Inequalities for the rational functions with no poles on the unit circle

Uzma Mubeen Ahanger*, Wali Mohammad Shah, Shah Lubna Wali
Department of Mathematics, Central University of Kashmir, Ganderbal-191201, Jammu and Kashmir, India

(Communicated by Ali Jabbari)

Abstract

Let \mathcal{R}_{n} be the set of rational functions with prescribed poles. It is known that if $r \in \mathcal{R}_{n}$, such that $r(z) \neq 0$ in $|z|<1$,

 then$$
\sup _{|z|=1}\left|r^{\prime}(z)\right| \leq \frac{\left|\mathcal{B}^{\prime}(z)\right|}{2} \sup _{|z|=1}|r(z)|
$$

and in case $r(z)=0$ in $|z| \leq 1$, then

$$
\sup _{|z|=1}\left|r^{\prime}(z)\right| \geq \frac{\left|\mathcal{B}^{\prime}(z)\right|}{2} \sup _{|z|=1}|r(z)|
$$

where $\mathcal{B}(z)$ is the Blashke product. The main aim of this paper is to relax the condition that all poles of $r(z)$ lie outside the unit circle and instead assume their location anywhere off the unit circle in the complex plane \mathbb{C}. The results so obtained besides the above inequalities generalize some other well-known estimates for the derivative of rational functions $r \in \mathcal{R}_{n}$ with prescribed poles and restricted zeros.

Keywords: Inequalities, Polynomials, Rational functions, Off the unit circle, Poles, Zeros
2020 MSC: 30A10, 30C10, 30C15

1 Introduction

Let \mathcal{P}_{n} be the class of all polynomials $p(z):=\sum_{j=0}^{n} c_{j} z^{j}$ of degree at most n. Let \mathcal{D}^{-}denote the region inside $U:=\{z$: $|z|=1\}$ and \mathcal{D}^{+}the region outside U. For $a_{j} \in \mathbb{C}, j=1,2, \ldots, n$, we write

$$
w(z):=\prod_{j=1}^{n}\left(z-a_{j}\right) \quad ; \quad \mathcal{B}(z):=\prod_{j=1}^{n}\left(\frac{1-\overline{a_{j}} z}{z-a_{j}}\right)
$$

[^0]and
$$
\mathcal{R}_{n}=R_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right):=\left\{\frac{p(z)}{w(z)}: \quad p \in \mathcal{P}_{n}\right\}
$$

Thus \mathcal{R}_{n} is the set of all rational functions with poles $a_{1}, a_{2}, \ldots, a_{n}$ at most and with finite limit at ∞. We observe that $\mathcal{B}(z) \in \mathcal{R}_{n}$.
A famous result due to Bernstien [4] states that if $p \in \mathcal{P}_{n}$, then

$$
\max _{z \in U}\left|p^{\prime}(z)\right| \leq n \max _{z \in U}|p(z)| .
$$

In case $p(z) \neq 0$ for $z \in \mathcal{D}^{-}$, then it was conjectured by Erdös and latter proved by Lax 2 that

$$
\max _{z \in U}\left|p^{\prime}(z)\right| \leq \frac{n}{2} \max _{z \in U}|p(z)|,
$$

whereas if $p(z) \neq 0$ for $z \in \mathcal{D}^{+}$, then Turán [6] proved that

$$
\max _{z \in U}\left|p^{\prime}(z)\right| \geq \frac{n}{2} \max _{z \in U}|p(z)| .
$$

In the literature [1, 3, 5, 7, there exist several improvements and generalisations of the above results. Li, Mohapatra and Rodriguez [3] extended these inequalities to rational functions $r \in \mathcal{R}_{n}$ with prescribed poles $a_{1}, a_{2}, \ldots, a_{n}$ replacing z^{n} by Blashke product $\mathcal{B}(z)$. Among other things they proved the following results for rational functions with restricted poles.

Theorem A. Suppose $r \in \mathcal{R}_{n}$ and all the zeros of r lie in $U \cup \mathcal{D}^{+}$. Then for $z \in U$,

$$
\left|r^{\prime}(z)\right| \leq \frac{1}{2}\left|\mathcal{B}^{\prime}(z)\right| \sup _{z \in U}|r(z)| .
$$

Theorem B. Suppose $r \in \mathcal{R}_{n}$, where r has exactly n poles at $a_{1}, a_{2}, \ldots, a_{n}$ and all the zeros of r lie in $U \cup \mathcal{D}^{-}$, then for $z \in U$,

$$
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{\left|\mathcal{B}^{\prime}(z)\right|-(n-m)\right\}|r(z)|,
$$

where m is the number of zeros of r.
In the proofs of the above theorems and related results, it is assumed that either all the poles lie in \mathcal{D}^{-}or in \mathcal{D}^{+}. However, in this paper we relax this condition and assume that the poles of $r \in \mathcal{R}_{n}$ lie anywhere off the unit circle in the complex plane.

Assume that $a=\left\{a_{j}\right\}_{j=1}^{n}, n \geq 1,\left|a_{j}\right| \neq 1, j=1,2, \ldots, n$ is an arbitrary finite sequence. $w(z)=w_{1}(z) w_{2}(z)$, where $w_{1}(z)=\prod_{a_{j} \in \mathcal{D}^{-}}\left(z-a_{j}\right)$ and $w_{2}(z)=\prod_{a_{j} \in \mathcal{D}^{+}}\left(z-a_{j}\right)$. Here we note that

$$
w_{1}(z) \equiv 1, \quad \text { if } \quad a \subset \mathcal{D}^{+}
$$

and

$$
w_{2}(z) \equiv 1 \quad \text { if } \quad a \subset \mathcal{D}^{-}
$$

Also

$$
\mathcal{B}_{1}(z):=\prod_{a_{j} \in \mathcal{D}^{-}}\left(\frac{1-\overline{a_{j}} z}{z-a_{j}}\right) \text { and } \mathcal{B}_{2}(z):=\prod_{a_{j} \in \mathcal{D}^{+}}\left(\frac{1-\overline{a_{j}} z}{z-a_{j}}\right)
$$

are the Blaskhe products whose poles with multiplicity counted are the enteries of the sequence inside or outside the unit circle.

2 Main results

Theorem 2.1. If $r \in \mathcal{R}_{n}$ has exactly n poles in \mathbb{C} / U and all zeros of r lie in $U \cup \mathcal{D}^{-}$, then for $z \in U$

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{| | \mathcal{B}_{2}^{\prime}(z)\left|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|-(n-s)\right\}|r(z)| \tag{2.1}
\end{equation*}
$$

where s is the number of zeros of $r(z)$. The result is sharp and equality holds for

$$
r(z)=\mathcal{B}_{1}(z) \mathcal{B}_{2}(z)+\lambda, \quad \lambda \in U
$$

In particular, if $r(z)$ has exactly n zeros in $U \cup \mathcal{D}^{-}$, then we have the following result.
Corollary 2.2. Suppose $r \in \mathcal{R}_{n}$, be such that $r(z) \neq 0$ for $z \in \mathcal{D}^{+}$, having all poles off the unit circle, then for $z \in U$

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{| | \mathcal{B}_{2}^{\prime}(z)\left|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|\right\}|r(z)| . \tag{2.2}
\end{equation*}
$$

Remark 2.3. If $r \in \mathcal{R}_{n}$ has all its poles in \mathcal{D}^{+}, then $\mathcal{B}_{1}(z) \equiv 1$ and $\mathcal{B}_{2}(z)=\mathcal{B}(z)$. Therefore, in this case Theorem 2.1 reduces to a result due to Li, Mohapatra and Rodriguez [3, Theorem 4].

As an improvement of Theorem 2.1, we next prove the following result.
Theorem 2.4. If $r \in \mathcal{R}_{n}$ has exactly n poles in \mathbb{C} / U and all zeros of r lie in $U \cup \mathcal{D}^{-}$, then for $z \in U$

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{| | \mathcal{B}_{2}^{\prime}(z)\left|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|+s-n+\frac{\left|c_{s}\right|-\left|c_{0}\right|}{\left|c_{s}\right|+\left|c_{0}\right|}\right\}|r(z)| \tag{2.3}
\end{equation*}
$$

where s is the number of zeros of $r(z)$. The result is sharp and equality holds for

$$
r(z)=\mathcal{B}_{1}(z) \mathcal{B}_{2}(z)+\lambda, \quad \lambda \in U
$$

In particular, if $r(z)$ has exactly n zeros in $U \cup \mathcal{D}^{-}$, then we have the following result.
Corollary 2.5. Suppose $r \in \mathcal{R}_{n}$, is such that $r(z) \neq 0$ for $z \in \mathcal{D}^{+}$, then for $z \in U$

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{| | \mathcal{B}_{2}^{\prime}(z)\left|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|+\frac{\left|c_{n}\right|-\left|c_{0}\right|}{\left|c_{n}\right|+\left|c_{0}\right|}\right\}|r(z)| . \tag{2.4}
\end{equation*}
$$

Remark 2.6. If $r \in \mathcal{R}_{n}$, has all its poles in \mathcal{D}^{+}, then inequality 2.4 reduces to a result due to Wali and Shah 7 , Corollary 2].

Theorem 2.7. Suppose that $r \in \mathcal{R}_{n}$ has exactly n poles in \mathbb{C} / U and all zeros of r lie in \mathcal{D}^{+}, then for $z \in U$

$$
\operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right) \leq \frac{1}{2}\left\{| | \mathcal{B}_{2}^{\prime}(z)\left|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|-(n-s)-\left(\frac{\left|c_{0}\right|-\left|c_{s}\right|}{\left|c_{0}\right|+\left|c_{s}\right|}\right)\right\}
$$

where s is the number of zeros of $r(z)$. The result is sharp and equality holds for

$$
r(z)=\mathcal{B}_{1}(z) \mathcal{B}_{2}(z)+\lambda, \quad \lambda \in U
$$

In particular, if $r(z)$ has exactly n zeros in \mathcal{D}^{+}, then we have the following sharp result.
Corollary 2.8. Suppose that $r \in \mathcal{R}_{n}$ and all zeros of r lie in \mathcal{D}^{+}, then for $z \in U$

$$
\operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right) \leq \frac{1}{2}\left\{| | \mathcal{B}_{2}^{\prime}(z)\left|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|-\left(\frac{\left|c_{0}\right|-\left|c_{n}\right|}{\left|c_{0}\right|+\left|c_{n}\right|}\right)\right\}
$$

The result due to Wali and Shah [7, Lemma 2] is a special case of Theorem 2.7 if we assume that all poles lie in \mathcal{D}^{+}, that is, $\mathcal{B}_{1}(z) \equiv 1$ and $\mathcal{B}_{2}(z)=\mathcal{B}(z)$.

3 Lemmas

Lemma 3.1. Suppose that $r \in \mathcal{R}_{n}$, where r has exactly n poles all belong to \mathbb{C} / U and all zeros of r lie in $U \cup \mathcal{D}^{-}$, then for all points on U such that $r(z) \neq 0$,

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right) \geq \frac{\left|\left|\mathcal{B}_{2}^{\prime}(z)\right|-\right| \mathcal{B}_{1}^{\prime}(z) \|}{2}-\frac{n-s}{2}, \tag{3.1}
\end{equation*}
$$

where s is the number of zeros of $r(z)$.

Proof. Since $r \in \mathcal{R}_{n}$, we can write

$$
\begin{equation*}
r(z)=\frac{p(z)}{w(z)} \tag{3.2}
\end{equation*}
$$

Let $z_{1}, z_{2}, \ldots, z_{s}$ be the zeros of $r(z)$, therefore $z_{j}, j=1,2, \ldots, s$ are also zeros of $p(z)$ and as such, we have

$$
p(z)=\sum_{j=0}^{s} c_{j} z^{j}=c_{s} \prod_{j=1}^{s}\left(z-z_{j}\right), \quad z_{j} \in U \cup \mathcal{D}^{-}, j=1,2, \ldots, s
$$

By assumption all poles of $r(z)$ lie off the unit circle, therefore we can write 3.2 as

$$
\begin{equation*}
r(z)=\frac{p(z)}{w_{1}(z) w_{2}(z)}, \tag{3.3}
\end{equation*}
$$

where $w_{1}(z)=\prod_{a_{j} \in \mathcal{D}^{-}}\left(z-a_{j}\right)$ and $w_{2}(z)=\prod_{a_{j} \in \mathcal{D}^{+}}\left(z-a_{j}\right)$.
Assume that n_{1} poles with multiplicities counted lie inside U and remaining $n-n_{1}=n_{2}$ (say) poles lie outside U. Also, we can write $p(z)=p_{1}(z) p_{2}(z)$ such that degree of $p_{1}(z) \leq$ degree of $w_{1}(z)$ and degree of $p_{2}(z) \leq$ degree of $w_{2}(z)$, so that

$$
\begin{aligned}
r(z) & =\frac{p_{1}(z)}{w_{1}(z)} \cdot \frac{p_{2}(z)}{w_{2}(z)} \\
& =r_{1}(z) r_{2}(z)
\end{aligned}
$$

where $r_{1} \in \mathcal{R}_{n_{1}}$ and $r_{2} \in \mathcal{R}_{n_{2}}$.
Now

$$
\begin{aligned}
r_{1}(z) & =\frac{p_{1}(z)}{w_{1}(z)} \\
& =\frac{p_{1}(z) \mathcal{B}_{1}(z)}{\prod_{j=1}^{n_{1}}\left(1-\overline{a_{j}} z\right)}, \quad a_{j} \in \mathcal{D}^{-}
\end{aligned}
$$

Therefore, for $z \in U$

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z r_{1}^{\prime}(z)}{r_{1}(z)}\right)=\operatorname{Re}\left(\frac{z p_{1}^{\prime}(z)}{p_{1}(z)}\right)+\operatorname{Re}\left(\frac{z \mathcal{B}_{1}^{\prime}(z)}{\mathcal{B}_{1}(z)}\right)+\sum_{j=1}^{n_{1}} \operatorname{Re}\left(\frac{a_{j}}{z-a_{j}}\right) \tag{3.4}
\end{equation*}
$$

Also we have

$$
\mathcal{B}_{1}(z)=\prod_{j=1}^{n_{1}}\left(\frac{1-\overline{a_{j}} z}{z-a_{j}}\right)
$$

Therefore, for $z \in U$

$$
\frac{\mathcal{B}_{1}^{\prime}(z)}{\mathcal{B}_{1}(z)}=\sum_{j=1}^{n_{1}}\left\{\frac{-\bar{a}_{j} z+\left|a_{j}\right|^{2}-1+\bar{a}_{j} z}{\left(\overline{z-a_{j}}\right)\left(z-a_{j}\right)}\right\}
$$

This further gives, for $z \in U$

$$
\frac{z \mathcal{B}_{1}^{\prime}(z)}{\mathcal{B}_{1}(z)}=\sum_{j=1}^{n_{1}} \frac{\left|a_{j}\right|^{2}-1}{\left|z-a_{j}\right|^{2}}, \quad a_{j} \in \mathcal{D}^{-}
$$

Since the right-hand side of above equation is a negative real number, therefore we can write for $z \in U$

$$
\begin{equation*}
\frac{z \mathcal{B}_{1}^{\prime}(z)}{\mathcal{B}_{1}(z)}=-\left|\frac{z \mathcal{B}_{1}^{\prime}(z)}{\mathcal{B}_{1}(z)}\right|=-\left|\mathcal{B}_{1}^{\prime}(z)\right| . \tag{3.5}
\end{equation*}
$$

This after using in equation (3.4), gives

$$
\begin{align*}
\operatorname{Re}\left(\frac{z r_{1}^{\prime}(z)}{r_{1}(z)}\right) & =\operatorname{Re}\left(\frac{z p_{1}^{\prime}(z)}{p_{1}(z)}\right)-\left|\mathcal{B}_{1}^{\prime}(z)\right|+\sum_{j=1}^{n_{1}} \operatorname{Re}\left(\frac{a_{j}}{z-a_{j}}\right) \\
& =\operatorname{Re}\left(\frac{z p_{1}^{\prime}(z)}{p_{1}(z)}\right)-\left|\mathcal{B}_{1}^{\prime}(z)\right|-\frac{n_{1}}{2} \\
& +\sum_{j=1}^{n_{1}} \operatorname{Re}\left(\frac{a_{j}}{z-a_{j}}+\frac{1}{2}\right) \\
& =\operatorname{Re}\left(\frac{z p_{1}^{\prime}(z)}{p_{1}(z)}\right)-\frac{\left|\mathcal{B}_{1}^{\prime}(z)\right|}{2}-\frac{n_{1}}{2} . \tag{3.6}
\end{align*}
$$

Again

$$
\begin{aligned}
r_{2}(z) & =\frac{p_{2}(z)}{w_{2}(z)} \\
& =\frac{p_{2}(z) \mathcal{B}_{2}(z)}{\prod_{j=n_{1}+1}^{n}\left(1-\overline{a_{j}} z\right)}, \quad a_{j} \in \mathcal{D}^{+} .
\end{aligned}
$$

This gives

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z r_{2}^{\prime}(z)}{r_{2}(z)}\right)=\operatorname{Re}\left(\frac{z p_{2}^{\prime}(z)}{p_{2}(z)}\right)+\operatorname{Re}\left(\frac{z \mathcal{B}_{2}^{\prime}(z)}{\mathcal{B}_{2}(z)}\right)+\sum_{j=n_{1}+1}^{n} \operatorname{Re}\left(\frac{a_{j}}{z-a_{j}}\right) \tag{3.7}
\end{equation*}
$$

Also we have

$$
\mathcal{B}_{2}(z)=\prod_{j=n_{1}+1}^{n}\left(\frac{z-a_{j}}{1-\overline{a_{j}} z}\right)
$$

This gives, for $z \in U$

$$
\frac{z \mathcal{B}_{2}^{\prime}(z)}{\mathcal{B}_{2}(z)}=\sum_{j=n_{1}+1}^{n} \frac{\left|a_{j}\right|^{2}-1}{\left|z-a_{j}\right|^{2}}, \quad a_{j} \in \mathcal{D}^{+} .
$$

Therefore,

$$
\begin{equation*}
\frac{z \mathcal{B}_{2}^{\prime}(z)}{\mathcal{B}_{2}(z)}=\left|\frac{z \mathcal{B}_{2}^{\prime}(z)}{\mathcal{B}_{2}(z)}\right|=\left|\mathcal{B}_{2}^{\prime}(z)\right| \text { for } z \in U \tag{3.8}
\end{equation*}
$$

This after using in equation (3.7), gives

$$
\begin{align*}
\operatorname{Re}\left(\frac{z r_{2}^{\prime}(z)}{r_{2}(z)}\right) & =\operatorname{Re}\left(\frac{z p_{2}^{\prime}(z)}{p_{2}(z)}\right)+\left|\mathcal{B}_{2}^{\prime}(z)\right|+\sum_{j=n_{1}+1}^{n} \operatorname{Re}\left(\frac{a_{j}}{z-a_{j}}\right) \\
& =\operatorname{Re}\left(\frac{z p_{2}^{\prime}(z)}{p_{2}(z)}\right)+\left|\mathcal{B}_{2}^{\prime}(z)\right|-\frac{\left(n-n_{1}\right)}{2} \\
& +\sum_{j=n_{1}+1}^{n} \operatorname{Re}\left(\frac{a_{j}}{z-a_{j}}+\frac{1}{2}\right) \\
& =\operatorname{Re}\left(\frac{z p_{2}^{\prime}(z)}{p_{2}(z)}\right)+\frac{\left|\mathcal{B}_{2}^{\prime}(z)\right|}{2}-\frac{\left(n-n_{1}\right)}{2} \\
& =\operatorname{Re}\left(\frac{z p_{2}^{\prime}(z)}{p_{2}(z)}\right)+\frac{\left|\mathcal{B}_{2}^{\prime}(z)\right|}{2}-\frac{n_{2}}{2} \tag{3.9}
\end{align*}
$$

From equation (3.6) and 3.9, we get

$$
\begin{align*}
\operatorname{Re}\left(\frac{z r_{1}^{\prime}(z)}{r_{1}(z)}\right)+\operatorname{Re}\left(\frac{z r_{2}^{\prime}(z)}{r_{2}(z)}\right) & =\operatorname{Re}\left(\frac{z p_{1}^{\prime}(z)}{p_{1}(z)}\right)+\operatorname{Re}\left(\frac{z p_{2}^{\prime}(z)}{p_{2}(z)}\right) \\
& +\frac{\left|\mathcal{B}_{2}^{\prime}(z)\right|}{2}-\frac{\left|\mathcal{B}_{1}^{\prime}(z)\right|}{2}-\frac{n}{2} \tag{3.10}
\end{align*}
$$

Equivalently,

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right)=\operatorname{Re}\left(\frac{z p^{\prime}(z)}{p(z)}\right)+\frac{\left|\mathcal{B}_{2}^{\prime}(z)\right|-\left|\mathcal{B}_{1}^{\prime}(z)\right|}{2}-\frac{n}{2} \tag{3.11}
\end{equation*}
$$

Now for $z_{j} \in U \cup \mathcal{D}^{-}, j=1,2, \ldots, s$, we have for all $z \in U$, such that $z \neq z_{j} j=1,2, \ldots, s$.

$$
\left|\frac{z}{z-z_{j}}\right| \geq\left|\frac{z}{z-z_{j}}-1\right|
$$

Therefore,

$$
\operatorname{Re}\left(\frac{z}{z-z_{j}}\right) \geq \frac{1}{2}, \quad j=1,2 \ldots, s
$$

This in particular gives for those points $z \in U$, such that $p(z) \neq 0$ and $z \neq z_{j}, j=1,2, \ldots, s$

$$
\begin{align*}
\operatorname{Re}\left(\frac{z p^{\prime}(z)}{p(z)}\right) & =\sum_{j=1}^{s} \operatorname{Re}\left(\frac{z}{z-z_{j}}\right) \\
& \geq \sum_{j=1}^{s} \frac{1}{2} \\
& =\frac{s}{2} \tag{3.12}
\end{align*}
$$

Combining (3.11) and (3.12), we get for $r(z) \neq 0$ and $z \in U$

$$
\operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right) \geq \frac{\left|\left|\mathcal{B}_{2}^{\prime}(z)\right|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|}{2}-\frac{n-s}{2}
$$

4 Proofs of Theorems

Proof of Theorem 2.1. Suppose $r(z) \neq 0$ for $z \in U$, therefore it follows from Lemma 3.1

$$
\operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right) \geq \frac{\left|\left|\mathcal{B}_{2}^{\prime}(z)\right|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|}{2}-\frac{n-s}{2} .
$$

Using the fact that

$$
\left|\frac{z r^{\prime}(z)}{r(z)}\right| \geq \operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right)
$$

we get for $z \in U$,

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{| | \mathcal{B}_{2}^{\prime}(z)\left|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|-(n-s)\right\}|r(z)| \tag{4.1}
\end{equation*}
$$

In case $r(z)=0$, for $z \in U$, inequality (4.1) is trivially satisfied. Hence the result holds for all $z \in U$. To show equality in 4.1), we consider the rational function $r(z)=\mathcal{B}_{1}(z) \mathcal{B}_{2}(z)+\lambda, \lambda \in U$. So that

Therefore, it can be easily seen that equality in (2.1) holds for such type of rational functions. This completes the proof of Theorem 2.1.

Proof of Theorem 2.4. Suppose $r(z) \neq 0$ for $z \in U$. Let $z_{1}, z_{2}, \ldots, z_{s}$ be the zeros of $r(z)$, so that $z_{j}, j=1,2, \ldots, s$ are also zeros of $p(z)$ and we can write

$$
p(z)=\sum_{j=0}^{s} c_{j} z^{j}=c_{s} \prod_{j=1}^{s}\left(z-z_{j}\right), z_{j} \in \mathcal{D}^{-}, j=1,2, \ldots, s
$$

Therefore from (3.11), we have for $z \in U$

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right)=\sum_{j=1}^{s} \operatorname{Re}\left(\frac{z}{z-z_{j}}\right)+\frac{\left|\left|\mathcal{B}_{2}^{\prime}(z)\right|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|}{2}-\frac{n}{2} \tag{4.2}
\end{equation*}
$$

Now for $z_{j} \in \mathcal{D}^{-}$, we have for $z \in U$

$$
\begin{aligned}
\operatorname{Re}\left(\frac{z}{z-z_{j}}\right) & =\operatorname{Re}\left(\frac{e^{i \theta}}{e^{i \theta}-\left|z_{j}\right| e^{i \Phi}}\right) \\
& =\operatorname{Re}\left(\frac{\cos \theta+i \sin \theta}{(\cos \theta+i \sin \theta)-\left|z_{j}\right|(\cos \Phi+i \sin \Phi)}\right) \\
& =\operatorname{Re}\left(\frac{\cos \theta+i \sin \theta}{\left(\cos \theta-\left|z_{j}\right| \cos \Phi\right)+i\left(\sin \theta-\left|z_{j}\right| \sin \Phi\right)}\right) \\
& =\frac{1-\left|z_{j}\right| \cos (\theta-\Phi)}{1+\left|z_{j}\right|^{2}-2\left|z_{j}\right| \cos (\theta-\Phi)} \\
& \geq \frac{1}{1+\left|z_{j}\right|}
\end{aligned}
$$

if

$$
1+\left|z_{j}\right|\left(1-\left|z_{j}\right| \cos (\theta-\Phi)\right) \geq 1+\left|z_{j}\right|^{2}-2\left|z_{j}\right| \cos (\theta-\Phi)
$$

That is, if

$$
\left(\left|z_{j}\right|-\left|z_{j}\right|^{2}\right)(1+\cos (\theta-\Phi)) \geq 0
$$

Equivalently

$$
\left|z_{j}\right| \leq 1
$$

which is true.
Therefore, for $z_{j} \in U \cup \mathcal{D}^{-}$

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z}{z-z_{j}}\right) \geq \frac{1}{1+\left|z_{j}\right|} \tag{4.3}
\end{equation*}
$$

This gives from 4.2

$$
\begin{aligned}
\operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right) & \geq \sum_{j=1}^{s} \frac{1}{1+\left|z_{j}\right|}+\frac{\left|\left|\mathcal{B}_{2}^{\prime}(z)\right|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|}{2}-\frac{n}{2} \\
& =\sum_{j=1}^{s} \frac{1-\left|z_{j}\right|}{2\left(1+\left|z_{j}\right|\right)}+\frac{\left|\left|\mathcal{B}_{2}^{\prime}(z)\right|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|}{2}-\frac{(n-s)}{2} .
\end{aligned}
$$

Using the fact that, if $\left\langle x_{i}\right\rangle_{1}^{\infty}$ is a sequence of real numbers, such that $0 \leq x_{i} \leq 1, i=1,2, \ldots, n$, then

$$
\sum_{i=1}^{n} \frac{1-x_{i}}{1+x_{i}} \geq \frac{1-\prod_{i=1}^{n} x_{i}}{1+\prod_{i=1}^{n} x_{i}}
$$

we get by using Vitali's rule

$$
\begin{align*}
\operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right) & \geq \frac{1}{2}\left\{\frac{1-\prod_{j=1}^{s}\left|z_{j}\right|}{1+\prod_{j=1}^{s}\left|z_{j}\right|}+\left|\left|\mathcal{B}_{2}^{\prime}(z)\right|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|-(n-s)\right\} \\
& =\frac{1}{2}\left\{| | \mathcal{B}_{2}^{\prime}(z)\left|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|-(n-s)+\frac{\left|c_{s}\right|-\left|c_{0}\right|}{\left|c_{s}\right|+\left|c_{0}\right|}\right\} \tag{4.4}
\end{align*}
$$

Finally, using the fact that

$$
\left|\frac{z r^{\prime}(z)}{r(z)}\right| \geq \operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right)
$$

we get for $z \in U$ and $r(z) \neq 0$

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{| | \mathcal{B}_{2}^{\prime}(z)\left|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|-(n-s)+\frac{\left|c_{s}\right|-\left|c_{0}\right|}{\left|c_{s}\right|+\left|c_{0}\right|}\right\}|r(z)| . \tag{4.5}
\end{equation*}
$$

In case $r(z)=0$, for $z \in U$, inequality (4.5) is trivially satisfied. Hence the result holds for all $z \in U$. This completes the proof of Theorem 2.4

Proof of Theorem 2.7. Since $r \in \mathcal{R}_{n}$, therefore

$$
r(z)=\frac{p(z)}{w(z)}
$$

Let $z_{1}, z_{2}, \ldots, z_{s}$ be the zeros of $r(z)$, therefore $z_{j}, j=1,2, \ldots, s$ are also zeros of $p(z)$ and we can write

$$
p(z)=\sum_{j=0}^{s} c_{j} z^{j}=c_{s} \prod_{j=1}^{s}\left(z-z_{j}\right), z_{j} \in \mathcal{D}^{+}, j=1,2, \ldots, s
$$

Proceeding as in Lemma 3.1 and noting that $z_{j} \in \mathcal{D}^{+}$, we have

$$
\begin{aligned}
\operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right) & =\operatorname{Re}\left(\frac{z p^{\prime}(z)}{p(z)}\right)+\frac{\left|\left|\mathcal{B}_{2}^{\prime}(z)\right|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|}{2}-\frac{n}{2} \\
& \leq \sum_{j=1}^{s} \frac{1}{1+\left|z_{j}\right|}+\frac{\left|\left|\mathcal{B}_{2}^{\prime}(z)\right|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|}{2}-\frac{n}{2} \\
& =\frac{1}{2}\left\{\sum_{j=1}^{s} \frac{1-\left|z_{j}\right|}{1+\left|z_{j}\right|}+\left|\left|\mathcal{B}_{2}^{\prime}(z)\right|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|+s-n\right\} .
\end{aligned}
$$

Using the fact that, if $\left\langle x_{i}\right\rangle_{1}^{\infty}$ is a sequence of real numbers, such that $x_{i} \geq 1$, then

$$
\sum_{i=1}^{n} \frac{1-x_{i}}{1+x_{i}} \leq \frac{1-\prod_{i=1}^{n} x_{i}}{1+\prod_{i=1}^{n} x_{i}}
$$

we get

$$
\begin{aligned}
\operatorname{Re}\left(\frac{z r^{\prime}(z)}{r(z)}\right) & \leq \frac{1}{2}\left\{\frac{1-\prod_{j=1}^{s}\left|z_{j}\right|}{1+\prod_{j=1}^{s}\left|z_{j}\right|}+\left|\left|\mathcal{B}_{2}^{\prime}(z)\right|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|+s-n\right\} \\
& =\frac{1}{2}\left\{\frac{\left|c_{s}\right|-\left|c_{0}\right|}{\left|c_{s}\right|+\left|c_{0}\right|}+\left|\left|\mathcal{B}_{2}^{\prime}(z)\right|-\left|\mathcal{B}_{1}^{\prime}(z)\right|\right|+s-n\right\}
\end{aligned}
$$

This completes the proof of Theorem 2.7

5 Acknowledgement

The authors are highly grateful to the referee for his/her useful suggestions.

6 Funding

The second Author acknowledges the financial support given by the Science and Engineering Research Board, Govt of India under Mathematical Research Impact - Centric Sport (MATRICS) Scheme vide SERB Sanction order No: F : MTR / 2017 / 000508, Dated 28-05-2018.

References

[1] P. Borwein and T. Erdélyi, Sharp extensions of Bernstein inequality to rational spaces, Mathematika 43 (1996), no. 2, 413-423.
[2] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513.
[3] X.Li, R.N. Mohapatra and R.S. Rodriguez, Bernstein-type inequalities for rational functions with prescribed poles, J. London Math. Soc. 51 (1995), no. 3, 523-531.
[4] A.C. Schaeffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc. 47 (1941), 565-579.
[5] T. Sheil-Small, Complex polynomials, Cambridge Stud. Adv. Math., Cambridge Univ. press, Cambridge., 2002.
[6] P. Turán, Über die Ableitung von polynomen, Compositio Math. 7 (1939), 89-95.
[7] S.L. Wali and W.M. Shah, Applications of the Schwarz lemma to inequalities for rational functions with prescribed poles, J. Anal. 25 (2017), no. 1, 43-53.

[^0]: *Corresponding author
 Email addresses: uzmanoor@cukashmir.ac.in (Uzma Mubeen Ahanger), wmshah@rediffmail.com (Wali Mohammad Shah), shahlw@yahoo.co.in (Shah Lubna Wali)

