manuscript. Moreover, outcomes suggest the prior efficiency
of the method which is also supported by the theoretical results.
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1 Introduction

Consider the integro-differential equation

ϵ
dy(t)

dt
= α(t)y(t− τ) +

∫ t

0

X (t, s)h(y(s))ds+ g(t), (1.1)

y(0) = µ (1.2)

where t ∈ [0, T ] = A, ϵ ∈ R+ = (0,∞) is the perturbation parameter and τ is the pure delay term which is independent
of ϵ. The domain A is taken to be bounded with 0 < T < T ∗ for some positive constant T ∗. X (t, s) : A×A → R,

∗Corresponding author
Email addresses: nimaisarkar298@gmail.com (Nimai Sarkar), senmausumi@gmail.com (Mausumi Sen), nayan0507@gmail.com

(Dipankar Saha), agarwal@tamuk.edu (R. P. Agarwal)

Received: September 2021 Accepted: September 2022

http://dx.doi.org/10.22075/ijnaa.2022.24683.2803


1482 Sarkar, Sen, Saha, Agarwal

g(t), α(t) are sufficiently smooth functions and y(t) is considered as continuously differentiable function from A to
R , µ is a given constant, h(y(t)) is a smooth non linear function of y(t). Moreover, the parameters are such that
ϵ + α(t)τ ̸= 0. (1.1) and (1.2) together construct a special type of integro-differential equation, generally known as
singularly perturbed Volterra integro-differential equations (SPVIDEs) with pure delay term and they are commonly
used to model many physical processes like fluid flow at high Reynold number, flow in porous media, biological
problems and other physical phenomenons [2, 3, 19, 35, 36]. For ϵ << 1, equation (1.1) behaves like a standard
integral equation. Preciously, for ϵ = τ = 0 we obtain second kind of Volterra integral equation

α(t)y(t) +

∫ t

0

X (t, s)y(s)ds+ g(t) = 0 (1.3)

which is a special case of (1.1) during no perturbation parameter and without delay term [46]. Numerous applications of
SPVIDEs in real-world problems are the source of its study in both theoretical and applied points of view [2, 3, 29, 26].
Volterra delay-integro differential equations occurs vigorously in various areas such as biology, ecology, medicine and
physics [11, 12, 15, 23, 31]. This class of equations plays an important role in modelling diverse problems of engineering
and natural science, and hence has lead researchers to develop a theory and numerical analysis for the concerned class
of problems. Differential equations with a small parameter ϵ multiplying the highest order derivative terms are said to
be singularly perturbed and normally boundary layers occur in their solutions. These equations play an important role
in today’s advanced scientific computations. Many mathematical models starting from fluid dynamics to the problems
in mathematical biology are modelled by singularly perturbed problems. Typical examples include high Reynold’s
number flow in fluid dynamics, heat transport problem, etc. For more details on singularly perturbation, one can refer
the books [19, 17, 32, 4, 6] and references cited therein. It is well known that, for small values of ϵ, standard numerical
methods for solving such problems are unstable and do not give accurate results. Therefore it is important to develop
suitable method for solving such problems, whose does not depend on the parameter value ϵ, i.e. methods that are
convergent ϵ− uniformly. However, for (1.1) and (1.2) due to rapid oscillations of the solution, it is not convenient
to use classical numerical methods (like- finite difference, finite element, finite volume) and the difficulty of various
approximate numerical methods are available in the literature [26, 5, 13, 14, 18, 8, 20, 22, 42, 48, 49, 40].

For a survey of earlier results in theoretical analysis of singularly perturbed Volterra integro-differential equa-
tions and the implementation of various numerical techniques for these problems we refer to the text [26]. Various
approximating aspects for singularly perturbed Volterra integro-differential equations have also been investigated in
[25, 33, 38, 9, 10, 27, 30, 37, 39, 41].

Recently, there has been a growing interest in the numerical solution of Volterra integro-differential equations. For
example, Koto [28] studied stability of Runge-Kutta method for Volterra integro-differential equations with a constant
delay. The qualitative behaviour of numerical approximations to a non linear Volterra integro-differential equation
with unbounded delay is investigated in [43]. Zang and Vandewalle [48] gave a numerical approximation based on the
combination of general linear methods with compound quadrature rules. Gan [20] studied the analytic and numerical
dissipativity of θ− methods. The adaptation of linear multistep methods for Volterra integro-differential equation has
been discussed in [22]. Shakourifar and Enright [42] considered standard software based on the collocation method for
solving considered class of equations. The numerical stability of linear Volterra integro-differential equation with real
coefficient has been discussed by Zhao et al. [50]. Bellour and Bousselsal [8] used the Taylor polynomial method for
approximating Volterra integro-differential equations.

The above mentioned papers, related with Volterra integro-differential equations were only concerned with regular
cases. Also, singularly perturbed Volterra integro-differential equations frequently arise in many scientific applications.
Wu and co researchers [47] investigated error behaviour of linear multistep method for singularly perturbed problem.
He and Xu [21] discussed the exponential stability of impulsive problems. Amiraliyev et al. gave an exponetially fitted
difference method on a uniform mesh except for a delay term in functional part and shown that the method is first
order convergent uniformly in ϵ.

In the present paper, a simple but effective numerical method is proposed to approximate the solution. The
method is based on Taylor series expansion and Adomian decomposition method, which can be easily adopted for the
computational purpose of such problems. Along with the methodology, we have studied an error analysis for numerical
treatment. Moreover, the boundedness of solution and stability analysis are also described.

The arrangement of this article is as follows, section 2 deals with basic concepts related to the work, in section
3 main results are discussed, in section 4 an example is illustrated for the verification of suggested scheme and some
closing remarks are there in section 5.
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2 Basic concepts

Adomian decomposition Method [46] The Adomian decomposition method ( ADM ) for a nonlinear problem
is described as follows

L
(
y(t)

)
+N

(
y(t)

)
= f(t) (2.1)

where f, y are system input and output respectively. L and N are linear and non-linear operators and L−1 stands for
the inverse of L. The choice of the linear operator is not unique in a numerical scheme that involves ADM [1, 45? ].

Although commonly we consider Lξ = dξ

dtξ
(.) for ξ-th order differential operator and its inverse becomes ξ-fold definite

integral operator and is denoted by L−ξ. For [0, T ], the operator L−1 and L−2 are used to represent single and double
integrals respectively. For the considered problem ξ = 1.
Applying L−1 to equation (2.1) we have

y = L−1
(
f(t)

)
− L−1

(
N
(
y(t)

))
. (2.2)

Consider N
(
y(t)

)
into a series of standard Adomian polynomials as

N
(
y(t)

)
=

∞∑
k=0

Ak (2.3)

and the solution is given by

y(t) =

∞∑
k=0

yk(t) (2.4)

where Ak’s depend on y0(t), y1(t), y2(t), y3(t), ..... and for N
(
y(t)

)
we have the following standard relation

Ak =
1

k!

∂k

∂λk

[
N

( ∞∑
s=0

λsys(t)

)]
λ=0

, k = 0, 1, 2, 3, .... (2.5)

N
(
y(t)

)
stands for the nonlinear function which is to be approximated by Adomian polynomials. Here we enlist first

six Adomian polynomials

A0 = f(y0(t))
A1 = f

′
(y0(t))y1(t)

A2 = f
′
(y0(t))y2(t) + f

′′
(y0(t))

y1(t)
2

2!

A3 = f
′
(y0(t))y3(t) + f

′′
(y0(t))y1(t)y2(t) + f

′′′
(y0(t))

y1(t)
3

3!

A4 = f
′
(y0(t))y4(t) + f

′′
(y0(t))

(
y2(t)

2

2! + y1(t)y3(t)
)
+ f

′′′
(y0(t))

y1(t)
2y2(t)
2! + f iv(y0(t))

y1(t)
4

4!

A5 = f
′
(y0(t))y5(t) + f

′′
(y0(t))(y2(t)y3(t) + y1(t)y4(t)) + f

′′′
(y0(t))(

y1(t)y2(t)
2

2! + y1(t)
2y3(t)
2! ) +

f iv(y0(t))
y1(t)

3y2(t)
3! + fv(y0(t))

y1(t)
5

5! .

Substituting Adomian polynomials for N
(
y(t)

)
in equation (2.2)

∞∑
k=0

yk(t) = L−1
(
f(t)

)
− L−1

( ∞∑
k=0

Ak

)
. (2.6)

Finally, we have the classical recursion scheme

y0(t) = L−1
(
f(t)

)
,

yk+1(t) = −L−1
(
Ak

)
. (2.7)

Therefore, k-th approximation is given by
k−1∑
i=0

yi(t). (2.8)
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where the approximate solution is given by (2.4).

Definition 2.1. [23] Consider a non linear Volterra integro-differential equation

V
′
(t) = G(t, V (t), V (γ(t))) +

∫ t

0

X(t, x, V (x), V (γ(x)))dx (2.9)

where t ∈ [0, T ].
G(t, V (t), V (γ(t))) : [0, T ] × R × R → R and X(t, x, V (x), V (γ(x))) : [0, T ] × [0, T ] × R × R → R both continuous
function with respect to t, V and t, x, V respectively, γ(t) : [0, T ] → [0, T ] is delay function. If for a solution V (t) of
equation (2.9) satisfying

|V
′
(t)−G(t, V (t), V (γ(t)))−

∫ t

0

X(t, x, V (x), V (γ(x)))dx| ≤ Φ(t), (2.10)

for some Φ : [0, T ] → (0,∞), there exist V0 as a solution of (12) and a positive constant M such that

|V (t)− V0(t)| ≤ MΦ(t), (2.11)

for all t ∈ [0, T ], then equation (2.9) is said to be Hyers-Ulam- Rassias stable on [0, T ]. If Φ(t) is constant function,
then (2.9) has Hyers-Ulam stability on [0, T ].

Definition 2.2. [24] A function d̃ : Ỹ → Ỹ is said to be generalized metric on some non empty set Ỹ if and
only if the following conditions are satisfied,
(I) d̃(ũ, ṽ) = 0 ⇐⇒ ũ = ṽ
(II) d̃(ũ, ṽ) = d̃(ṽ, ũ)
(III) d̃(ũ, w̃) ≤ d̃(ũ, ṽ) + d̃(ṽ, w̃)
for all ũ, ṽ, w̃ ∈ Ỹ .

Theorem 2.3. [24] Consider a complete metric space (Ỹ , d̃) with a strictly contractive operator F : Ỹ → Ỹ . If
there exist a natural number n such that d̃(Fn+1ũ,Fnũ) < ∞ for some ũ ∈ Ỹ , then the following hold:
(I) The sequence Fnũ tends to a fixed point ũ0 of F ,
(II) ũ0 is the unique fixed point of F in Y0 = {ṽ ∈ Ỹ |d̃(Fnũ, ṽ) < ∞},
(III) If ṽ ∈ Y0, then d̃(ṽ, ũ0) ≤ 1

1−L d̃(F ṽ, ṽ), where L < 1 being a Lipschitz constant.

3 Main results

3.1. Numerical scheme
The numerical treatment deals with nonlinear delay integro-differential equations as a sequence of iterates. Due to
the presence of delay term, perturbation parameter, and nonlinearity, more complexity enters into the problem. With
the motivation to overcome this scenario, we present the current scheme which is simple to implement and less time
consuming for larger calculations.
With the help of linearization through truncated Taylor series, equation (1.1) takes the form(

ϵ+ α(t)τ
)dy(t)

dt
= α(t)y(t) +

∫ t

0

X (t, s)h(y(s))ds+ g(t) + α(t)Rn(τ,O(y
′
(t))) (3.1)

where Rn(τ,O(y
′
(t))) represents the remainder term after truncation.

We consider the linear and nonlinear operators as

L
(
y(t)

)
= d

dt

{
(ϵ+ α(t)τ)y(t)

}
and

N
(
y(t)

)
= −y(t)

(
τ dα(t)

dt + α(t)
)
− I,
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where, I =
∫ t

0
X (t, s)h(y(s))ds+ α(t)Rn(τ,O(y

′
(t)).

Then (3.1) takes the form L
(
y(t)

)
+N

(
y(t)

)
= g(t).

Now implementing ADM as described in section 2, we get the standard iteration scheme as follows

y0(t) = L−1
( g(t)

ϵ+ α(t)τ

)
, (3.2)

yk+1(t) = −L−1
( Ak

ϵ+ α(t)τ

)
, k = 0, 1, 2, 3, ...... (3.3)

3.2. Error analysis
This section is entirely devoted to the convergence and error analysis. In this context two theorems are established.
The following assumptions are taken into consideration for the theoretical study presented in this section.

(A1) h : R → R is Lipschitz continuous function. That is for all y1(t), y2(t) ∈ R there exists some constant K∗
2 > 0

such that

|h(y1(t))− h(y2(t))| ≤ K∗
2|y1(t)− y2(t)|, where t ∈ A.

(A2) X : A×A → R and g : A → R are continuous functions such that

|X (t, s)| ≤ X ∗, |g(t)| ≤ G

where X ∗ = sup(t,s)∈A×A|X (t, s)| and G = supt∈A|g(t)|.

Theorem 3.2.1 The series solution of the proposed scheme converges whenever 0 < ω∗ < 1 and |y1| < ∞,

where ω∗ = lT + 1
2X

∗K∗
2T

2, l = max
{
|τ dα(t)

dt + α(t)| : t ∈ A
}
.

Proof. We consider two arbitrary partial sums Sp and Sq with p ≥ q of the series solution (2.4). To prove the
convergence, it is enough to deduce that {Sp} is a Cauchy sequence in the related Banach space.

||Sp − Sq|| = max
{
|Sp − Sq| : t ∈ A

}
= max

{
|
∑p

i=q+1 yi(t)| : t ∈ A
}

= max
{
| −
∑p

i=q+1 L
−1
(

Ai−1

ϵ+α(t)τ

)
| : t ∈ A

}
≤ max

{
|L−1

(∑p
i=q+1 Ai−1

)
| : t ∈ A

}
= max

{
|L−1

(∑p−1
i=q Ai

)
| : t ∈ A

}
Thus we have

||Sp − Sq|| ≤ max
{
|L−1

( p−1∑
i=q

Ai

)
| : t ∈ A

}
. (3.4)

Adomian decomposition of the non linear term provides An = N(Sn) −
∑n−1

i=0 Ai and consequently
∑p−1

i=q Ai =

N(Sp−1)−N(Sq−1). From the construction we obtain L−1 as a definite integral operator on [0, T ].
Therefore (3.4) leads to the following form

||Sp − Sq|| ≤ max
{
|L−1

(
N(Sp−1)−N(Sq−1)

)
| : t ∈ A

}
. (3.5)
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From the choice of non linear operator, we have

N(Sp) = −Sp

(
τ dα(t)

dt + α(t)
)
− I,

and consequently the truncated series leads to the following inequality(
N(Sp−1)−N(Sq−1)

)
≤ −

(
τ dα(t)

dt + α(t)
)(

Sp−1 − Sq−1

)
−
∫ t

0
X (t, s)

(
h(Sp−1)− h(Sq−1)

)
ds. (3.6)

Implementing L−1 on (3.6) we have the following estimates∫ T

0

(
N(Sp−1)−N(Sq−1)

)
dt ≤ −

∫ T

0

(
τ dα(t)

dt + α(t)
)(

Sp−1 − Sq−1

)
dt−

∫ T

0

∫ t

0
X (t, s)

(
h(Sp−1)− h(Sq−1)

)
dsdt

thus we obtain

|
∫ T

0

(
N(Sp−1)−N(Sq−1)

)
dt| ≤ |

∫ T

0

(
τ dα(t)

dt + α(t)
)(

Sp−1 − Sq−1

)
dt|+

|
∫ T

0

∫ t

0
X (t, s)

(
h(Sp−1)− h(Sq−1)

)
dsdt|

≤
∫ T

0
|τ dα(t)

dt + α(t)| |Sp−1 − Sq−1|dt+

∫ T

0

∫ t

0
|X (t, s)| |h(Sp−1)− h(Sq−1)|dsdt

by assumption (A1), (A2) and l = max
{
|τ dα(t)

dt + α(t)| : t ∈ A
}

we get

max
{
|L−1

(
N(Sp−1)−N(Sq−1)

)
| : t ∈ A

}
≤ l max

{
|L−1

(
Sp−1 − Sq−1

)
| :

t ∈ A
}
+

X ∗K∗
2 max

{
|L−2

(
Sp−1 − Sq−1

)
| : t ∈ A

}
≤
(
lT + 1

2X
∗K∗

2T
2
)∥∥∥Sp−1 − Sq−1

∥∥∥.
Therefore we have the following inequality

max
{
|L−1

(
N(Sp−1)−N(Sq−1)

)
| : t ∈ A

}
≤ ω∗

∥∥∥Sp−1 − Sq−1

∥∥∥ (3.7)

where ω∗ = lT + 1
2X

∗K∗
2T

2. Combining inequality (3.5) and (3.7) we have

||Sp − Sq|| ≤ ω∗||Sp−1 − Sq−1||.

For p = q + 1,
||Sq+1 − Sq|| ≤ ω∗||Sq − Sq−1|| ≤ ω∗2||Sq−1 − Sq−2|| ≤ ... ≤ ω∗q||S1 − S0||.

Implementing triangle inequality,

||Sp − Sq|| ≤ ||Sq+1 − Sq||+ ||Sq+2 − Sq+1||+ ...+ ||Sp − Sp−1||
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≤
(
ω∗q + ω∗q+1 + ω∗q+2 + ...+ ω∗p−1

)
||S1 − S0||

≤ ω∗q
(

1−ω∗p−q

1−ω∗

)
||y1(t)||.

As 0 < ω∗ < 1, so 1− ω∗p−q < 1.
Therefore

||Sp − Sq|| ≤ ω∗q

1−ω∗ max
{
|y1(t)| : t ∈ A

}
.

Since |y1(t)| < ∞ for t ∈ A, so ||Sp − Sq|| −→ 0 as q −→ ∞.

Hence, {Sp} is a Cauchy sequence in the considered Banach space. This completes the proof.

Theorem 3.2.2 The maximum truncation error for the approximate solution to the problem (1.1) − (1.2) is
estimated to be

max
{
|y(t)−

q∑
i=0

yi(t)| : t ∈ A
}
≤ ω∗q

1− ω∗ max
{
|y1(t)| : t ∈ A

}
.

Proof. From Theorem 3.2.1 we obtain

||Sp − Sq|| ≤ ω∗q

1−ω∗ max
{
|y1(t)| : t ∈ A

}
.

As p −→ ∞ then Sp −→ y(t), therefore we have

||y(t)− Sq|| ≤ ω∗q

1−ω∗max
{
|y1(t)| : t ∈ A

}
and the maximum truncation error is to be estimated as

max
{
|y(t)−

∑q
i=0 yi(t)| : t ∈ A

}
≤ ω∗q

1−ω∗ max
{
|y1(t)| : t ∈ A

}
This concludes the proof.
3.3. Boundedness of solution

In this section we impose additional condition on α and proceed with the following assumptions

(A3) α is considered to be constant function such that
(
ϵ+ ατ

)
is non vanishing for all choices of ϵ and τ .

(A4) y : A → R is smooth function such that there exists some positive constant M such that |O(y
′
)| < M, where

O(y
′
) stands for higher order derivatives of y involved in Taylor series expansion of y(t− τ) so that

|y(t− z)| ≤ |y(t)|+M
(
exp(T )− 1

)
, where t, z ∈ A.

Now we present a theorem in support of the boundedness of solution.

Theorem 3.3.1 Under the assumptions (A1)-(A4) equation (1.1) posses bounded solution provided the following
condition holds

Λt,µ,ϵ,α,τexp(ωαt)+M
(
exp(T )−1

)
X∗K∗

2

{
(ωαt−1)exp(ωαt)+1

α2ω

}
1−ωX∗K∗

2

∫ t
0
zexp(ωαz)dz

≤ B∗

where Λt,µ,ϵ,α,τ = |µ|+
{
ωαM(e−τ − 1) + ωG

}
+
{
ω|µ|X ∗K∗

2 + ωX ∗|h(µ)|
}

∫ t

0
σexp(−ωασ)dσ

and B∗ is some constant with t− σ = z.

Proof. Applying truncated Taylor series in equation (1.1)(
ϵ+ ατ

)
dy(t)
dt = αy(t) +

∫ t

0
X (t, s)h(y(s))ds+ g(t) + αRn(τ,O(y

′
(t))).
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where Rn(τ,O(y
′
(t))) is remainder term after truncation, we have

dy(t)
dt = ωαy(t) + ω

∫ t

0
X (t, s)h(y(s))ds+ ωg(t) + ωαRn(τ,O(y

′
(t))), with ω =

(
ϵ+ ατ

)−1

.

This implies

dy(t)
dt − ωαy(t) = ωH(t),

where H(t) =
∫ t

0
X (t, s)h(y(s))ds+ g(t) + αRn(τ,O(y

′
(t))). We introduce integrating factor and proceed as follows

exp(−ωαt)y(t) =y(0) +

∫ t

0

ωexp(−ωασ)
{∫ σ

0

X (σ, s)h(y(s))ds+ g(σ) + αRn(τ,O(y
′
(σ))

}
dσ.

Thus we obtain the following estimates

exp(−ωαt)|y(t)| ≤|µ|+ ωα

∫ t

0

exp(−ωασ)|Rn(τ,O(y
′
(σ)))|dσ + ω

∫ t

0

exp(−ωασ)|g(σ)|dσ

+ ω

∫ t

0

∫ σ

0

exp(−ωασ)|X (σ, s)||h(y(s))|dsdσ.

Assumptions (A1)-(A4) provide

exp(−ωαt)|y(t)| ≤|µ|+
{
ωαM(e−τ − 1) + ωG

}∫ t

0

exp(−ωασ)dσ + ωX ∗
∫ t

0

∫ σ

0

exp(−ωασ)|h(y(s))− h(y(0))|dsdσ

+ ωX ∗
∫ t

0

∫ σ

0

exp(−ωασ)|h(y(0))|dsdσ.

Consequently we obtain

exp(−ωαt)|y(t)| ≤µ+
{
ωαM(e−τ − 1) + ωG

}∫ t

0

exp(−ωασ)dσ + ωX ∗K∗
2

∫ t

0

∫ σ

0

exp(−ωασ)|y(s)− µ|dsdσ

+ ωX ∗|h(µ)|
∫ t

0

σexp(−ωασ)dσ.

This leads to

exp(−ωαt)|y(t)| ≤Λt,µ,ϵ,α,τ + ωX ∗K∗
2

∫ t

0

(t− σ)|y(σ)|exp(−ωασ)dσ,

where

Λt,µ,ϵ,α,τ =|µ|+
{
ωαM(e−τ − 1) + ωG

}
+
{
ω|µ|X ∗K∗

2 + ωX ∗|h(µ)|
}∫ t

0

σexp(−ωασ)dσ.

This implies

|y(t)| ≤Λt,µ,ϵ,α,τexp(ωαt) + ωX ∗K∗
2

∫ t

0

(t− σ)|y(σ)|exp
{
ωα(t− σ)

}
dσ.

We perform the substitution t− σ = z in the integral part and considering the assumption (A4) we obtain

|y(t)| ≤ Λt,µ,ϵ,α,τexp(ωαt) +
{
ωX ∗K∗

2

∫ t

0
zexp(ωαz)dz

}
|y(t)|+M

(
exp(T )− 1

)
ωX ∗K∗

2

∫ t

0
zexp(ωαz)dz.

Finally, we obtain
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|y(t)| ≤
Λt,µ,ϵ,α,τexp(ωαt)+M

(
exp(T )−1

)
X∗K∗

2

{
(ωαt−1)exp(ωαt)+1

α2ω

}
1−ωX∗K∗

2

∫ t
0
zexp(ωαz)dz

.

Since t ∈ (0, T ] with 0 < T < T ∗, the quantity on the right side of the above inequality is bounded by some
constant B∗. This completes the proof.
3.4. Stability analysis

In this section, we have discussed stability criteria for equation (1.1) under some relevant assumptions. Motivated
from the paper [25] we propose a theorem to prove Hyer-Ulam-Rassias stability. For this purpose, we consider the
complete generalized metric space (Ỹ , d̃), where Ỹ be the set of all real valued continuous functions on [0, T ] and
d̃(ũ, w̃) = Inf {k̃ ∈ [0,∞) : |ũ(t)− w̃(t)| ≤ k̃σ̃(t) for t ∈ [0, T ]}. Before entering into the main result related to stability,
first, we introduce the following assumptions
(A5) The kernel X (t, s) and α(t) : [0, T ] → R are bounded by some non-negative constant K2 and K∗

1 respectively.

(A6) There exists some positive constant K such that |uξ
1(t)−uξ

2(t)| ≤ K1|u1(t)−u2(t)| where ξ denotes ξ-th derivative.
(A7) u : [0, T ] → R is a continuously differentiable function satisfies∣∣∣dudt − 1

ϵ

(
α(t)u(t− τ) +

∫ t

0
X (t, s)h(u(s))ds+ g(t)

)∣∣∣ ≤ σ̃(t), for all t ∈ [0, T ], where σ̃ : [0, T ] → R
is a continuous function.
(A8) There exists N > 0 such that

∫ t

0
σ̃(t∗)dt∗ ≤ N σ̃(t) for all t ∈ [0, T ].

(A9) There exists a unique continuous function w0 : [0, T ] → R such that

w0 = 1
ϵ

( ∫ t

0
α(s)w0(s− τ)ds+

∫ t

0

∫ s

0
X (s, s

′
)h(w0(s))ds

′
ds+ g(t)

)
.

Theorem 3.4.1 Under the assumptions (A1) and (A5)-(A9) the integro differential equation

ϵdy(t)dt = α(t)y(t− τ) +
∫ t

0
X (t, s)h(y(s))ds+ g(t)

with a prescribed initial value for y(t), possess Hyers-Ulam-Rassias stability in a complete generalized metric space .
Proof. On (Ỹ , d̃) we define the operator T̃ : Ỹ → Ỹ as

T̃ ỹ(t) = ỹ(0) +
1

ϵ

(∫ t

0

α(s)ỹ(s− τ)ds+

∫ t

0

∫ s

0

X (s, s
′
)h(ỹ(s))ds

′
ds+ g(t)

)
(3.8)

Initially, we establish that T̃ is strictly contraction. For that, we consider ũ(t), w̃(t) ∈ Ỹ and proceed as follows

|(T̃ ũ)(t)− (T̃ w̃)(t)| =
∣∣∣1
ϵ

∫ t

0

α(s)
(
ũ(s− τ)− w̃(s− τ)

)
ds+

1

ϵ

∫ t

0

∫ s

0

X (s, s
′
)
(
h(ũ(s

′
))− h(w̃(s

′
))
)
ds

′
ds
∣∣∣

≤
∣∣∣1
ϵ

∫ t

0

α(s)

∞∑
n=0

τn

n!

(
ũn(s)− w̃n(s)

)
ds
∣∣∣+ ∣∣∣1

ϵ

∫ t

0

∫ s

0

X (s, s
′
)
(
h(ũ(s

′
))− h(ṽ(s

′
))
)
ds

′
ds
∣∣∣

≤K1

|ϵ|

∫ t

0

∣∣∣α(s)∣∣∣ ∞∑
n=0

τn

n!

∣∣∣ũ(s)− w̃(s)
∣∣∣ds+ K2

|ϵ|

∫ t

0

∫ s

0

∣∣∣h(ũ(s′
))− h(w̃(s

′
))
∣∣∣ds′

ds

≤K1K∗
1e

τ

|ϵ|

∫ t

0

∣∣∣ũ(s)− w̃(s)|ds+ K2K∗
2

|ϵ|

∫ t

0

∫ s

0

∣∣∣ũ(s′
)− w̃(s

′
)
∣∣∣ds′

ds
′

≤K1K∗
1e

τ

|ϵ|
Kũw̃

∫ t

0

σ̃(s)ds+
K2K∗

2

|ϵ|
Kũw̃

∫ t

0

∫ s

0

σ̃(s
′
)ds

′
ds

≤Kũw̃σ̃(t)
(K1K∗

1e
τ

|ϵ|
N +

K2K∗
2

|ϵ|
N 2
)
,

thus, d̃(T̃ ũ, T̃ w̃) ≤ Kũw̃σ̃(t)
(

K1K∗
1e

τ

|ϵ| N +
K2K∗

2

|ϵ| N 2
)
. Hence, we obtain d̃(T̃ ũ, T̃ w̃) ≤

(
K1K∗

1e
τ

|ϵ| N +
K2K∗

2

|ϵ| N 2
)
d̃(ũ, w̃) for

all ũ, w̃ ∈ Ỹ , with 0 <
(

K1K∗
1e

τ

|ϵ| N +
K2K∗

2

|ϵ| N 2
)
< 1.

For any ũ0 ∈ Ỹ , there exists some non negative constant K such that

|T̃ ũ0(t)− ũ0(t)| =
∣∣∣ũ(0) + 1

ϵ

(∫ t

0

α(s)ũ0(s− τ)ds+

∫ t

0

∫ s

0

X (s, s
′
)h(ũ0(s))ds

′
ds+ g(t)

)
− ũ0

∣∣∣
≤ Kσ̃(t),
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for all t ∈ [0, T ]. As min
{
σ̃(t) : t ∈ [0, T ]

}
> 0 and ũ0, α(s)ũ0(s − τ), X (s, s

′
)h(ũ0(s)) are bounded, we get

d̃(T̃ ũ0, ũ0) < ∞. By Theorem 2.3. we have some continuous function w0 : [0, T ] → R such that T̃nũ0 → w0 in

(Ỹ , d̃) and T̃w0 = w0. Since ũ, ũ0 are bounded in [0, T ] and min
{
σ̃(t) : t ∈ [0, T ]

}
> 0, there exists a constant

Kũ ∈ [0,∞) such that, d̃(ũ0(t), ũ(t)) ≤ Kũσ̃(t). Thus we have |ũ0(t) − ũ(t)| < ∞, for all ũ ∈ Ỹ , which yields
{ũ ∈ Ỹ |d̃(ũ0, ũ) < ∞} = Ỹ . The conclusion of the above mentioned theorem suggests that w0 is the unique continuous
function.

Now we consider assumption (A9) and integrating each term on [0, t] we get,

−
∫ t

0

σ̃(t∗)dt∗ < ũ(t)− ũ(0)− 1

ϵ

(∫ t

0

α(s)ũ(s− τ)ds+

∫ t

0

∫ s

0

X (s, s
′
)h(ũ(s))ds

′
ds+ g(t)

)
<

∫ t

0

σ̃(t∗)dt∗.

This implies that∣∣∣ũ(t)− ũ(0)− 1

ϵ

(∫ t

0

α(s)ũ(s− τ)ds+

∫ t

0

∫ s

0

X (s, s
′
)h(ũ(s))ds

′
ds+ g(t)

)∣∣∣ < ∫ t

0

σ̃(t∗)dt∗
∫ t

0

σ̃(t∗)dt∗.

Thus, ∣∣∣ũ(t)− (T̃ ũ)(t)
∣∣∣ ≤ ∫ t

0

σ̃(t∗)dt∗ ≤ N σ̃(t).

Then we have
d̃(ũ, T̃ ũ) ≤ N σ̃(t).

By implementing Theorem 2.3. and the above inequality we conclude that

d̃(ũ, w0) ≤
1

1−
(

K1K∗
1e

τ

|ϵ| N +
K2K∗

2

|ϵ| N 2
) d̃(T̃ ũ, ũ)

and so

d̃(ũ, w0) ≤
N σ̃(t)

1−
(

K1K∗
1e

τ

|ϵ| N +
K2K∗

2

|ϵ| N 2
) .

Thus Hyer-Ulam-Rassias stability of considered integro-differential equation is established. In this context, Hyer-
Ulam stability occurs as a particular case when σ̃(t) turns out to be a constant function.

4 Numerical results and discussion

In support of the proposed testimony, we consider the following examples,
Example 1.

ϵv′(t) = 1− e−1 − v(t− τ) + 2

∫ t

0

v2(p)dp (4.1)

with v(0) = 1 as initial condition, t ∈ (0, T ] = (0, 1
2 ]. The exact solution is v(t) = e−t for the case of ϵ = 1 and τ = 0

(no delay). The following representative tables demonstrate the numerical results obtained by the proposed method.
Also, a comparative study between the present method and the spline function method used in the literature [26] is
illustrated in table 6 for some test values of ϵ and τ . For that purpose error estimation is done using Ev(t) = v(t)−vϵ,τ (t)
where vϵ,τ (t) is approximation for particular choice of ϵ and τ.

Table 1: Fixing ϵ = 1 and pure delay term as τ = 0, 0.25, 0.75, 0.5

t 0 0.1 0.2 0.3 0.4 0.5
v1,0 0.98393 0.82877 0.75587 0.70933 0.68432 0.67690

v1,0.25 0.99621 0.85219 0.7514 1 0.68487 0.64543 0.62746
v1,0.5 0.95087 0.76881 0.65231 0.58425 0.55198 0.54613
v1,0.75 0.97149 0.65349 0.48719 0.41273 0.39383 0.40854
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Table 2: Fixing ϵ = 4 and pure delay term as τ = 0, 0.25, 0.75, 0.5

t 0 0.1 0.2 0.3 0.4 0.5
v4,0 1.12087 1.05151 0.99602 0.95280 0.92040 0.89755

v4,0.25 0.91709 0.87185 0.84070 0.82195 0.81413 0.82244
v4,0.5 0.91746 0.87060 0.83823 0.81860 0.81017 0.81157
v4,0.75 0.91816 0.86947 0.83572 0.81508 0.80593 0.80687

Table 3: Fixing ϵ = 6 and pure delay term as τ = 0, 0.25, 0.75, 0.5

t 0 0.1 0.2 0.3 0.4 0.5
v6,0 0.91445 0.87749 0.85263 0.83855 0.83405 0.83808

v6,0.25 0.91463 0.87709 0.85179 0.83738 0.83264 0.83650
v6,0.5 0.91485 0.87665 0.85084 0.83605 0.83103 0.83471
v6,0.75 0.91816 0.86947 0.83572 0.81508 0.80593 0.80687

Table 4: Fixing ϵ = 10 and pure delay term as τ = 0, 0.25, 0.75, 0.5

t 0 0.1 0.2 0.3 0.4 0.5
v10,0 0.97329 0.93527 0.90810 0.89065 0.88190 0.88095

v10,0.25 0.91269 0.88113 0.86045 0.84953 0.84734 0.85235
v10,0.5 0.91277 0.88098 0.86013 0.84907 0.84678 0.85235
v10,0.75 0.91284 0.88081 0.85978 0.84858 0.84619 0.85322

Table 5: Fixing ϵ = 20 and pure delay term as τ = 0, 0.25, 0.75, 0.5

t 0 0.1 0.2 0.3 0.4 0.5
v20,0 0.91122 0.88407 0.86686 0.85860 0.85838 0.86541

v20,0.25 0.91124 0.88409 0.86689 0.85864 0.85845 0.86551
v20,0.5 0.91125 0.88400 0.85838 0.85838 0.86011 0.86511
v20,0.75 0.91128 0.88397 0.86664 0.85827 0.85827 0.85790

The above representative tables demonstrate the numerical verification for the proposed method. For fixed perturba-
tion parameter ϵ and delay term τ it is clear from the tables that the solution for different inputs does not fluctuate
on a rapid scale, which has already been established in Theorem 3.4.1 from a theoretical perspective. Now we present
the graphical illustration for the numerical results.

The graphs in figure 1 corresponding to table 1-5 depict the behaviour of the solution obtained by the proposed
method. As the value of the perturbation parameter increases, the fluctuation of the solution curve reduces. This fact
is also supported by the discussion of Hyer-Ulam-Rassias stability. Also we present the following comparative study
in table 6 between the proposed method and the spline method. The graphical overview is considered in figure 2.

Table 6: Comparison of absolute error between the developed method and spline method
(Example 1)
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Figure 1: Graphical representation of exact and approximate solutions for Example 1
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Figure 2: Abs. error comparison of present method and spline method for different values of ϵ and τ (Example 1)

t (ϵ, τ) Epresent Espline (ϵ, τ) Epresent Espline
ϵ = 1, τ = 0.5 ϵ = 10, τ = 0.5

0 0.96149 0.97149 0.76149 0.87149
0.1 0.60009 0.65349 0.62303 0.64549
0.2 0.47719 0.48719 0.44019 0.48719
0.3 0.38003 0.41273 0.38273 0.40673
0.4 0.40114 0.39393 0.37003 0.39443
0.5 0.38003 0.40854 0.35114 0.36854

ϵ = 20, τ = 0.5 ϵ = 50, τ = 0.5
0 0.45001 0.49006 0.26001 0.41170
0.1 0.40209 0.43400 0.24860 0.39001
0.2 0.34399 0.42390 0.24311 0.36500
0.3 0.30663 0.40673 0.22109 0.33340
0.4 0.27993 0.37993 0.21011 0.32017
0.5 0.25014 0.36548 0.20016 0.31004

Example 2. We consider the following problem,

ϵv
′
(t) + v3(t) + 3v(t− τ) +

∫ t

0

v2(p)dp = e−
3t
ϵ − 1

2
ϵe−

2t
ϵ + 2e−

t
ϵ +

ϵ

2
, t ∈ (0, 1]

with the initial condition y(0) = 1. For no delay the exact solution is given by y(t) = e−
t
ϵ . We applied the proposed
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technique for different values of ϵ and τ, that yield the following representative tables (Table 7 –Table 11). Table 12
demonstrates the comparative study between proposed method and spline method.

Table 7: Fixing ϵ = 1 and pure delay term as τ = 0, 0.25, 0.75, 0.5

t 0 0.1 0.2 0.3 0.4 0.5
v1,0 1.00000 0.90501 0.82000 0.74509 0.68001 0.62505

v1,0.25 1.00000 0.90499 0.81033 0.73021 0.68490 0.62499
v1,0.5 1.00000 0.90450 0.81105 0.73112 0.68520 0.62381
v1,0.75 1.00000 0.90433 0.81005 0.73160 0.68411 0.62250

Table 8: Fixing ϵ = 4 and pure delay term as τ = 0, 0.25, 0.75, 0.5

t 0 0.1 0.2 0.3 0.4 0.5
v1,0 1.00000 0.97533 0.95125 0.92789 0.90522 0.88279

v1,0.25 1.00000 0.97580 0.95000 0.92604 0.90478 0.88277
v1,0.5 1.00000 0.97609 0.95240 0.92533 0.90667 0.88340
v1,0.75 1.00000 0.97611 0.95339 0.92602 0.90468 0.88199

Table 9: Fixing ϵ = 6 and pure delay term as τ = 0, 0.25, 0.75, 0.5

t 0 0.1 0.2 0.3 0.4 0.5
v1,0 1.00000 0.98410 0.96864 0.95321 0.93822 0.92345

v1,0.25 1.00000 0.98421 0.96820 0.95105 0.92900 0.92100
v1,0.5 1.00000 0.98001 0.95330 0.95015 0.92009 0.92020
v1,0.75 1.00000 0.97998 0.95299 0.96002 0.93900 0.92119

Table 10: Fixing ϵ = 10 and pure delay term as τ = 0, 0.25, 0.75, 0.5

t 0 0.1 0.2 0.3 0.4 0.5
v1,0 1.00000 0.99020 0.98089 0.97180 0.96323 0.95501

v1,0.25 1.00000 0.98006 0.98129 0.97544 0.96601 0.97002
v1,0.5 1.00000 0.98312 0.98060 0.97666 0.95000 0.96055
v1,0.75 1.00000 0.98007 0.98690 0.96800 0.95522 0.96801

Table 11: Fixing ϵ = 20 and pure delay term as τ = 0, 0.25, 0.75, 0.5

t 0 0.1 0.2 0.3 0.4 0.5
v1,0 1.00000 0.99710 0.99835 1.00361 1.01311 1.02670

v1,0.25 1.00000 0.99350 0.98077 1.00348 1.01590 1.02669
v1,0.5 1.00000 0.99669 0.98604 1.07091 1.66096 1.02556
v1,0.75 1.00000 0.98900 0.98778 1.07000 1.66560 1.02670

Table 12: Comparison of absolute error between the developed method and spline method
(Example 2)
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t (ϵ, τ) Epresent Espline (ϵ, τ) Epresent Espline
ϵ = 1, τ = 0.5 ϵ = 10, τ = 0.5

0 0.90085 0.90088 0.90080 0.90112
0.1 0.90501 0.90489 0.99055 0.99009
0.2 0.82001 0.81877 0.98201 0.98022
0.3 0.74501 0.74008 0.97451 0.97044
0.4 0.68000 0.67031 0.96802 0.96081
0.5 0.62505 0.60655 0.96250 0.95120

ϵ = 20, τ = 0.5 ϵ = 50, τ = 0.5
0 0.90009 0.90011 0.90090 0.90099
0.1 0.99500 0.99508 0.99805 0.99800
0.2 0.99001 0.99000 0.99605 0.99606
0.3 0.99811 0.99004 0.99502 0.99001
0.4 0.98060 0.98100 0.98011 0.98100
0.5 0.98122 0.98000 0.98055 0.98800

Table 13: Absolute error estimation for different choices of t, ϵ and τ (Example 1)

t ϵ τ Absolute error Absolute error
(by proposed method) (by method [26])

0.000 0.10000 0.00001 0.00899 0.00989
0.125 0.10000 0.00001 0.00898 0.00992
0.250 0.10000 0.00001 0.00888 0.00990
0.375 0.10000 0.00001 0.00851 0.00917
0.500 0.10000 0.00001 0.00849 0.00911
0.625 0.10000 0.00001 0.00848 0.00910
0.750 0.10000 0.00001 0.00840 0.00903
0.875 0.10000 0.00001 0.00839 0.00901
0.100 0.10000 0.00001 0.00838 0.00900
0.000 0.50000 0.00001 0.00800 0.01655
0.125 0.50000 0.00001 0.00799 0.01980
0.250 0.50000 0.00001 0.00799 0.01660
0.375 0.50000 0.00001 0.00789 0.01749
0.500 0.50000 0.00001 0.00784 0.01452
0.625 0.50000 0.00001 0.00781 0.01449
0.750 0.50000 0.00001 0.00772 0.01529
0.875 0.50000 0.00001 0.00770 0.01400
0.100 0.50000 0.00001 0.00765 0.01409

Table 14: Absolute error estimation for different choices of t, ϵ and τ (Example 2)



1496 Sarkar, Sen, Saha, Agarwal

t ϵ τ Absolute error Absolute error
(by proposed method) (by method [26])

0.000 0.10000 0.00001 0.00032 0.00645
0.125 0.10000 0.00001 0.00029 0.00699
0.250 0.10000 0.00001 0.00020 0.00675
0.375 0.10000 0.00001 0.00019 0.00677
0.500 0.10000 0.00001 0.00015 0.00670
0.625 0.10000 0.00001 0.00014 0.00665
0.750 0.10000 0.00001 0.00011 0.00640
0.875 0.10000 0.00001 0.00011 0.00634
0.100 0.10000 0.00001 0.00010 0.00629
0.000 0.50000 0.00001 0.00018 0.00039
0.125 0.50000 0.00001 0.00014 0.00038
0.250 0.50000 0.00001 0.00012 0.00033
0.375 0.50000 0.00001 0.00010 0.00032
0.500 0.50000 0.00001 0.00010 0.00032
0.625 0.50000 0.00001 0.00011 0.00031
0.750 0.50000 0.00001 0.00010 0.00030
0.875 0.50000 0.00001 0.00010 0.00027
0.100 0.50000 0.00001 0.00009 0.00026

5 Conclusion

The proposed method is applied to solve a singularly perturbed Volterra integro-differential equation. The nu-
merical outcomes from this investigation suggest that the developed method is preferable and converges rapidly. This
observation is also supported by the comparative study with the spline method. The most appealing advantage of the
present method is that it provides an adequate result for higher values of perturbation parameter. This particular fact
makes this scheme attractive for numerical treatment for a large scale of ϵ. The numerical scheme is compatible with
the pure delay term and its variation, although the same method with variable delay might be an interesting future
scope of the present article. From the boundedness condition, stability analysis, numerical discussion, and comparative
study, it is evident that the method can be a useful tool to find an approximate solution of the considered class of
equation.
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