
Int. J. Nonlinear Anal. Appl. 14 (2023) 6, 31–43
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.27559.3650

Acceptance single sampling plan using generalized intuitionistic
fuzzy number

Sadegh Asghari, Ezzatallah Baloui Jamkhaneh∗, Einolah Deiri

Department of Statistics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

In the present paper, the acceptance single sampling plan is developed by the generalized intuitionistic fuzzy numbers.
The α1-cut and α2-cut sets of the generalized intuitionistic fuzzy numbers are applied to construct the acceptance
single sampling plan. We also investigate the operating characteristic curve, where the parameter is considered the
generalized intuitionistic fuzzy number. The (α1, α2)-cut set of generalized intuitionistic fuzzy operating characteristics
is constructed. The bands are represented with upper and lower bounds instead of curves for operating characteristics
and evaluated in detail. Finally, the numerical example is given to illustrate the proposed approach.

Keywords: Generalized intuitionistic fuzzy numbers, (α1, α2)-cut set, Binomial distribution, OC bands
2020 MSC: 03E72, 62A86

1 Introduction

The sampling plans are significant devices to distinguish the quality of constructed outcomes and products in
many fields, including industry, engineering, and transportation. The decision of reliable and higher-quality product
selection could be adopted through a statistical sampling approach in decision-making analysis. In sampling methods,
the assessment system based on the acceptance or reject many manufactured products is commonly called acceptance
sampling; for more details, see Montgomery [18]. The acceptance sampling plans (ASPs) design controlling of a small
set of components from a consignment within a certain plan to attain a given output quality level with the least cost
according to time, effort and destruction to the examined components.

Statistical quality control (SQC) is one of the substantial topics of the quality management system, where the
ASP is the main index of SQC. The classical SQC is based on precise information with precise data and precise
parameters. But in practice, we are dealing with situations in which some of these components cannot be measured
and recorded precisely. Therefore, to overcome this problem, some researchers used fuzzy sets (FSs) theory in the
acceptance sampling plan. Baloui Jamkhaneh et al. [6, 7, 9, 10] designed the acceptance double sampling plan,
acceptance single sampling plan (SSP) based on Poisson distribution, acceptance SSP based on Binomial distribution,
and acceptance SSP with inspection errors, under the fuzzy number of the fraction of defective cases. Turanoğlu et
al. [23] analyzed the acceptance of single and double sampling plans when the parameters N, p, n and c are fuzzy
numbers. Baloui Jamkhaneh et al. [8] provided the average outgoing quality and average total inspection for the
SSP, such that the proportion nonconforming was a triangular fuzzy number.
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Aslam and June [3] proposed the double ASP under the generalized logistic lifetime distribution for products,
where shape parameters are known. They provided the operating characteristic curve to several ratios of the true
median life to the proposed life.

Khan et al. [16] considered the Birnbaum-Saunders distribution in acceptance sampling under the fuzzy environ-
ment, where the rate of imperfect cases is assumed fuzzy with the Birnbaum-Saunders distribution. They investigated
the treatment of curves based on several compositions of parameters of Birnbaum-Saunders distribution.

By considering the intuitionistic fuzzy sense, Rasheed et al. [19] went further in survey sampling to tackle the
problem of vagueness in the respondent’s mind, whereas the credit of the survey sampling is relevant to the accuracy
of the data. They focused on the intuitionistic fuzzy aggregative investment profit proportion to provide the best
constructing facility position, where respondents declared both membership and non-membership functions, with
hesitancy level and reduced the vagueness in the respondent’s thought.

Recently, Aslam et al. [4] focused on the improvement of the group-sampling plan based on time-truncated tests
of Weibull distribution under the neutrosophic statistics and extended the single group-sampling and double group-
sampling plans based on the neutrosophic statistics. They compared the efficiency of both group-sampling plans under
the neutrosophic statistical interval and the crisp group-sampling plan under classical statistics, which leads to the
privilege of the proposed plan over the crisp method of competitive sampling plans.

The implication of the chain sampling plan is developed by Baloui Jamkhaneh and Sadeghpour Gildeh [11],
where the rate of damaged products is considered a trapezoidal fuzzy number for more broad application. Afterward,
Baloui Jamkhaneh and Sadeghpour Gildeh [12] applied the fuzzy acceptable quality level and fuzzy lot tolerance
percent defective numbers and introduced the sequential sampling plan. Afshari et al. [1] focused on the fuzzy
fraction of defective cases and provided a fuzzy multiple deferred state (FMDS) sampling plan by attribute so that
the suggested plan is extended to the imperfect inspection states. Afshari et al. [2] proposed the FMDS sampling
plan by attribute based on the fuzzy probability theory when the rate of defective components is ambiguous. Khan
et al. [17] investigated fuzzy ASP for the transmuted Weibull distribution.

Intuitionistic fuzzy sets (IFSs) theory, defined by Atanassov et al. [5], is a useful tool in modeling real data, wherein
hesitation between belongingness and non-belongingness cannot be ruled out. IFSs have been extensively applied to
consider uncertainty in observation and parameters. Following that, IFSs were considered to analyze the sampling
plan by many researchers. Isik and Kaya [15] designed single and double ASPs based on IFSs and derived the main
characteristics of ASPs, including the acceptance probability, average sample number, average total inspection, and
average outgoing quality for Poisson and Binomial distributions.

Shabani and Baloui Jamkhaneh [22] introduced a new generalized intuitionistic fuzzy number (GIFNB) based
on the generalization of the IFS and Baloui Jamkhaneh [14] defined some operators according to the generalized
intuitionistic fuzzy (GIF) sets. Recently, Roohanizadeh et al. [20] and Roohanizadeh et al. [21] considered the
system reliability of Pareto distribution with generalized intuitionistic fuzzy numbers. The main objective of this
paper is to design the SSP, in which the fraction of nonconforming items is taken as GIF number with both linear
and nonlinear membership and non-membership functions. It is developed based on the concept α1-cut, α2-cut and
(α1, α2)-cut of GIFNBs.

The structure of the present paper is organized as follows: Section 2 presents basic concepts of GIFNBs. The GIF
probability mass function is represented in Section 3, with (α1, α2)-cut set. Also, based on the numerical example,
different cut sets of the GIF probability and membership and non-membership function of the GIF probability are
provided. Section 4 gives acceptance single sampling (ASS) with the GIF parameter. In Section 5, the GIF operating
characteristic is provided. Regarding a numerical example, the operating characteristic surfaces are depicted based on
the zero-value of the acceptance number.

2 Preliminaries

In this section, we briefly review several definitions and terminologies related to the GIF numbers used throughout
the paper.

Definition 2.1. (Baloui Jamkhaneh and Nadarajah [13]) Consider the non-empty set X and the degree of mem-
bership and degree of non-membership of x in A, respectively as (µA(x), νA(x)). A GIF set (GIFSB) A in X, is
defined as an object of the form A = {⟨x, µA (x) , νA(x)⟩ : x ∈ X}, such that (µA(x), νA(x)) ∈ L and L = {(x, y) ∈
[0, 1]2

∣∣xδ + yδ ≤ 1}, where δ = n or 1
n , n = 1, 2, . . . , N .
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Definition 2.2. (Shabani and Baloui Jamkhaneh [22]) The membership and non-membership functions of the
especial class of GIFNBA are defined, respectively, as

µA (x) =



(x− a

b− a

) 1
δ

, a ≤ x ≤ b

1, b ≤ x ≤ c(d− x

d− c

) 1
δ

, c ≤ x ≤ d

0, o.w

, νA (x) =



( b− x

b− a1

) 1
δ

, a1 ≤ x ≤ b

0, b ≤ x ≤ c( x− c

d1 − c

) 1
δ

, c ≤ x ≤ d1

1, o.w

,

where a1 ≤ a ≤ b ≤ c ≤ d ≤ d1. The GIFNBA is denoted as A = (a1, a, b, c, d, d1, δ).

Notation 2.3. (i) The GIFNB in Definition 2.2 covers the trapezoidal intuitionistic fuzzy and trapezoidal fuzzy
numbers as especial cases, such that for δ = 1, it reduces to the trapezoidal intuitionistic fuzzy number, in
addition, if a1 = a and d = d1 reduces to the trapezoidal fuzzy number.

(ii) In Definition 2.2, if the relation a ≤ a1 ≤ b ≤ c ≤ d1 ≤ d be established, then the GIFNBA is denoted as
A = (a, a1, b, c, d1, d, δ).

Definition 2.4. (Baloui Jamkhaneh [14]) Consider the fixed numbers (α1, α2) ∈ L, the (α1, α2)-cut set generated
by a GIFNBA is defined by

A [α1, α2, δ] =
{
⟨x, µA (x) ≥ α1, νA (x) ≤ α2⟩ : x ∈ X

}
.

The α1-cut set of the GIFNBA is a crisp subset of R, which is defined as

Aµ [α1, δ] = {⟨x, µA (x) ≥ α1, ⟩ : x ∈ X} =
[
AL

µ [α1], A
U
µ [α1]

]
, 0 ≤ α1 ≤ 1,

AL
µ [α1] = a+ (b− a)αδ

1, AU
µ [α1] = d− (d− c)αδ

1.

Analogously, the α2-cut set of the GIFNBA is a crisp subset of R and is defined as below

Aν [α2, δ] = {⟨x, νA (x) ≤ α2⟩ : x ∈ X} =
[
AL

ν [α2], A
U
ν [α2]

]
, 0 ≤ α2 ≤ 1,

AL
ν [α2] = b

(
1− αδ

2

)
+ a1α

δ
2, AU

ν [α2] = c
(
1− αδ

2

)
+ d1α

δ
2.

Therefore, the (α1, α2)-cut set of the GIFNB is given as A [α1, α2, δ] = Aµ [α1, δ] ∩ Aν [α2, δ]. The GIFNB based on
the α1-cut and α2-cut sets are shown as

A (α1, α2, δ) =
(
Aµ [α1, δ] , Aν [α2, δ]

)
.

3 Generalized Intuitionistic Fuzzy Probability Mass Function

Consider the finite sample space S = {x1, x2, . . . , xn} and the probability measure defined to nonempty sigma field
of subsets of S, (F(S)), denoted as P , such that

P {xr} = kr, 1 ≤ i ≤ n,

n∑
r=1

kr = 1.

Regarding to the vagueness of the value kr, which maybe encountered in some real cases, hence, it is necessary to
consider kr as a non-crisp number. For this purpose, let k̃r, r = 1, 2, . . . , n are GIFNs and the probability of the
event X = xr equals k̃r. In this case, P̃ {xr} = k̃r = (k̃rµ[αi], k̃rν [αi]), where k̃rµ[αi], k̃rν [αi] ⊂ [0, 1] and there are

krµ ∈ k̃rµ[1] and krν ∈ k̃rν [0], such that
∑n

r=1 krµ = 1 and
∑n

r=1 krν = 1.

Let A ⊂ F(S), in this case, the cut set of the GIF probability P̃ (A) is defined as

Pj(A) [αi, δ] =
{ ∑

r∈IA

krj

∣∣∣(k1j , k2j , . . . , knj) ∈ Sαi

}
, (i, j) = (1, µ) , (2, ν) ,
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where Sαi =
{
(k1j , k2j , . . . , knj)

∣∣∣krj ∈ k̃rj [αi] ,
∑n

r=1 krj = 1
}

and IA = {i ∈ (1, 2, . . . , n) |xi ∈ A}. Finally, it is

shown as
P̃ (A) = P (A) (α1, α2, δ) =

(
Pµ (A) [α1, δ], Pν(A)[α2, δ]

)
,

and the (α1, α2)-cut set of the GIF probability is defined by

P (A) [α1, α2, δ] = Pµ(A) [α1, δ] ∩ Pν(A) [α2, δ] .

Theorem 3.1. For all A ⊆ S and (α1, α2) ∈ L, Pj(A) [αi, δ] is the αi-cut of the GIFNB P̃ (A).

Proof . In the first step, we show that Pj (A) [αi, δ] are the αi-cut of the GIFSB , for i = 1, 2. For this purpose, we
need to prove Pµ (A) [α1, δ] and Pν (A) [α2, δ] are the α1-cut of fuzzy set Pµ (A) and (1−α2)-cut of fuzzy set P1−ν(A),

respectively. Hence, it suffices to show that for α
(1)
i < α

(2)
i ,

Pµ(A)
[
α
(2)
1 , δ

]
⊆ Pµ(A)

[
α
(1)
1 , δ

]
and Pν(A)

[
α
(1)
2 , δ

]
⊆ Pν(A)

[
α
(2)
2 , δ

]
.

Since k̃rs are GIFNB , i.e. k̃rµ[α1] and k̃r(1−ν)[1−α2] are fuzzy numbers, therefore if α
(1)
i < α

(2)
i then for r = 1, 2, . . . , n,

k̃rµ[α
(2)
1 ] ⊆ k̃rµ[α

(1)
1 ] and k̃rν [α

(1)
2 ] ⊆ k̃rν [α

(2)
2 ],

then from krµ ∈ k̃rµ[α
(2)
1 ] it concluded that krµ ∈ k̃rµ[α

(1)
1 ], subsequently krν ∈ k̃rν [α

(1)
2 ] leads to krν ∈ k̃rν [α

(2)
2 ].

Finally S
α

(2)
1

⊆ S
α

(1)
1

and S
α

(1)
2

⊆ S
α

(2)
2
, that is

Pµ(A)
[
α
(2)
1 , δ

]
⊆ Pµ(A)

[
α
(1)
1 , δ

]
,

and
Pν(A)

[
α
(1)
2 , δ

]
⊆ Pν(A)

[
α
(2)
2 , δ

]
.

In second step, let S =
{
(k1, k2, . . . , kn)

∣∣∣kr ∈ [0, 1],
∑n

r=1 kr = 1
}
, and define Dom[αi] =

∏n
r=1 k̃rj [αi] ∩ S, and

fi : Dom [αi] → [0, 1], so

fi

(
a
(j)
1 , a

(j)
2 , . . . , a(j)n

)
=

∑
r∈IA

a(j)r .

As regard fi is a continuous function and Dom[αi] is connected, bounded and closed, therefore, the image of fi,
defined as Γ (αi) = fi (Dom [αi]), is a bounded and closed interval of [0, 1] ⊂ R. For each αi, using the definition of
Pj (A) [αi, δ], we have Pj (A) [αi, δ] = Γ (αi). Hence Pµ (A) [1, δ] ̸= ∅ and Pν (A) [0, δ] ̸= ∅, therefore P̃ (A) is a GIFNB .
□

Example 3.2. Consider the sample space S = {x1, x2, x3, x4} and P (X = xr) = k̃r, r = 1, 2, 3, 4, such that

k̃1 =
(
0.4, 0.43, 0.45, 0.45, 0.47, 0.5, 1

)
, k̃2 =

(
0.1, 0.11, 0.12, 0.12, 0.13, 0.15, 1

)
,

k̃3 =
(
0.2, 0.23, 0.25, 0.25, 0.28, 0.3, 1

)
, k̃4 =

(
0.13, 0.15, 0.18, 0.18, 0.19, 0.2, 1

)
,

the αi-cuts of k̃r, for i = 1, 2, are represented as

k1µ [α1] =
[
0.43 + 0.02α1, 0.47− 0.02α1

]
, k1ν [α2] =

[
0.45− 0.05α2, 0.45 + 0.05α2

]
,

k2µ [α1] =
[
0.11 + 0.01α1, 0.13− 0.01α1

]
, k2ν [α2] =

[
0.12− 0.02α2, 0.12 + 0.03α2

]
,

k3µ [α1] =
[
0.23 + 0.02α1, 0.28− 0.03α1

]
, k3ν [α2] =

[
0.25− 0.05α2, 0.25 + 0.05α2

]
,

k4µ [α1] =
[
0.15 + 0.03α1, 0.19− 0.01α1

]
, k4ν [α2] =

[
0.18− 0.05α2, 0.18 + 0.02α2

]
.
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Consider the event A = {x1, x3}, the (α1, α2)-cuts of P̃ (A) are provided by

P (A) (0, 1, 1) =
([

0.68, 0.74
]
,
[
0.65, 0.77

])
, P (A) (1, 0, 1) =

([
0.7, 0.7

]
,
[
0.7, 0.7

])
,

P (A) (0.2, 0.6, 1) =
([

0.684, 0.732
]
,
[
0.67, 0.742

])
, P (A) (0.5, 0.2, 1) =

([
0.69, 0.72

]
,
[
0.69, 0.714

])
.

Let X be the success number in n independent Bernoulli trials with the probability of success p̃, where p̃ is GIFNB .
Accordingly, the discrete random variableX has the Binomial GIF probability mass function denoted as P (x, p̃), where
its crisp counterpart is given as P (x). Then, the α1-cut set of membership and α2-cut set of non-membership functions
of the GIF probability mass function are defined as

Pj (r) [αi, δ] = {P (x) |Sαi
} =

[
PL
j (r) [αi], P

U
j (r)[αi]

]
,

PL
j (r) [αi] = min{P (x) |Sαi}, PU

j (r) [αi] = max{P (x) |Sαi
}.

where

Sαi
=

{
(pj , qj)

∣∣∣pj ∈ pj [αi] , qj ∈ qj [αi] , pj + qj = 1, (i, j) = (1, µ) , (2, ν)

}
,

P (x) =

(
n

x

)
px(1− p)

n−x
, x = 0, 1, 2, . . . , n,

Finally, it is shown as

P̃ (x) = P (x) (α1, α2, δ) =
(
Pµ (x) [α1, δ] , Pν(x) [α2, δ]

)
,

and the (α1, α2)-cut set of the GIF probability mass function is defined by

P (x) [α1, α2, δ] = Pµ(x) [α1, δ] ∩ Pν(x) [α2, δ] .

Example 3.3. Suppose the random variable of the number of successes in n independent trials is modeled by Binomial
distribution with the GIF parameter p̃ = (0.08, 0.09, 0.1, 0.1, 0.11, 0.12, 0.5). Then cut sets of the GIF probability of
X = 1 with δ = 0.5 is represented as follows

Pj (1) [αi, 0.5] =
{
15p(1− p)

14|Sα

}
=

[
15pUj [αi]

(
1− pUj [αi]

)14
, 15pLj [αi]

(
1− pLj [αi]

)14 ]
.

The αi-cuts of the GIF parameter are

pµ [α1] =
[
pLµ [α1] , p

U
µ [α1]

]
=

[
0.09 + 0.01

√
α1, 0.11− 0.01

√
α1

]
,

pν [α2] =
[
pLν [α2] , p

U
ν [α2]

]
=

[
0.1− 0.02

√
α2, 0.1 + 0.02

√
α2

]
.

The different cut sets of the GIF probability and membership and non-membership function of the GIF probability
are provided respectively in Table 1 and Figure 1. Based on Table 1 and Figure 1, by increasing α1 and decreasing α2,
the ambiguity decreases in the GIF probability. As we expected, the vagueness in the GIF probability is decreased by
increasing α1 and decreasing α2, so that, the minimum length of the interval is attained for α1 = 1 and α2 = 0.
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Figure 1: The membership and non-membership functions of the GIF probability.

Table 1: The different cut sets of the GIF probability.

(α1, α2) Pµ[α1] Pν [α2] P [α1, α2]

(0, 1) [0.3228, 0.3605] [0.3006, 0.3734] [0.3228, 0.3605]

(0.05, 0.6) [0.3276, 0.3570] [0.3108, 0.3683] [0.3276, 0.3570]

(0.08, 0.5) [0.3288, 0.356] [0.3138, 0.3665] [0.3288, 0.356]

(0.1, 0.45) [0.3296, 0.3554] [0.3154, 0.3655] [0.3296, 0.3554]

(0.13, 0.4) [0.3304, 0.3547] [0.3171, 0.3644] [0.3304, 0.3547]

(0.2, 0.3) [0.3322, 0.3532] [0.3208, 0.3620] [0.3322, 0.3532]

(0.4, 0.13) [0.3288, 0.3499] [0.3287, 0.356] [0.3288, 0.3499]

(0.45, 0.1) [0.3360, 0.3493] [0.3306, 0.3546] [0.3360, 0.3493]

(0.5, 0.08) [0.3374, 0.3486] [0.3319, 0.3534] [0.3374, 0.3486]

(0.6, 0.05) [0.3388, 0.3474] [0.3343, 0.3514] [0.3388, 0.3474]

(1, 0) [0.3432, 0.3432] [0.3432, 0.3432] [0.3432, 0.3432]

4 ASS with GIF Parameter

In this section, the SSP of classical attributes characteristics is introduced. An ASP is used to determine how
many units can be selected from a lot, or consignment, and how many defective units are allowed in that sample.
If the number of defective units is above the predefined number of defective items, the lot is excluded. Suppose we
want to check a lot based on the random sample of size n and enumerate the counts of defective items (D). The
consignment is accepted if the number of observed defective items (d) is less than or equal to the acceptance number c,
otherwise, it is rejected. If the size of the lot is very large, the random variable of the defective items D has a Binomial
distribution with parameters n and p, such that p is the rate of the defective units in the lot. If the proportion of the
defective items is a GIFNB , then the α1-cut set of membership and α2-cut set of non-membership functions of the
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GIF acceptance probability is defined as

P a
j [αi, δ] =

{
P (X ≤ c) |Sαi

}
=

[
P aL
j (c) [αi], P aU

j (c)[αi]
]
,

P aL
j (c) [αi] = min

{
P (X ≤ c)

∣∣Sαi

}
, P aU

j (c) [αi] = max
{
P (X ≤ c)

∣∣Sαi

}
.

where

Sαi
=

{
(pj , qj)

∣∣∣pj ∈ pj [αi] , qj ∈ qj [αi] , pj + qj = 1, (i, j) = (1, µ) , (2, ν)
}
,

P (X ≤ c) =

c∑
x=0

(
n

x

)
px(1− p)n−x, c = 0, 1, 2, . . . , n,

Finally, it is shown as

p̃a = pa (α1, α2, δ) =
(
P a
µ [α1, δ] , P

a
ν [α2, δ]

)
,

and the (α1, α2)-cut set of the GIF acceptance probability is defined as

pa[α1, α2, δ] = P a
µ [α1, δ] ∩ P a

ν [α2, δ] .

Corollary 4.1. If δ1 ≤ δ2 then pµ [α1, δ1] ⊂ pµ [α1, δ2] and pν [α2, δ2] ⊂ pν [α2, δ1], therefore if P a
j [αi, δ] , (i, j) =

(1, µ) , (2, ν) be monotone, then P a
µ [α1, δ1] ⊂ P a

µ [α1, δ2] and P a
ν [α2, δ2] ⊂ P a

ν [α2, δ1], which holds, for instance, for
c = 0 and c = 1.

Example 4.2. Let the acceptance number in the single sampling plan be zero, and the defective items in the lot are
the GIF parameter p̃ = (0, 0.005, 0.015, 0.017, 0.02, 0.025, 2). Then cut sets of the GIF probability of lot acceptance
with n = 12 is provided as follows

P a
j [αi, 2] =

{
(1− p)

12 |Sαi

}
=

[ (
1− pUj [αi]

)12
,
(
1− pLj [αi]

)12]
,

where

pµ [α1] =
[
0.005 + 0.01α2

1, 0.02− 0.003α2
1

]
,

pν [α2] =
[
0.015− 0.015α2

2, 0.017 + 0.008α2
2

]
.

Hence,

P a
µ [α1, 2] =

[(
0.98 + 0.003α2

1

)12
,
(
0.995− 0.01α2

1

)12]
,

P a
ν [α2, 2] =

[(
0.983− 0.008α2

2

)12
,
(
0.985 + 0.015α2

2

)12]
.

The membership and non-membership functions of the GIF probability of the lot acceptance are given, respectively,
as follows

µ
P
(x) =



( 12
√
x− 0.98

0.003

)0.5

, (0.98)12 ≤ x ≤ (0.983)12

1, (0.983)12 ≤ x ≤ (0.985)12(0.995− 12
√
x

0.01

)0.5

, (0.985)12 ≤ x ≤ (0.995)12

0, o.w.

,

ν
P
(x) =



(0.983− 12
√
x

0.008

)0.5

, (0.975)12 ≤ x ≤ (0.983)12

0, (0.983)12 ≤ x ≤ (0.985)12( 12
√
x− 0.985

0.015

)0.5

, (0.985)12 ≤ x ≤ 1

1, o.w.

.
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The membership and non-membership functions of the GIF probability of the lot acceptance with c = 0 are given
in Figure 2, and different cut sets of the GIF probability of lot acceptance with c = 0 are reported in Table 2.
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Figure 2: The membership and non-membership functions of the GIF probability of lot acceptance with c = 0.

Table 2: The different cut sets of the GIF probability of lot acceptance with c = 0.

(α1, α2) P a
µ [α1, δ] P a

ν [α2, δ] P a[α1, α2, δ]

(0, 1) [0.7847, 0.9416] [0.738, 1] [0.7847, 0.9416]

(0.2, 0.9) [0.7859, 0.9371] [0.7519, 0.9663] [0.7859, 0.9371]

(0.4, 0.7) [0.7893, 0.9236] [0.7759, 0.912] [0.7893, 0.912]

(0.5, 0.5) [0.792, 0.9136] [0.7944, 0.873] [0.7944, 0.873]

(0.7, 0.4) [0.799, 0.8875] [0.8014, 0.8589] [0.8014, 0.8589]

(0.8, 0.3) [0.8034, 0.8715] [0.8069, 0.848] [0.8069, 0.848]

(0.9, 0.1) [0.8084, 0.8536] [0.8132, 0.8357] [0.8132, 0.8357]

(1, 0) [0.814, 0.8341] [0.814, 0.8341] [0.814, 0.8341]

The cut sets of the GIF probability of the lot acceptance with n = 12 and c = 1 are represented as follows

P a
j [αi, 2] =

{
(1 + 11p) (1− p)

11 |Sαi

}
, (i, j) = (1, µ) , (2, ν) ,

=
[(
1 + 11pUj [αi]

) (
1− pUj [αi]

)11
,
(
1 + 11pLj [αi]

) (
1− pLj [αi]

)11]
,

where

pµ [α1] =
[
pLµ [α1] , p

U
µ [α1]

]
=

[
0.005 + 0.01α2

1, 0.02− 0.003α2
1

]
,

pν [α2] =
[
pLν [α2] , p

U
ν [α2]

]
=

[
0.015− 0.015α2

2, 0.017 + 0.008α2
2

]
.

The membership and non-membership functions of the GIF probability of the lot acceptance with c = 1 are
depicted in Figure 3, which has the same shape as Figure 2, with different values of the support x.
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Figure 3: The membership and non-membership functions of the GIF probability of lot acceptance with c = 1.

5 GIF Operating Characteristic

One important criterion in the sampling plan is the operating characteristic (OC) curve, which indicates the
probabilities of accepting a lot versus the proportion of defective items. Knowing the uncertainty value of the proportion
of the defective items and the variation of its position on the x-axis, we have drawn GIF operating characteristic (OC
surface) against the y-axis as αi. If p̃ = (a1, a2, a3, a4, a5, a6, δ), to achieve this aim, using transformation of the fuzzy
proportion of defective items (k), we consider the structure of p̃ as follows

p̃k = (k, k + b2, k + b3, k + b4, k + b5, k + b6, δ),

where bi = ai − a1, i = 2, 3, . . . , 6 , 0 ≤ k ≤ 1− b6 , and

pLkµ[α1] = k + b2 + (b3 − b2)α
δ
1, pUkµ[α1] = k + b5 − (b5 − b4)α

δ
1,

pLkν [α2] = k + b3 − b3α
δ
2, pUkν [α2] = k + b4 + (b6 − b4)α

δ
2.

Then

p̃ak = P a
kj [αi, δ] = {P (X ≤ c)|Skαi

} =
[
P aL
kj (c) [αi], P

aU
kj (c)[αi]

]
,

P aL
kj (c) [αi] = min

{ c∑
x=0

(
n

x

)
px(1− p)

n−x|Skαi

}
, P aL

kj (c) [αi] = min

{ c∑
x=0

(
n

x

)
px(1− p)n−x|Skαi

}
,

where

Skαi =

{
(pkj , qkj)

∣∣∣pkj ∈ pkj [αi] , qkj ∈ qkj [αi] , pkj + qkj = 1, (i, j) = (1, µ) , (2, ν)

}
.

The functions P a
kj [αi, δ], (i, j) = (1, µ) , (2, ν) are two-variates in terms of αi, i = 1, 2 and k. For k0, p̃

a
k0

is a GIF
number. In this method, for every especially α10 and α20, shapes of P a

kj [αi0, δ] , (i, j) = (1, µ) , (2, ν) are like bands
with upper and lower bounds.

Example 5.1. Let p̃ = (0.001, 0.005, 0.01, 0.012, 0.017, 0.021, 2), then

p̃k = (k, k + 0.004, k + 0.009, k + 0.011, k + 0.016, k + 0.02, 2), 0 ≤ k ≤ 0.98,

hence

pLkµ[α1] = k + 0.004 + 0.005α2
1, pUkµ[α1] = k + 0.016− 0.005α2

1,

pLkν [α2] = k + 0.009− 0.009α2
2, pUkν [α2] = k + 0.011 + 0.009α2

2.
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Finally, for c = 0, the OC surface is given by

P a
kµ (0) [α1, δ] =

[ (
0.984− k + 0.005α2

1

)n
, (0.996− k − 0.005α2

1)
n
]
,

P a
kν(0) [α2, δ] =

[ (
0.989− k − 0.009α2

2

)n
,
(
0.991− k + 0.009α2

2

)n ]
.

The OC surface for n = 5 and 10, with c = 0, are plotted in Figure 4 and the OC bands for n = 5 and 10, with
(α1, α2) = (0, 1), c = 0, are represented in Figure 5. Based on Figure 5, increasing k leads to decreasing of the OC
membership and non-membership bands, for n = 5 and n = 10.
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Figure 4: The OC surface for n = 5 and 10 with c = 0.
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(b) n=10
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Figure 5: The OC bands for (a) n = 5 and (b) n = 10 with (α1, α2) = (0, 1), c = 0.

Considering different values of k and n = 5, 10, the cut sets of OC surface with (α1, α2) = (0, 1) and c = 0 are
provided in Table 3. As can be seen, by increasing the values of k, the length of the intervals is decreased, which leads
to more precise results.
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Table 3: The cut sets of OC surface for different values of k with (α1, α2) = (0, 1) and c = 0.

n k P a
kµ (0) [0, 2] P a

kν(0) [1, 2] p̃ak

0 [0.8510, 0.9607] [0.8171, 1] [0.8510, 0.9607]

0.01 [0.7684, 0.8685] [0.7374, 0.9044] [0.7684, 0.8685]

10 0.03 [0.6244, 0.7076] [0.5987, 0.7374] [0.6244, 0.7076]

0.05 [0.5052, 0.5740] [0.4840, 0.5987] [0.5052, 0.5740]

0.07 [0.4069, 0.4636] [0.3894, 0.4840] [0.4069, 0.4636]

0 [0.9225, 0.9802] [0.9039, 1] [0.9225, 0.9802]

0.01 [0.8763, 0.9319] [0.8587, 0.9510] [0.8763, 0.9319]

5 0.03 [0.7902, 0.8412] [0.7738, 0.8587] [0.7902, 0.8412]

0.05 [0.7108, 0.7576] [0.6957, 0.7738] [0.7108, 0.7576]

0.07 [0.6379, 0.6809] [0.6240, 0.6957] [0.6379, 0.6809]

For c = 1, n = 10, the operating surface is given by

P a
kµ (1) [α1, 2] =

[ (
1 + 9

(
k + 0.016− 0.005α2

1

)) (
0.984− k + 0.005α2

1

)9
,
(
1 + 9

(
k + 0.004 + 0.005α2

1

))
(
0.996− k − 0.005α2

1

)9 ]
,

P a
kµ (1) [α1, 2] =

[ (
1 + 9

(
k + 0.011 + 0.009α2

2

)) (
0.989− k − 0.009α2

2

)9
,
(
1 + 9

(
k + 0.009− 0.009α2

2

))
(
0.991− k + 0.009α2

2

)9 ]
.

The GIF operating bands for n = 10 with (α1, α2) = (0, 1) and c = 1 is illustrated in Figure 6, such that by
increasing k, the membership and non-membership bands of the GIF operating are decreasing functions.
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Figure 6: The GIF operating bands for n = 10 with (α1, α2) = (0, 1), c = 1.
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Conclusion

In the present paper, the acceptance single sampling plan has been successfully designed using Binomial distribution
in the GIF condition. In our approach, based on the effect of parameters vagueness in the value assigned to acceptance
probability, the probability is obtained through GIFNB , and it is compatible with the method proposed by Baloui
Jamkhaneh et al. [9] for the fuzzy environment. The GIF operating characteristic surfaces are designed for different
combinations of sample sizes and parameters. Also, the cut sets of the GIF operating characteristic are two-variate
functions in terms of αi and k. For k0, they are the GIF numbers, and for every especially α10 and α20, they are
like a band with upper and lower bounds. The proposed sampling plan can be extended to neutrosophic statistics
distributions in future research.
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