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Abstract

Several studies have been conducted to accurately control the deformation of Shape Memory Alloys (SMAs) as an
actuator, however, due to the non-linear relationship between the change of mechanical structure, including stress and
strain, they have often been associated with a challenge. In the current study, a wire made of intelligent memory alloy
(Nitinol) is used as an actuator of one degree-of-freedom mechanism. In order to observe the operation of the wire
under electrical stimuli, a laboratory set-up is implemented. Our main goal is to accurately control the position of
this nonlinear system with high precision by using optimal control. So, the nonlinear system equations are extracted
and sorted into state-dependent matrices and the State-Dependent Riccati Equation (SDRE) is used to find the
optimal control value. To verify the experiment three inputs including multiple steps, a low-frequency sine wave and
a high-frequency sine wave, are applied to the system. The results, show the good performance of the controller in
sustainability, fast response, and tracking of the desired position with low overshoot.

Keywords: Nonlinear control, Optimal control, Smart material, Shape memory alloys, States dependent riccati
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1 Introduction

Shape memory alloys are a group of smart memory materials that have the ability to return to their previous
shape if exposed to thermal and magnetic stimuli. The unique properties of shape memory alloys were not well known
until 1962 when William Behler and Frederick Wang demonstrated the shape memory effect in a nickel-titanium alloy
(nitinol).

The combination of their high stiffness, high strength, and large recovery strain offers great potential for the
use of SMAs as actuators in diverse applications. These include aircraft wing shape control, automotive, aerospace,
microrobot manipulation, active endoscopy, prosthetic end-effector actuator, micro rotary actuator, micro fiber switch,
micro-electromechanical connectors, smart structures and composites [13].
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The main challenge in the position controlling of shape memory alloys is its non-linearity behavior due to the
hysteresis effect and residual stress during the process of heating and cooling in them. Several methods are proposed
to control the exact position of actuators made of shape memory alloys, including non-linear methods and pulse
width modulation [20]. Elahinia and Ashrafion [6] used the variable structure controller to control the mechanism
of one degree of freedom with a memory alloy wire driver. The pulse width modulation is used to implement the
proportional-derivative controller to stimulate the nitinol wire [11]. Also, in another study the self-tuning fuzzy PID
base controller in which the system parameters were tuned by the fuzzy algorithms is implemented to control the SMA
actuator [8]. In the same relevant ones is offered for position control of SMAs [17].

Considering the advantage of state variable dependent Riccati equation (SDRE) technique in feedback controller
problems as well as non-linear optimal control problems is main reason for which growing rapidly. One of the most
important advantages of optimal control with the help of Riccati equation dependent on state variables is the possibility
of achieving robust control criteria and minimum output error in SMAs base actuators [14, 15, 10]. In the other study
a control algorithm is proposed in which using the inverse hysteresis along with an artificial neural network of radial
basis functions to compensates the feedback [1].

Most of the SMA actuator applications mentioned earlier in this section use SMA wires, because they are easy to
cut, to connect, and to activate electrically. It is common to obtain an inelastic strain in phase by virtue of a bias
spring is connected in series with the SMA wire. Thus, the wire contracts when heated, and it expands with the aid
of the bias spring when cooled. A schematic of a spring-biased SMA wire actuator and the experimental setup are
shown in Fig. 1. In this paper, we propose a complete mathematical model of this spring-biased SMA wire actuator.
This paper uses experimental results obtained by Ma et al. [11] on their experimental setup for spring-biased SMA
wire actuator.

2 Method, materials and equipment

In this research, the accurate control of the position or change of the length of the memory wire. For this purpose,
a mechanism including a spring and a memory alloy wire has been used. Figure 1 shows a simple picture for a better
understanding of this issue. As seen in Figure 1, this equipment includes a nitinol memory alloy wire, rotary encoder,
pole, spring, Arduino board and direct current generator. The used wire has a diameter of 5.0 mm and austenite
transformation temperature of 55◦C. This wire was purchased from Lint Steels and has 45% titanium and 55% nickel.
The used rotary encoder has an accuracy of one tenth of a degree. This encoder is used as a sensor to measure the
length of the wire. The pulley mounted on the encoder has two centimeters diameter. A spring is used to supply
initial tension and stretch the wire. Arduino mega board is used to read the number of encoder pulses and convert
them into digital data. Finally, a direct current generator is used to apply current to the wire. To apply the current
calculated by MATLAB software to the SMAs wire, a driver named L293 is used. Also, the parameters required in
the modeling based on the properties of the wire used in the laboratory equipment are according to Table (2)2, in
which some of them were obtained by trial and error.

One of the important advantages of SDRE optimal control is the possibility of achieving robust control criteria and
minimum output error in memory operators [1]. In this research, the optimal control method using the Riccati equation
depending on the state variables is placed in the category of non-linear controllers. To minimize the objective function,
the appropriate selection of weight matrices Q and R is very important in the speed and accuracy of optimization [2].
Therefore, the response of the actuated system of the setup under different weighting matrices have been measured
and saved to compare them together.

3 SDRE Method

Consider the continuous-time, autonomous, affine nonlinear system which has dynamics

ẋ = f(x) +G(x)u, x(0) = x0 (1)

with state vector x ∈ Rn, control vector u ∈ Rm, f(x) ∈ Rn, f(x) ∈ Rn×m, ϵ and g(x) ̸= 0 for any x. The control
objective is to design control law u which can minimize the following non-quadratic performance index:

I =

∫ tf

t0

xT (t)Q(x)x(t) + uT (t)R(x)u(t)dt (2)
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Figure 1: a) Simple Scheme of SMAs experiment, b) SMA wire test benches setup

where, Q(x) is the state weighting matrix which is semi-positive definite, Q(x) ∈ Rn×n. R(x) is the control weighting
matrix which is positive definite, R(x) ∈ Rm×m. Q(x) and R(x) can be constant or state-dependent. According to
optimal control theory, the optimal control problem described by (1)-(2) can be resolved by Hamilton-Jacobi-Bellman
(HJB) partial differential equation:

∂V T

∂x
f(x) +

1

2
xTQ(x)x− 1

2

∂V T

∂x
g(x)R(x)−1g(x)T

∂V T

∂x
= 0 (3)

with

V (x) = minu
1

2

∫ ∞

0

xT (t)Q(x)x(t) + uT (t)R(x)u(t)dt (4)

where V (x) is supposed to be continuous differentiable with V (x) > 0, V (0) = 0 , such that the optimal control law is:

u(t) = −R(−1)(x)gT (x)
∂V

∂x
(5)

But it’s difficult to solve HJB equation, so that it has difficulty in project application. SDRE method is adopted
in this paper to transform the problem of HJB into the problem of solving state-dependent Riccati equation. For
autonomous and affine nonlinear system given by (1), the origin of state space is the system equilibrium point, f(x)
is continuous differentiable with f(0) = 0 , (1) can be rewritten in state-dependent coefficient (SDC) form,

ẋ = A(x)x+B(x)u (6)

The matrices A(x) and B(x) should be such that the system is controllable and observable for all the values of the
state variables [18, 7].

Then optimal control problem described by (1)-(2) can be transformed into solving SDRE,

AT (x)P (x) + P (x)A(x) +Q(x)− P (x)B(x)R−1(x)BT (x)P (x) = 0 (7)
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and the optimal control law is obtained in the form:

u(t) = −R(−1)(x)BT (x)P (x)x = K(x)x (8)

where P (x) is the unique, symmetric and positive-definite solution of state-dependent Riccati equation (7).

The method of applying optimal control is that first the so-called quasi-linear form or the linear form developed
from the non-linear system is calculated with the help of equation (6). It is assumed that the nonlinear system will
behave as an order of time invariant nonlinear system [15]. Then the optimal value of the Riccati equation is obtained
in each time step. Therefore, the algebraic Riccati equation must be calculated and solved at each time step using
the state-dependent Riccati equation that can be seen in equation (3). The schematic of this process can be seen in
Figure 2.

In this research, the state feedback closed loop system along with an integrator is used to optimally track the
reference input. The equations of the closed loop system are finally defined as follows with the presence of this
integrator:


[
ẋ
ėi

]
=

[
A(x)−B(x)K1 −B(x)K2

DK1 − C DK2

] [
x
ei

]
+

[
0
1

]
r

y =
[
C −DK1 −DK2

] [x
ei

] (9)

Figure 2: Optimal control diagram of SDRE

4 Heat transfer modeling

The desired system receives its thermal energy from electrical current to heat up the SMAs. The thermal energy
balance dictates the temperature of the memory alloy wire where a part of generated heat should be transferred to
the environment. It has been assumed that the internal resistance of the wire for conductive heat transfer is negligible
against displacement heat transfer to the environment [5]. This assumption is valid for heat transfer inside metal
samples [4]. In the end, the temperature T of the memory alloy wire will be obtained using the conduction heat
transfer equation (10) [16].

mċ∆T = Qin−Ah(T − T0)

ρc(πd20L0)/4dT/dt = Ri2 − πd0L0h(T − T0) (10)

where ρ is the mass density of the buffered alloy wire, c is the specific heat of the SMAs wire, d0 is the diameter of the
wire in the initial state, L0 is the initial length of the memory alloy wire, h is the convection heat transfer coefficient,
i is the electric current inside and T0 is the temperature of the surrounding environment.
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In some literature the convection heat transfer coefficient h and specific heat c should be changed with respect to
the SMAs temperature, and should be evaluated by equations (11) and (12) [5].

h =

 a1 − a2T Ṫ ≥ 0

a3 + a4 erf

(
T −m1

n1

)
Ṫ < 0

(11)

c = b1 + b2 erf

(
T −m2

n2

)
(12)

where a1, a2, a3, a4, b1, b2,m1,m2, n1 and n2 are constant parameters.

5 Martensite-temperature residual fraction model

Austenite-martensite transformation in memory alloy materials has residual behavior. As a result, the relationship
between the martensite fraction Rm and the temperature T will show a residual behavior [12]. An example of the
relationship between these two are shown in Figure 4. In some researches, it has been stated that the temperature of
the beginning and end of transformations will change with applied stress [3]. However, this change is insignificant and
can be ignored [5]. Therefore, with an acceptable assumption, MS ,Mf , AS and Af , which are respectively the start
temperature of martensite transformation, the end temperature of martensite transformation, the start temperature
of austenite transformation, and the end temperature of austenite transformation can be assumed to be constant.

Various models were developed to express the hysteresis behavior of memory alloy actuators [19, 18, 7, 9]. In this
study, the relationship between martensite fraction Rm and temperature T is expressed as [5].

h =

 (dRm)/dT =

{
(h−(T ) +Rm − 1)/(h+(T )− h−(T ))g+(T ) Ṫ ≥ 0

(h+(T ) +Rm − 1)/(h−(T ) + h+(T ))g−(T ) Ṫ < 0
Rm(0) = 1

(13)

Where;

Figure 3: Scheme of SMA residual behavior [5]

g+(u) = 1/(σ+

√
2π) ex p

(
−(u− u+)

2/(2σ2
+)

)
(14)

g−(u) = 1/(σ−
√
2π) ex p

(
−(u− u−)

2/(2σ2
−)

)
(15)
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Also,

h+(u) = 1/2
[
1 + erf

(
(u− u+)/(σ+

√
2)
)]

(16)

h−(u) = 1/2
[
1 + erf

(
(u− u−)/(σ−

√
2)
)]

(17)

In relations (14) to (17), µ is the mean and σ2 is the covariance of the residual loops in figure 3.

6 Strain model

The overall strain of the wire depends on factors such as pre-strain or initial strain \epsilon−{0}, spring stiffness
and physical parameters of memory alloy wire materials. However, the approximate relationship between ϵ strain and
martensite fraction Rm has been extracted using the MATLAB curve fitting toolbox [5].

ϵ = ϵ0 + k1Rm + k2R
2
m + k3R

50
m (18)

Where k1, k2 and k3 are constant parameters.

7 Electrical resistance model

In this section, using the variable sub-layer model, the electrical resistance of SMAs wire is modeled as a function of
Rm, T and ϵ. The two phases of austenite and martensite should be considered in parallel [5]. The electrical resistance
of SMAs wire can be evaluated as:

1/R = (πd20)/ (4L0(1 + 2ϵ)) [(1−Rm)/(ρA(T )) +Rm/(ρM (T ))] (19)

Where ρM (T ) and ρA(T ) are specific electrical resistance of austenite and martensite phase respectively, and

ρA(T ) = p1 + p2 exp (−p3(T − Tαmb)) (20)

ρM (T ) = (q1 − q2T ) [1 + erf ((T −m3)/n3)] +

9∑
i=0

αi(T − Tamb)
i (21)

where p1, p2, p3, q1, q2,m3, n3 and αi(i = 1, . . . , 9) are constant. Hence, the state space is developed by considering:

h =

 x1 = Rm

x2 = T − T0

u = i2
(22)

ẋ1 = a11x1 + a12x2 + b11u

ẋ2 = − 4h

d0ρc
x2 +

4R

πd20L0ρc
u (23)

where,

a11 =


(

g+(T )

(h+(T )− h−(T ))

)(
− 4h

d0ρc
x2

)
Ṫ ≥ 0(

g−(T )

(h−(T ) + h+(T ))

)(
− 4h

d0ρc
x2

)
Ṫ < 0

(24)

a12 =


(
(h−(T )− 1)g+(T )

(h+(T )− h−(T ))

)(
− 4h

d0ρc

)
Ṫ ≥ 0(

(h+(T )− 1)g−(T )

(h−(T ) + h+(T ))

)(
− 4h

d0ρc

)
Ṫ < 0

(25)

b11 =


(
(h−(T )− 1)g+(T )

(h+(T )− h−(T ))
+

g+(T )

(h+(T )− h−(T ))
x1

)(
4R

πd20L0ρc

)
Ṫ ≥ 0(

(h+(T )− 1)g−(T )

(h−(T )− h+(T ))
+

g−(T )

(h−(T )− h+(T ))
x1

)(
4R

πd20L0ρc

)
Ṫ < 0

(26)

y = RM = x1, or C = [0 1] (27)

Also for equilibrium points:

E0 = (0 0) (28)
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8 Results

Important indicators to evaluate the performance of a controller are usually based on system stability, the time to
reach the desired output and the amount of energy consumed by the controller. In this section, by stating the results
of the simulation, it has been tried to examine the mentioned cases for the proposed system. In this regard, the desired
system has been investigated under multiple step inputs, sine wave with high and low frequencies. Considering that
the weight matrices Q and R play an important role in the speed and accuracy in the Riccati equation depending on
the state variables. Therefore, in addition to different inputs, at least two different weight matrices have been used
to investigate how they affect the controller’s performance in the multiple step input. These matrices can be seen in
equations (12) and (13).

 Q1 =

1 0 0
0 0 0
0 0 100


R1 = 0.001

(29)

 Q2 =

1 0 0
0 0 0
0 0 40


R2 = 0.005

(30)

In the Q matrix, the values on the diagonal are the weight of the martensite fraction variables, the temperature of the
memory alloy wire, and the system error, respectively. Of course, the controller should more attempt to bring system
back to the equilibrium point. On the other hand, for the R matrix, the values on the diagonal are the weight of the
controlled signal by which larger value the controller will be more cautious in using the control signal. By looking
carefully at the weight matrices, it is found that the first set of matrices in Eq. (29) has a lower control weight,
so its controller is expected to consume more energy and higher output error. This means that the controller with
corresponding weighting matrix will perform better when it comes to the reference tracking.

Figure 4 shows that the performance of system tracking to the reference input for weight matrices Q1 and R1.
According to the figure, except at the beginning the response of the system has a relatively small jump, its performance
in tracking the reference input is acceptable, and by changing it, the system can reach the reference value in less than
two seconds. The reduction of overshoot for the next input steps occurs due to the slow cooling process of the memory
alloy materials. In the lower part of figure 4 it shows that the system error or difference between the reference output
and input at any response time. Also, it is show that except in the initial response time and times when the input is
changed, during the last of response time the error approach to zero. Therefore, this can indicate that the controller
is successful to track the reference input.

To investigate the effect of weight matrices on the performance of the controller in following the reference input,
weight matrices Q2 and R2 have also been used. The result is shown in figure 5. With more precision, it will be clear
in two ways that error signal in figure 5 is bigger than that in figure 4. The difference between the error signal in the
two figures is insignificant, but this insignificant amount is related to the difference in the weight matrices. The reason
why the controller in Figure 4 has less error than in Figure 5 is that, firstly, the selected weight for the total system
error variable is higher in the first case than in the second case. This improves the performance of the controller in
following the input. Second, in the first case, the controlled input weight is lower than the second case. This allows
the first controller to consume more control power. Finally, table 1 has been prepared to compare the amount of
mutation produced for two selected matrices.

According to table 1, the lower the weighing controller matrix R, has the better performance in general. But it
should be noted that by reducing this controlling weight matrix, the system control signal will be increased. This
should be problematic in some systems that have physical limitations. However, by choosing the state dependent
weight matrices, it is possible to decrease both of settling time and overshoot to the desired level.

Table 1: Control performance with different weighting matrix

Settling time (s) Overshoot % Weighting matrix
4.1 5 Q1 and R1

1.2 12 Q2 and R2

In some of the reviewed researches, it has been stated that SMAs actuators perform poorly in responding to high
frequency input. Therefore, in this research, the reaction of the system to sinusoidal inputs with different frequencies
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Figure 4: Simulation of system tracking under multi steps input with Q1 and R1 weighting matrix

is investigated. The results of the system response to these inputs are shown in figures (6) and (7). Weight matrices
Q1 and R1 have been used for both inputs.

It can be clearly seen that except for the fluctuations at the beginning of response, the controller has an acceptable
performance to tracking the two sinusoidal reference inputs after the first few seconds. Of course, it can be seen in
the lower part of figures (12) and (13) that the error is not zero at different times and fluctuates around zero. This is
because the system response to the reference input has a delay of less than one second.

9 Conclusion

The optimal control strategy for a class of affine nonlinear systems with hysteresis based on SDRE is proposed in
this paper. Thus, SDRE method is implemented to deal with the nonlinear systems controllers, and a way to choose
state-dependent weighting matrices Q(x), R(x) is proposed. Also, the simulation is carried out with a SMAs model.
It can be seen from the simulation that, SDRE is effective in designing and implementing optimal controller for the
SMAs, and with proper state-dependent weighting matrices Q(x), R(x), the system can be driven to equilibrium point
quickly. Finally, by using optimal SDRE for tracking case efforts specially in high frequency reference input, the
simulation response has a valuable compatibility and low error as shown in Fig. 7. However, an obvious advantage
offered by SDRE for controller design is that, it can tradeoff between control efforts and performances by choosing
state-dependent weight matrices R(x), Q(x) properly. Consequently, the soft computing method should be used to
find the best weighting matrices for great performance.

Figure 5: Simulation of system tracking under multi steps input with Q2 and R2 weighting matrix
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Figure 6: Simulation of system tracking under low frequency input with Q1 and R1 weighting matrix

Table 2: Parameters used to simulate the mathematical model of shape memory materials

Parameter Value Units Ref. Parameter Value Units Ref.
ρ 6500 kgm−3 T0 24 ◦C
L0 0.2286 m d0 3.814× 10−4 m
a1 165 Wm−20C−1 [11] b1 1400 Jkg−10C−1 [11]
a2 0.5 Wm−20C−1 [11] b2 1000 Jkg−10C−1 [11]
a3 300 Wm−20C−1 [11] m1 48 ◦C [11]
8 a4 150 Wm−20C−1 [11] m2 58 ◦C [11]
n1 10 ◦C [11] n2 0.5 ◦C [11]
µ+ 78.9 ◦C [5] σ+ 11.2 ◦C [5]
µ− 34 ◦C [5] σ− 5.8 ◦C [5]
∆ 0.04425 m [5] k 58.19 Nm−1 [5]
Ea 35917 MPa [5] Em 20480 MPa [5]
ET 826 MPa [5] Ed 16800 MPa [5]
ϵym 0.1 [5] ϵdm 0.15 [5]
k1 0.0204 [5] k2 0.1293 [5]
k3 0.0027 [5] [5]
p1 9.2× 10−7 Ωm [5] q1 3.4× 10−8 Ωm [5]
p2 8.4× 10−7 Ωm [5] q2 9.2× 10−7 Ωm◦C−1 [5]
p3 8.2499 ◦C−1 [5] m3 70 ◦C [5]
n3 30 ◦C [5] [5]
α0 8.7× 10−7 Ωm [5] α1 4.8× 10−8 Ωm◦C−1 [5]
α2 −7.8× 10−9 Ωm◦C−2 [5] α3 7.0× 10−10 Ωm◦C−3 [5]
α4 −3.7× 10−11 Ωm◦C−4 [5] α5 1.2× 10−12 Ωm◦C−5 [5]
α6 −2.5× 10−14 Ωm◦C−6 [5] α7 3.2× 10−16 Ωm◦C−7 [5]
α8 −2.2× 10−18 Ωm◦C−8 [5] α9 6.7× 10−21 Ωm◦C−9 [5]
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Figure 7: Simulation of system tracking under high frequency input with Q2 and R2 weighting matrix
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