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Abstract

We introduce a new fractional derivative which obeys classical properties including linearity, product rule, power rule,
vanishing derivatives for constant functions, chain rule, quotient rule, Rolle’s Theorem and the Mean Value Theorem:

Dα(f)(t) = lim
ϵ→0

f
(
te

1
Γ(1−α) e−α

)
− f(t)

ϵ
,

this definition is comfortable with the classical definition of the Caputo Fractional Operator.
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1 Introduction

The derivative of non-integer order has been an interesting subject of research for several centuries. The idea of
fractional calculus is as old as traditional calculus. The history of fractional calculus dates back to more than 250 years
ago, and the original question which led to the name fractional calculus was: what does dnf

dxn mean if n = 1
2 . Since then,

several mathematicians contributed to the development of fractional calculus: Riemann, Liouville, Caputo, Grunwald,
Letnikov, etc. (see [1], [5]). The authors in [3] and in [5] define new well-behaved simple fractional derivatives called the
conformable fractional derivative depending just on the basic limit definition of the derivative. A. Kajouni introduced
in [4] the new derivative which is defined by:

(Dαf) (t) = lim
h→0

f
(
t+ he(α−1)t

)
− f(t)

h

for t > 0, α ∈ (0, 1). If f is α differentiable in some (0, a), a > 0, and limt→0+ Dα(f)(t) exists, then define:

Dα(f)(0) = lim
t→0+

Dα(f)(t).

Khalil et al. [3] have introduced a new derivative called the conformable fractional derivative of f of order α and
is defined by

Tαf(t) = lim
ε→0

f
(
t+ εt1−α

)
− f(t)

ε
,
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for a function f : [0,+∞) −→ R and 0 < α ≤ 1, and the fractional derivative at 0 is defined as f (α)(0) =
limt→0 +Tα(f)(t). As a consequence of the above definitions, the authors in [3],[5] showed that the α derivatives
obey the product rule and quotient rule and have results similar to Rolle’s theorem and the mean value theorem in
classical calculus. However, the following are some of the setbacks of the other definitions of Dα:

1) Most of the fractional derivatives except Caputo-type, do not satisfy Dα(1) = 0, if α is not a natural number.

2) All fractional derivatives do not satisfy the familiar Product Rule for two functions Dα(fh) = hDα(f)+fDα(h).

3) The fractional derivatives do not have a corresponding ”calculus”.

4) All fractional derivatives do not satisfy the Chain Rule for composite functions Dα(f ◦h)(t) = Dα(f(h))Dαh(t).

5) All fractional derivatives do not satisfy the familiar Quotient Rule for two functions Dα(f) = hDα(f)−fDα(h)
h2

with h ̸= 0.

6) All fractional derivatives do not satisfy the Indices Rule DαDβ(f) = Dα+β(f).

The object of this paper is to present a new, yet an easy definition of fractional derivative. The new definition
seems to be a natural extension of the usual derivative, and it satisfies the properties mentioned above. Our definition
coincides with the known fractional derivatives with the classical definition of the Caputo Fractional Operator.

2 New Fractional Derivative

Definition 2.1. Given a function f : [0,∞) → R and then the conformable fractional derivative of f order is defined
by :

GDαf(t) = lim
ϵ→0

f (n)
(
te

1
Γ(1−α) ϵtn−α

)
− f (n)(t)

ϵ

Proposition 2.2. If a function f : [0,∞) → R is α-differentiable at t > 0 then :

GDαf(t) =
1

Γ(1−α)
t1−α df(t)

dt

Proof .

GDα(f)(t) = lim
ϵ→0

f
(
te

1
Γ(1−α)et et−α

)
− f(t)

ϵ
= lim

ϵ→0

f
(
t
[
1 + 1

Γ(1−α)et
−α + o(ϵ)

])
− f(t)

ϵ

= lim
ϵ→0

f
(
t+ 1

Γ(1−α)ϵt
1−α + o(ϵ)

)
− f(t)

ϵ
= lim

ϵ→0

f(t+ h)− f(t)

h
×

1
Γ(1−α)ϵt

1−α + o(ϵ)

ϵ

with h =
1

Γ(1− α)
ϵt1−α ϵ → 0 ⇒ h → 0

So the result: DGf(t) =
1

Γ(1−α)
t1−α df(t)

dt

Definition 2.3. If f is differentiable at a, so we define:

GDαf(a) = lim
t→a

GDαf(t).

Theorem 2.4. If a function f : [0,+∞) −→ R and α differentiable at t0 > 0, then f is continuous at t0.

Proof . Since f

(
t0e

1
Γ(1−α)

ϵt
−α
0

)
− f (t0) =

f

(
t0e

1
Γ(1−α) ϵt

−α
0

)
−f(t0)

ϵ × ϵ −→ GDαf (t0)× 0 = 0,

lim
ϵ→0

f
(
te

1
Γ(1−α) ϵ−α

0

)
− f (t0) = lim

ϵ→0
f

(
t0 +

1

Γ(1− α)
ϵt1−α

0 + o(ϵ)

)
− f (t0) .

Let h = 1
Γ(1−α)ϵt

1−α
0 . Then, limh→0 [f (t0 + h)− f (t0)] = 0, which implies that limh→0 f (t0 + ε) = f (t0). Hence,

f is continuous at t0. □



A new fractional derivative operator and applications 1279

Theorem 2.5. Let 0 < α ≤ 1 and h, g be α differentiable at a point t > 0. Then,
(1) GDα(ah+ bg) = a

(
GDαh

)
+ b

(
GDαg

)
, for all a, b ∈ R.

(2) GDα(λ) = 0, for all constant functions f(t) = λ.
(3) GDα(hg) = h

(
GDαg

)
+ g

(
GDαh

)
.

(4)
(
GDα(h/g)

)
=
((

GDαh
)
g − h

(
GDαg

))
/g2.

(5)GDα(h ◦ g)(t) = GDα(h)(g(t))GDα(g)(t).

Proof . Parts (1) through (3) follow directly from the definition. We choose to prove (4) and (5) only since they are
crucial. Now, for fixed t > 0 :

GDα

(
h

g

)
= lim

ϵ→0

h
(
te

1
Γ(1−α)

ϵt−α
)

g
(
te

1
Γ(1−α)

ϵt−α
) − h(t)

g(t)

= lim
ϵ→0

h

(
te

1
Γ(1−α)

ϵt−α
)
g(t)−g

(
te

1
Γ(1−α)

ϵt−α
)
h(t)

g

(
te

1
Γ(1−α)

ϵt−α
)
g(t)

ϵ

= lim
ϵ→0

g(t)
(
h
(
te

1
Γ(1−α)

ϵt−α
)
− h(t)

)
− h(t)

(
g
(
te

1
Γ(1−α)

ϵt−α
)
− g(t)

)
g
(
te

1
Γ(1−α)

ϵt−α
)
g(t)ϵ

= lim
ϵ→0

1

g
(
te

1
Γ(1−α)

ϵt−α
)
(
h
(
te

1
Γ(1−α)

ϵt−α
)
− h(t)

)
ϵ

− lim
ϵ→0

h(t)
(
g
(
te

1
Γ(1−α)

ϵt−α
)
− g(t)

)
g
(
te

1
Γ(1−α)

ϵt−α
)
g(t)ϵ

=
1

g(t)
GDα(h)(t)− h(t)

g2(t)
DG(g)(t) =

GDα(h)(t)g(t)− h(t)GDαg(t)

g2(t)
.

Next, we prove (5). For this, suppose u = g(t) is α− differentiable at a point a and y = h(u) is α - differentiable

at a point b = g(a). Let ∆y = h
(
ae

1
Γ(1−α) ϵa

−α
)
− h(a).

Since aeϵa
−α

= a+ ϵa1−α +O
(
ϵ2
)
, we have :

∆y = Dαf(b)∆u+ ϵ1∆u

where ϵ1 → 0 as ∆u → 0. Thus, ϵ1 is a continuous function of ∆u if we define ϵ1 to be 0 when ∆u = 0. Now, if ∆t
is an increment in t and ∆u and ∆y (with the possibility of both being equal to 0) are corresponding increments in u
and y,respectively. We can then write, using the previous equation :

∆u = Dαg(a)∆t+ ϵ2∆t

where ϵ2 → 0 as ∆t → 0, and
∆y = [Dαh(b) + ϵ1] ∆u

= [Dαh(b) + ϵ1] · [Dαg(a) + ϵ2] ∆t

where both ϵ1 → 0 and ϵ2 → 0 as ∆t → 0. Taking ∆t = ϵ, we now have,

Dα(h ◦ g)(t) = lim
ϵ→0

∆y

ϵ

= lim
∆t→0

[Dαh(b) + ϵ1] · [Dαg(a) + ϵ2]

= Dαh(b)Dαg(a) = Dαh(g(a))Dαg(a).

So. the proof is complete. □

Theorem 2.6. Let a, n ∈ R, t ∈ R and α ∈ (0, 1]. Then, we have the following results:
(1) Tα (tp) = p

Γ(1−α) t
p−α for all p ∈ R.

(2) Tα(1) = 0.
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(3) Tα (ect) = ct1−α

Γ(1−α)e
ct, c ∈ R.

(4) Tα(sin bt) =
bx1−α

Γ(1−α) cos bt, b ∈ R.
(5) Tα(cos bt) =

−bt1−α

Γ(1−α) sin bt, b ∈ R.
(6) Tα

(
1
α t

α
)
= 1

Γ(1−α) .

(7) Tα

(
sin 1

α t
α
)
= 1

Γ(1−α) cos
1
α t

α.

(8) Tα

(
cos 1

α t
α
)
= −1

Γ(1−α) sin
1
α t

α.

(9) Tα

(
e

1
α tα
)
= 1

Γ(1−α)e
1
α tα .

Note: One should notice that a function could be α-differentiable at a point but not differentiable, for example,
take f(t) = 2

√
t. Then T 1

2
(f)(0) = limt→0+ T 1

2
(f)(t) = 1, where T 1

2
(f)(t) = 1, for t > 0. But T1(f)(0) does not exist.

This is not the case for the known classical fractional derivatives.

We have verified several results in the case where α ∈ (0, 1). But, what if α ∈ (n, n + 1] for a natural number n?
What would be the definition?

Definition 2.7. For α ∈ (n, n + 1], for some n ∈ N, and f function be an n differentiable at t > 0. Then the α
fractional derivative of f is defined by:

Dαf(t) = lim
ϵ→0

f (n)
(
te

1
Γ(1−α) ϵtn−α

)
− f (n)(t)

ϵ

if the limit exists.

Remark 2.8. As a direct consequence of Definition 2.7, we can show that;

(Dαf) (t) =
1

Γ(1− α)
tα−nf (n+1)(t),

where α ∈ (n, n+ 1] and f is (n+ 1) differentiable at t > 0.

Remark 2.9. The preceding definitions of the Riemann-Liouville and Caputo fractional derivative do not allow
studying the analysis of the differentiable functions α. However, our definition allows to prove the basic theorems of
the analysis such as Rolle’s theorem and the mean value theorem.

Theorem 2.10. (Rolle’s Theorem). Let a > 0 and f : [a, b] → R be a given function that satisfies:
(i) f is continuous on [a, b],
(ii) f is α-differentiable for some α ∈ (0, 1),
(iii) f(a) = f(b).

Then, there exists c ∈ (a, b), such that GDα(f)(c) = 0.

Proof . Since f is continuous on [a, b], and f(a) = f(b), there exists c ∈ (a, b), which is a point of local extrema.
Without loss of the generality, assume c is a point of local minimum. So But, the first limit is non-negative, and the
second limit is non-positive. Hence: GDα(f)(c) = 0. □

Theorem 2.11. (Mean Value Theorem). Let a > 0 and f : [a, b] → R be a function with the properties that:
(1) f is continuous on [a, b],
(2) f is α-differentiable on (a, b) for some α ∈ (0, 1),

Then, there exists c ∈ (a, b), such that Dα(f)(c) = Tα

(
1
α t

α
)
= 1

Γ(1−α)
f(b)−f(a)
1
α bα− 1

aaα .

Proof . Consider the function,

g(x) = f(x)− f(a)− f(b)− f(a)
1
αb

α − 1
αa

α

(
1

α
xα − 1

α
aα
)
.
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Then, the function g satisfies the conditions of the fractional Rolle’s theorem. Hence, there exists c ∈ (a, b), such that
Dα(g)(c) = 0. Using the fact that Tα

(
1
α t

α
)
= 1

Γ(1−α) , the result follows. □

Along the same lines in basic analysis, one can use the present mean value theorem to prove the following propo-
sition.

Proposition 2.12. Let f : [a, b] −→ R be α differentiable for some α ∈]0, 1[.
(i) If f (a) is bounded on [a, b], where a > 0, then f is uniformly continuous on [a, b], and hence, f is bounded.
(ii) If f (a) is bounded on [a, b] and continuous at a, then f is uniformly continuous on [a, b], and hence, f is bounded.

3 Fractional Integral

It is interesting to note that despite the variation in the definitions of fractional derivatives, we can always adapt
the same definition of the fractional integral here from the fact that we got similar results in the Fractional Derivative
operator, Thus we have the following definition.

Definition 3.1. (Fractional Integral). Let a ≥ 0 and t ≥ a. Also, let f be a function defined on (a, t] and α ∈ R.
Then, the α-fractional integral of f is defined by,

Iα
a (f)(t) = Γ(1− α)

∫ t

a

f(x)

x1−α
dx

if the Riemann improper integral exists. It is interesting to observe that the α-fractionalderivative and the α-fractional
integral are inverse of each other as given in the next result.

Theorem 3.2. (Inverse property). Let a ≥ 0, and α ∈ (0, 1). Also, let f be a continuous function such that Iα
a f

exists. Then GDα (Iα
a (f)) (t) = f(t), for t ≥ a

Proof . The proof is a direct consequence of the fundamental theorem of calculus. Since f is continuous, Iα
a f is

clearly differentiable. Therefore, using Proposition 1, we have :

GDα (Iα
a (f)) (t) =

tα−1

Γ(1−α)

d

dt
Iα
a (f)(t),

=
tα−1

Γ(1−α)
Γ(1− α)

d

dt

∫ t

a

f(x)

x1−α
dx

= tα−1 f(t)

t1−α

= f(t).

This completes the proof. □

4 Application

The new definition of fractional derivative facilitate the calculations performed to solve the followings differential
equations:

Example 1.

y(1/2) = −yt
1
2 − t

3
2

y

Let us look for a differentiable solution y which verifies this equation. Since GDαy(t) = 1
Γ(1−α)

t1−α dy(t)
dt , GD

1
2 y(t) =

1

Γ( 1
2 )
t
1
2 y′(t). Thus, the fractional differential equation becomes

1

Γ
(
1
2

) t 1
2 y′(t) =

−y2t
1
2 − t

3
2

y
.
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Then we return to a classical equation
1

Γ
(
1
2

)y′ + y = − t

y
.

Example 2. Consider now the fractional differential equation:

y(1/2) =
y2 + t2y + 2t4

t3et
.

As before, the fractional differential equation gives

1

Γ
(
1
2

) t 1
2 y′(t) =

y2 + t2y + 2t4

t3et
.

So
et

Γ
(
1
2

) t 1
2 y′(t)− y

t
=

y2

t3
+ 2t

and this is a differential equation of Riccati.

Example 3. Consider the following example:

y(1/2) + t1/2y = te−t.

We obtain ety(1/2) + tt/2ety = t and take advantage of the product rule for this fractional derivative (which is not
possible with Caputo fractional derivatives)

(
ety
)(1/2)

= t+

(
1− 1

Γ
(
1
2

)) tt/2ety.

By using the variable changing z(t) = ety(t), similar to Example 1, also we obtained a differential equation of
Riccati.

5 Conclusion

In this paper, we have defined an interesting type of fractional derivative operator comfortable with the classical
definition of the Caputo Fractional Operator. Further, we have investigated some important properties of the new
fractional derivative operator. As an application and justification for our new operator, we illustrate some applications.
Using the new fractional operator gives more advantages in fractional calculus, especially in fractional differential
equations to describe the systems being studied.
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