Int. J. Nonlinear Anal. Appl. 14 (2023) 6, 257–264 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2021.23598.2563

On left ϕ -Connes biprojectivity of dual Banach algebras

Amir Sahami^{a,*}, Eghbal Ghaderi^b, S. Fatemeh Shariati^c, Sayed Mehdi Kazemi Torbaghan^d

^aDepartment of Mathematics, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran

^bDepartment of Mathematics, University of Kurdistan, Pasdaran Boulevard, Sanandaj 66177–15175, P. O. Box 416, Iran

^cDepartment of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran

^dDepartment of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, P.O.Box 94531, Iran

(Communicated by Ali Jabbari)

Abstract

We introduce the notion of left (right) ϕ -Connes biprojective for a dual Banach algebra \mathcal{A} , where ϕ is a non-zero wk^* -continuous multiplicative linear functional on \mathcal{A} . We discuss the relationship of left ϕ -Connes biprojectivity with ϕ -Connes amenability and Connes biprojectivity. For a unital weakly cancellative semigroup S, we show that $\ell^1(S)$ is left ϕ_S -Connes biprojective if and only if S is a finite group, where $\phi_S \in \Delta_{w^*}(\ell^1(S))$. We prove that for a non-empty totally ordered set I with the smallest element, the upper triangular $I \times I$ -matrix algebra $UP(I, \mathcal{A})$ is right ψ_{ϕ} -Connes biprojective if and only if \mathcal{A} is right ϕ -Connes biprojective and I is a singleton, provided that \mathcal{A} has a right identity and $\phi \in \Delta_{w^*}(\mathcal{A})$. Also for a finite set I, if $Z(\mathcal{A}) \cap (\mathcal{A} - \ker \phi) \neq \emptyset$, then the dual Banach algebra $UP(I, \mathcal{A})$ under this new notion forced to have a singleton index.

Keywords: Semigroup algebras, Matrix algebras, Connes amenability, Left ϕ -Connes biprojectivity 2020 MSC: 46H05, 43A20, 46M10

1 Introduction and Preliminaries

Johnson introduced and studied the class of amenable Banach algebras. Let \mathcal{A} be a Banach algebra and let E be a Banach \mathcal{A} -bimodule. A bounded linear map $D: \mathcal{A} \to E$ is called a bounded derivation if $D(ab) = a \cdot D(b) + D(a) \cdot b$ for every $a, b \in \mathcal{A}$. A bounded derivation $D: \mathcal{A} \to E$ is called inner if there exists an element x in E such that $D(a) = a \cdot x - x \cdot a$ for every $a \in \mathcal{A}$. A Banach algebra \mathcal{A} is amenable if for every Banach \mathcal{A} -bimodule E, every bounded derivation $D: \mathcal{A} \to E^*$ is inner. Johnson also showed that a Banach algebra \mathcal{A} is amenable if and only if there exists an element $M \in (\mathcal{A} \otimes_p \mathcal{A})^{**}$ such that $a \cdot M = M \cdot a$ and $\pi^{**}_{\mathcal{A}}(M)a = a$, for each $a \in \mathcal{A}$, where $\pi_{\mathcal{A}}: \mathcal{A} \otimes_p \mathcal{A} \to \mathcal{A}$ is defined by $\pi_{\mathcal{A}}(a \otimes b) = ab$ for every $a, b \in \mathcal{A}$. For more information about amenability, see [11].

The category of dual Banach algebras defined by Runde [9]. For a given Banach algebra \mathcal{A} , a Banach \mathcal{A} -bimodule E is called dual if there is a closed submodule E_* of E^* such that $E = (E_*)^*$. The Banach algebra \mathcal{A} is called dual if it is dual as a Banach \mathcal{A} -bimodule. Equivalently a Banach algebra \mathcal{A} is called dual, if it is a dual Banach space with predual \mathcal{A}_* such that the multiplication in \mathcal{A} is separately wk^* -continuous. A dual Banach \mathcal{A} -bimodule E is normal, if for every $x \in E$ the module maps $\mathcal{A} \longrightarrow E$; $a \mapsto a \cdot x$ and $a \mapsto x \cdot a$ are $wk^* \cdot wk^*$ continuous. The suitable concept

 $^{^{*}}$ Corresponding author

Email addresses: a.sahami@ilam.ac.ir (Amir Sahami), eg.ghaderi@uok.ac.ir (Eghbal Ghaderi), f.shariati@aut.ac.ir (S. Fatemeh Shariati), m.kazemi@ub.ac.ir (Sayed Mehdi Kazemi Torbaghan)

of amenability for the class of dual Banach algebras is Connes amenability. A dual Banach algebra \mathcal{A} is called Connes amenable if for every normal dual Banach \mathcal{A} -bimodule E, every wk^* -continuous derivation $D : \mathcal{A} \longrightarrow E$ is inner. For a given dual Banach algebra \mathcal{A} and a Banach \mathcal{A} -bimodule E, $\sigma wc(E)$ denote the set of all elements $x \in E$ such that the module maps $\mathcal{A} \rightarrow E$; $a \mapsto a \cdot x$ and $a \mapsto x \cdot a$ are wk^* -wk-continuous, one can see that, it is a closed submodule of E, see [9] and [10] for more details. Since $\sigma wc(\mathcal{A}_*) = \mathcal{A}_*$, the adjoint of $\pi_{\mathcal{A}}$ maps \mathcal{A}_* into $\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*$. Therefore, $\pi_{\mathcal{A}}^{**}$ drops to an \mathcal{A} -bimodule morphism $\pi_{\sigma wc} : (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^* \longrightarrow \mathcal{A}$. An element $M \in (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^*$ satisfying

$$a \cdot M = M \cdot a$$
 and $a\pi_{\sigma wc}M = a$ $(a \in \mathcal{A}),$

is called a σwc -virtual diagonal for \mathcal{A} . Runde showed that a dual Banach algebra \mathcal{A} is Connes amenable if and only if there exists a σwc -virtual diagonal for \mathcal{A} [10, Theorem 4.8].

The notion of left ϕ -Connes amenability for a dual Banach algebra \mathcal{A} introduced by Mahmoodi and some characterizations were given [5] and [7], where ϕ is a wk^* -continuous character on \mathcal{A} . We say that \mathcal{A} is left ϕ -Connes amenable if there exists a bounded linear functional m on $\sigma wc(\mathcal{A}^*)$ satisfying $m(\phi) = 1$ and $m(f \cdot a) = \phi(a)m(f)$ for every $a \in \mathcal{A}$ and $f \in \sigma wc(\mathcal{A}^*)$. The set of all non-zero wk^* -continuous characters on \mathcal{A} is denoted by $\Delta_{wk^*}(\mathcal{A})$. We recall that a Banach algebra \mathcal{A} is left ϕ -contractible, where ϕ is a linear multiplication functional on \mathcal{A} , if there exists $m \in \mathcal{A}$ such that $am = \phi(a)m$ and $\phi(m) = 1$, for every $a \in \mathcal{A}$, see [4] and [6]. Ramezanpour showed that the concept of left ϕ -Connes amenability is equivalent with left ϕ -contractible for a dual Banach algebra, where ϕ is a wk^* -continuous character [7, Proposition 2.3].

Helemskii introduced some important homological notions such as biflatness and biprojectivity for Banach algebras [3]. Indeed a Banach algebra \mathcal{A} is called biprojective (biflat), if there exists a bounded \mathcal{A} -bimodule $\rho : \mathcal{A} \to \mathcal{A} \otimes_p \mathcal{A}$ $(\rho : \mathcal{A} \to (\mathcal{A} \otimes_p \mathcal{A})^{**})$ such that ρ is a right inverse for $\pi_{\mathcal{A}}$ ($\pi_{\mathcal{A}}^{**} \circ \rho(a) = i(a)$ for every $a \in \mathcal{A}$, where $i : \mathcal{A} \hookrightarrow \mathcal{A}^{**}$ is the canonical embedding). In fact a Banach algebra \mathcal{A} is amenable if and only if \mathcal{A} is biflat and has a bounded approximate identity [11]. Helemskii also showed that $L^1(G)$ is biflat if and only if G is amenable. It is well-known that the measure algebra $\mathcal{M}(G)$ on a locally compact group G is biprojective if and only if G is finite, for more discussions refer to [11]. Ramsden characterized the biflatness of semigroup algebras associated to a locally finite inverse semigroup [8]. He showed that for a locally finite inverse semigroup S, $\ell^1(S)$ is biflat if and only if each G_p is an amenable group, where p is an idempotent element of S and G_p is a maximal subgroup of S.

The second author with A. Pourabbas introduced some generalizations of Helemskii's concepts like ϕ -biflatness and ϕ -biprojectivity, where ϕ is a character on \mathcal{A} . Indeed a Banach algebra \mathcal{A} is called ϕ -biflat (ϕ -biprojective) if there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \to (\mathcal{A} \otimes_p \mathcal{A})^{**}$ ($\rho : \mathcal{A} \to \mathcal{A} \otimes_p \mathcal{A}$) such that $\tilde{\phi} \circ \pi_{\mathcal{A}}^{**} \circ \rho(a) = \phi(a)$ ($\phi \circ \pi_{\mathcal{A}} \circ \rho(a) = \phi(a)$) for every $a \in \mathcal{A}$. They showed for a locally compact group G, $L^1(G)$ is ϕ -biflat if and only if G is amenable. Furthermore they proved that $\mathcal{A}(G)$ is ϕ -biprojective if and only if G is a discrete group. For more details see [14].

A dual Banach algebra \mathcal{A} is called Connes-biprojective if there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \longrightarrow (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^*$ such that $\pi_{\sigma wc} \circ \rho = id_{\mathcal{A}}$. Shirinkalam and Pourabbas showed that a dual Banach algebra \mathcal{A} is Connes amenable if and only if \mathcal{A} is Connes-biprojective and it has an identity [17]. Motivated by the definitions of ϕ -biprojectivity and Connes-biprojectivity, we introduce a new notion for a class of dual Banach algebras.

Definition 1.1. Let \mathcal{A} be a dual Banach algebra and let $\phi \in \Delta_{w^*}(\mathcal{A})$. Then \mathcal{A} is called left (right) ϕ -Connes biprojective if there exists a bounded linear map $\rho : \mathcal{A} \longrightarrow (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^*$ such that

$$\rho(ab) = \phi(b)\rho(a) = a \cdot \rho(b), \quad (\rho(ab) = \phi(a)\rho(b) = \rho(a) \cdot b)$$

and

$$\phi \circ \pi_{\sigma wc} \circ \rho(a) = \phi(a)$$

for all $a, b \in \mathcal{A}$, respectively.

In this paper, we study the relationship between this new notion with ϕ -Connes amenability and Connes biprojectivity. In section 2, we investigate that under certain conditions like approximate identity for the dual Banach algebras or the existence of an element in $Z(\mathcal{A})$, left ϕ -Connes biprojectivity implies left ϕ -Connes amenability. In section 3, as an application we characterize the left ϕ -Connes biprojectivity of the dual Banach algebras $\ell^1(S)$ with finiteness of the semigroup S, where S is a unital weakly cancellative semigroup. We show that for a given dual Banach algebra \mathcal{A} with a right identity, the $I \times I$ -upper triangular matrices Banach algebra with the usual matrix operations and the finite ℓ^1 -norm, under the right ψ_{ϕ} -Connes biprojectivity is forced to have a singleton index. Also, we show in the case that if I is a finite set and $Z(\mathcal{A}) \cap (\mathcal{A} - \ker \phi) \neq \emptyset$, then the dual Banach algebra $UP(I, \mathcal{A})$ is left ψ_{ϕ} -Connes biprojective if and only if |I| = 1 and \mathcal{A} is left ϕ -Connes biprojective.

2 Left ϕ -Connes biprojectivity

We recall some basic notions. For a Banach algebra \mathcal{A} , the projective tensor product $\mathcal{A} \otimes_p \mathcal{A}$ is a Banach \mathcal{A} -bimodule via the following actions

$$a \cdot (b \otimes c) = ab \otimes c,$$
 $(a \otimes b) \cdot c = a \otimes bc$ $(a, b, c \in \mathcal{A}).$

If X is a Banach A-bimodule, then X^* is also a Banach A-bimodule via the following actions

$$(a \cdot f)(x) = f(x \cdot a),$$
 $(f \cdot a)(x) = f(a \cdot x)$ $(a \in \mathcal{A}, x \in X, f \in X^*).$

By inspiration of methods that used in [12, Theorem 2.6], we state the following Proposition.

Proposition 2.1. Let \mathcal{A} be a Connes biprojective dual Banach algebra and let $\phi \in \Delta_{w^*}(\mathcal{A})$. Then \mathcal{A} is left ϕ -Connes biprojective.

Proof. Suppose that \mathcal{A} is Connes biprojective. Then there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \to (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^*$ such that $\pi_{\sigma wc} \circ \rho = id_{\mathcal{A}}$. We complete the proof in three steps:

Step one: There exist a bounded linear map $\Gamma : (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^* \to (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^*$ such that $a \cdot \Gamma(m) = \Gamma(a \cdot m)$ and $\phi(a)\Gamma(m) = \Gamma(m \cdot a)$, for every $m \in (\sigma wc(\mathcal{A} \otimes \mathcal{A})^*)^*$ and $a \in \mathcal{A}$. To see this, choose a_0 in \mathcal{A} such that $\phi(a_0) = 1$. Define $\theta : \mathcal{A} \otimes_p \mathcal{A} \to \mathcal{A} \otimes_p \mathcal{A}$ by $\theta(a \otimes b) = \phi(b)(a \otimes a_0)$ for every $a, b \in \mathcal{A}$. It is clear that θ is a bounded linear map. One can see that

$$\theta(c \cdot (a \otimes b)) = \phi(b)ca \otimes a_0 = c \cdot \theta(a \otimes b) \quad (a, b, c \in \mathcal{A})$$

and

$$\theta((a \otimes b) \cdot c) = \theta(a \otimes bc) = \phi(bc)a \otimes a_0 = \phi(c)\phi(b)a \otimes a_0 = \phi(c)\theta(a \otimes b) \quad (a, b, c \in \mathcal{A}).$$

So we have

$$a \cdot \theta(u) = \theta(a \cdot u)$$
 and $\phi(a)\theta(u) = \theta(u \cdot a)$ $(a \in \mathcal{A}, u \in \mathcal{A} \otimes_p \mathcal{A})$ (2.1)

and also

$$a \cdot \theta^*(f) = \phi(a)\theta^*(f)$$
 and $\theta^*(f) \cdot a = \theta^*(f \cdot a)$ $(a \in \mathcal{A}, f \in (\mathcal{A} \otimes_p \mathcal{A})^*).$

It follows that $\theta^*(\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*) \subseteq \sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*$. Then define

$$\Gamma := (\theta^*|_{\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*})^* : (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^* \to (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^*.$$

Then Γ is a bounded linear map. We know that there exists a continuous \mathcal{A} -bimodule map $i : \mathcal{A} \hat{\otimes} \mathcal{A} \longrightarrow (\sigma \omega c(\mathcal{A} \hat{\otimes} \mathcal{A})^*)^*$ which has a wk^* -dense range. We write \bar{u} instead of $i(u) = \hat{u}|_{\sigma wc(\mathcal{A} \hat{\otimes} \mathcal{A})^*}$ for every $u \in \mathcal{A} \hat{\otimes} \mathcal{A}$. For every $m \in (\sigma wc(\mathcal{A} \hat{\otimes} \mathcal{A})^*)^*$, there exists a net (u_α) in $\mathcal{A} \hat{\otimes} \mathcal{A}$ such that $m = wk^*$ - $\lim_{\alpha} \bar{u}_{\alpha}$. Since $\Gamma(\bar{u}) = \widehat{\theta(u)}|_{\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*}$ for every $u \in \mathcal{A} \hat{\otimes} \mathcal{A}$ and Γ is wk^* -continuous, (2.1) implies that

$$a \cdot \Gamma(m) = \Gamma(a \cdot m)$$
 and $\phi(a)\Gamma(m) = \Gamma(m \cdot a),$ (2.2)

for every $m \in (\sigma \omega c(\mathcal{A} \hat{\otimes} \mathcal{A})^*)^*$ and $a \in \mathcal{A}$.

Step two: We show that $\phi \circ \pi_{\sigma wc} \circ \Gamma = \phi \circ \pi_{\sigma wc}$. For every $a, b \in \mathcal{A}$

$$\phi \circ \pi_{\mathcal{A}} \circ \theta(a \otimes b) = \phi \circ \pi_{\mathcal{A}}(\phi(b)a \otimes a_0) = \phi(b)\phi(a) = \phi \circ \pi_{\mathcal{A}}(a \otimes b).$$

So $\phi \circ \pi_{\mathcal{A}} \circ \theta = \phi \circ \pi_{\mathcal{A}}$. For every $m \in (\sigma \omega c(\mathcal{A} \hat{\otimes} \mathcal{A})^*)^*$, there exists a net (u_α) in $\mathcal{A} \hat{\otimes} \mathcal{A}$ such that $m = wk^* - \lim_{\alpha} \bar{u}_\alpha$. Since $\pi_{\sigma wc}$ and Γ are wk^* -continuous map,

$$\phi \circ \pi_{\sigma wc} \circ \Gamma(m) = \lim_{\alpha} \phi \circ \pi_{\sigma wc} \circ \Gamma(\bar{u}_{\alpha}) = \lim_{\alpha} \phi \circ \pi_{\sigma wc} \circ \theta(u_{\alpha})|_{\sigma wc(\mathcal{A} \otimes_{p} \mathcal{A})^{*}}$$
$$= \lim_{\alpha} \phi \circ \pi_{\mathcal{A}} \circ \theta(u_{\alpha}) = \lim_{\alpha} \phi \circ \pi_{\mathcal{A}}(u_{\alpha}) = \lim_{\alpha} \phi \circ \pi_{\sigma wc}(\bar{u}_{\alpha})$$
$$= \phi \circ \pi_{\sigma wc}(wk^{*} - \lim_{\alpha} \bar{u}_{\alpha}) = \phi \circ \pi_{\sigma wc}(m).$$

Step three: We show that \mathcal{A} is left ϕ -Connes biprojective. To see this, define $\eta := \Gamma \circ \rho : \mathcal{A} \to (\sigma \omega c (\mathcal{A} \otimes \mathcal{A})^*)^*$. Clearly η is a bounded linear map. (2.2) implies that

$$a \cdot \eta(b) = \eta(ab)$$
 and $\phi(b)\eta(a) = \eta(ab)$ $(a, b \in \mathcal{A})$.

According to step two,

$$\phi \circ \pi_{\sigma wc} \circ \eta(a) = \phi \circ \pi_{\sigma wc} \circ \Gamma \circ \rho(a) = \phi \circ \pi_{\sigma wc} \circ \rho(a) = \phi(a) \quad (a \in \mathcal{A}).$$

Example 2.2. Let \mathcal{A} be a dual Banach space and dim $\mathcal{A} \geq 2$. Suppose that ϕ is a non-zero wk^* -continuous functional on \mathcal{A} with $\|\phi\| \leq 1$. Define a product on \mathcal{A} with $ab = \phi(b)a$, for all $a, b \in \mathcal{A}$. Since ϕ is wk^* -continuous, the multiplication in \mathcal{A} is separately wk^* -continuous. Then \mathcal{A} be a dual Banach algebra [9, Exercise 4.4.1]. Pick x_0 in \mathcal{A} such that $\phi(x_0) = 1$. Define $\rho : \mathcal{A} \to (\sigma wc(\mathcal{A} \otimes \mathcal{A})^*)^*$ by $\rho(a) = \widehat{a \otimes x_0}|_{\sigma wc(\mathcal{A} \otimes \mathcal{A})^*}$ for every $a \in \mathcal{A}$. It is clear that ρ is a bounded \mathcal{A} -bimodule morphism such that $\pi_{\sigma wc} \circ \rho = id_{\mathcal{A}}$. So \mathcal{A} is Connes biprojective. Apply Proposition 2.1, \mathcal{A} is left ϕ -Connes biprojective.

Proposition 2.3. Suppose that \mathcal{A} is a dual Banach algebra and $\phi \in \Delta_{w^*}(\mathcal{A})$. Then the left ϕ -Connes amenability of \mathcal{A} implies that \mathcal{A} is left ϕ -Connes biprojective.

Proof. Let \mathcal{A} be left ϕ -Connes amenable. Then using [7, Proposition 2.3], there exists $m_0 \in \mathcal{A}$ such that $am_0 = \phi(a)m_0$ and $\phi(m_0) = 1$ for all $a \in \mathcal{A}$. Define $M := m_0 \otimes m_0$ and we have $a \cdot M = \phi(a)M$ and $\phi \circ \pi_{\mathcal{A}}(M) = \phi(m_0^2) = \phi(m_0)^2 = 1$. Since $\mathcal{A} \otimes_p \mathcal{A}$ embeds in $(\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^*$, consider M as an element in $(\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^*$. The mapping $\rho : \mathcal{A} \longrightarrow (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^*$ defined by $\rho(a) = a \cdot M$. It is clear that $\rho(ab) = a \cdot \rho(b) = \phi(b)\rho(a)$ for all $a, b \in \mathcal{A}$. Also, we have

$$\begin{split} \phi \circ \pi_{\sigma wc} \circ \rho(a) &= \phi \circ \pi_{\sigma wc} (a \cdot m_0 \otimes m_0) \\ &= \phi(a m_0^2) \\ &= \phi(a) \end{split}$$

 \Box In the following example, we show that there exists a dual Banach algebra which is left ϕ -Connes biprojective but it is not left ϕ -Connes amenable.

Example 2.4. Let $\mathcal{A} = \begin{pmatrix} 0 & \mathbb{C} \\ 0 & \mathbb{C} \end{pmatrix}$ be an upper triangular Banach algebra on \mathbb{C} . Then it is clear that the map $\phi : \mathcal{A} \longrightarrow \mathbb{C}$ defined by $\phi(\begin{pmatrix} 0 & a_{12} \\ 0 & a_{22} \end{pmatrix}) = a_{22}$ is a wk^* -continuous character. Put $a_0 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$. So $\phi(a_0) = 1$. Define $\rho : \mathcal{A} \longrightarrow (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^*$ by $\rho(a) = a \otimes a_0$ for each $a \in \mathcal{A}$. It is easy to see that

$$\rho(ab) = \phi(b)\rho(a) = a \cdot \rho(b), \quad \phi \circ \pi_{\sigma wc} \circ \rho(a) = \phi(a), \qquad (a, b \in \mathcal{A}).$$

So \mathcal{A} is left ϕ -Connes biprojective. Now we claim that \mathcal{A} is not left ϕ -Connes amenable. We assume in contradiction that \mathcal{A} is left ϕ -Connes amenable. So by [7, Proposition 2.3] which result, there exists $m = \begin{pmatrix} 0 & m_{12} \\ 0 & m_{22} \end{pmatrix} \in \mathcal{A}$ such that

$$am = \phi(a)m, \quad \phi(m) = m_{22} = 1, \qquad (a \in \mathcal{A})$$

Let $a = \begin{pmatrix} 0 & a_{12} \\ 0 & a_{22} \end{pmatrix}$ be an arbitrary element of \mathcal{A} . Put a at above equation, we have $a_{12}m_{22} = a_{22}m_{12}$ for all $a_{12}, a_{22} \in \mathcal{A}$. Suppose that $a_{12} = 1$ and $a_{22} = 0$. It implies that $m_{22} = 0$ and it is a contradiction.

We show that under certain conditions the left ϕ -Connes biprojectivity of \mathcal{A} implies that \mathcal{A} is left ϕ -Connes amenable:

Theorem 2.5. Let \mathcal{A} be a dual Banach algebra and let $\phi \in \Delta_{w^*}(\mathcal{A})$ such that \mathcal{A} has left approximate identity. If \mathcal{A} is left ϕ -Connes biprojective, then \mathcal{A} is left ϕ -Connes amenable.

Proof. Let \mathcal{A} be left ϕ -Connes biprojective. Then there exists a bounded linear map $\rho : \mathcal{A} \longrightarrow (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^*$ such that $\rho(ab) = \phi(b)\rho(a) = a \cdot \rho(b)$ and $\phi \circ \pi_{\sigma wc} \circ \rho(a) = \phi(a)$ for every $a, b \in \mathcal{A}$. By using the main ideas in [12, Proposition 2.4], we complete the proof in three steps:

Step one: There exists a bounded left \mathcal{A} -bimodule morphism $\zeta : \mathcal{A} \to (\sigma wc(\mathcal{A} \otimes_p \frac{\mathcal{A}}{\ker \phi})^*)^*$ which $\zeta(l) = 0$, for every $l \in \ker \phi$. To see this, put $\tau := id_{\mathcal{A}} \otimes q : \mathcal{A} \otimes_p \mathcal{A} \to \mathcal{A} \otimes_p \frac{\mathcal{A}}{\ker \phi}$, where $q : \mathcal{A} \to \frac{\mathcal{A}}{\ker \phi}$ is a quotient map. Since τ is

a bounded \mathcal{A} -bimodule morphism, $\tau^*(\sigma wc(\mathcal{A} \otimes_p \frac{\mathcal{A}}{\ker \phi})^*) \subseteq \sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*$. Now set $\zeta := (\tau^*|_{\sigma wc(\mathcal{A} \otimes_p \frac{\mathcal{A}}{\ker \phi})^*})^* \circ \rho$. So $\zeta : \mathcal{A} \to (\sigma wc(\mathcal{A} \otimes_p \frac{\mathcal{A}}{\ker \phi})^*)^*$ is a bounded left \mathcal{A} -module morphism such that $\zeta(ab) = \phi(b)a$ for every $a, b \in \mathcal{A}$. We have

$$\zeta(l) = \lim_{\alpha} \zeta(e_{\alpha}l) = \phi(l) \lim_{\alpha} \zeta(e_{\alpha}) = 0 \qquad (l \in \ker \phi)$$

where (e_{α}) is a left approximate identity for \mathcal{A} .

Step two: There exists a bounded left \mathcal{A} -module morphism $\theta : \frac{\mathcal{A}}{\ker \phi} \to \mathcal{A}$ such that $\phi \circ \theta(a + \ker \phi) = \phi(a)$ for every $a \in \mathcal{A}$. To see this, in the previous step we showed that $\zeta|_{\ker \phi} = 0$. Thus there exists a well-defined map $\bar{\zeta} : \frac{\mathcal{A}}{\ker \phi} \to (\sigma wc(\mathcal{A} \otimes_p \frac{\mathcal{A}}{\ker \phi})^*)^*$ which is defined by $\bar{\zeta}(a + \ker \phi) = \zeta(a)$ for every $a \in \mathcal{A}$. Consider a left \mathcal{A} -module morphism $id_{\mathcal{A}} \otimes \tilde{\phi} : \mathcal{A} \otimes_p \frac{\mathcal{A}}{\ker \phi} \to \mathcal{A}$ defined by $id_{\mathcal{A}} \otimes \tilde{\phi}(a \otimes (b + \ker \phi)) = \phi(b)a$, where $\tilde{\phi}$ is a character on $\frac{\mathcal{A}}{\ker \phi}$ given by $\tilde{\phi}(a + \ker \phi) = \phi(a)$ for every $a \in \mathcal{A}$. Respect with dual module action we have

$$(id_{\mathcal{A}} \otimes \tilde{\phi})^*(f) \cdot a = (id_{\mathcal{A}} \otimes \tilde{\phi})^*(f \cdot a), \quad a \cdot (id_{\mathcal{A}} \otimes \tilde{\phi})^*(f) = \phi(a)(id_{\mathcal{A}} \otimes \tilde{\phi})^*(f) \quad (a \in \mathcal{A}, f \in \mathcal{A}^*).$$
(2.3)

Since ϕ is wk^* -continuous, (2.3) implies that $(id_{\mathcal{A}} \otimes \tilde{\phi})^*(\mathcal{A}_*) = (id_{\mathcal{A}} \otimes \tilde{\phi})^*(\sigma wc(\mathcal{A}_*)) \subseteq \sigma wc(\mathcal{A} \otimes_p \frac{\mathcal{A}}{\ker \phi})^*$. Set $\theta = ((id_{\mathcal{A}} \otimes \tilde{\phi})^*|_{\mathcal{A}_*})^* \circ \bar{\zeta}$. Then $\theta : \frac{\mathcal{A}}{\ker \phi} \to \mathcal{A}$ is a bounded left \mathcal{A} -module morphism. We have

$$\begin{split} \phi \circ (id_{\mathcal{A}} \otimes \widehat{\phi}) \circ (id_{\mathcal{A}} \otimes q)(b \otimes c) &= \phi \circ (id_{\mathcal{A}} \otimes \widehat{\phi})(b \otimes c + \ker \phi) \\ &= \varphi(b\phi(c)) = \phi(b)\phi(c) = \phi(bc) = \phi \circ \pi_{\mathcal{A}}(b \otimes c) \quad (b, c \in \mathcal{A}). \end{split}$$

Therefore $\phi \circ (id_{\mathcal{A}} \otimes \tilde{\phi}) \circ (id_{\mathcal{A}} \otimes q) = \phi \circ \pi_{\mathcal{A}}.$

Now for every $a \in \mathcal{A}$, there exists a net (u_{α}) in $\mathcal{A} \otimes \mathcal{A}$ such that $\rho(a) = wk^* - \lim_{\alpha} \hat{u}_{\alpha}|_{\sigma wc(\mathcal{A} \otimes \mathcal{A})^*}$. Since ϕ is wk^* -continuous,

$$\begin{aligned} \phi \circ \theta(a + \ker \phi) &= \phi \circ \left((id_{\mathcal{A}} \otimes \phi)^* |_{\mathcal{A}_*} \right)^* \circ \bar{\zeta}(a + \ker \phi) \\ &= \phi \circ \left((id_{\mathcal{A}} \otimes \tilde{\phi})^* |_{\mathcal{A}_*} \right)^* \circ (\tau^* |_{\sigma wc(\mathcal{A} \otimes_p \frac{\mathcal{A}}{\ker \phi})^*})^* \circ \rho(a) \\ &= \phi(wk^* - \lim_{\alpha} \left((id_{\mathcal{A}} \otimes \tilde{\phi})^* |_{\mathcal{A}_*} \right)^* \circ (\tau^* |_{\sigma wc(\mathcal{A} \otimes_p \frac{\mathcal{A}}{\ker \phi})^*})^* (\hat{u}_{\alpha} |_{\sigma wc(\mathcal{A} \otimes \mathcal{A})^*})) \\ &= \lim_{\alpha} \phi \circ id_{\mathcal{A}} \otimes \tilde{\phi} \circ id_{\mathcal{A}} \otimes q(u_{\alpha}) = \lim_{\alpha} \phi \circ \pi_{\mathcal{A}}(u_{\alpha}) \quad (\text{in } (\sigma wc(\mathcal{A} \otimes \mathcal{A})^*)^*). \end{aligned}$$

$$(2.4)$$

Since for every $u \in \mathcal{A} \hat{\otimes} \mathcal{A}$, $\pi_{\sigma wc}(\hat{u}_{\alpha}|_{\sigma wc(\mathcal{A} \hat{\otimes} \mathcal{A})^*}) = \pi_{\mathcal{A}}(u)$, by (2.4)

$$\phi \circ \theta(a + \ker \phi) = \lim_{\alpha} \phi \circ \pi_{\sigma wc}(\hat{u}_{\alpha}|_{\sigma wc(\mathcal{A}\hat{\otimes}\mathcal{A})^*}) = \phi(wk^* - \lim_{\alpha} \pi_{\sigma wc}(\hat{u}_{\alpha}|_{\sigma wc(\mathcal{A}\hat{\otimes}\mathcal{A})^*}))$$
$$= \phi \circ \pi_{\sigma wc}(wk^* - \lim_{\alpha} u_{\alpha}|_{\sigma wc(\mathcal{A}\hat{\otimes}\mathcal{A})^*}) = \phi \circ \pi_{\sigma wc} \circ \rho(a) = \phi(a) \quad (a \in \mathcal{A}).$$

Step three: We prove that \mathcal{A} is left ϕ -Connes amenable. Choose $x_0 \in \mathcal{A}$ such that $\phi(x_0) = 1$. Let $m = \theta(x_0 + \ker \phi)$. Then

$$am = a\theta(x_0 + \ker \phi) = \theta(ax_0 + \ker \phi) = \theta(\phi(a)x_0 + \ker \phi) = \phi(a)m \qquad (a \in \mathcal{A}).$$

According to step two,

$$\phi(m) = \phi \circ \theta(x_0 + \ker \phi) = \phi(x_0) = 1.$$

Using [7, Proposition 2.3], \mathcal{A} is left ϕ -Connes amenable. \Box

Example 2.6. Let \mathcal{A} be a dual Banach space. Suppose that ϕ is a non-zero wk^* -continuous functional on \mathcal{A} with $\|\phi\| \leq 1$. Define a product on \mathcal{A} with $ab = \phi(b)a$, for all $a, b \in \mathcal{A}$ as the same in Example 2.2. Then \mathcal{A} be a dual Banach algebra. It is known that its unitization $\mathcal{A}^{\#} = \mathcal{A} \oplus \mathbb{C}$ is a dual Banach algebra with respect to $\mathcal{A}_* \oplus \mathbb{C}$. Consider the character $\psi : \mathcal{A}^{\#} \to \mathbb{C}$ defined by $\psi(a, \lambda) = \phi(a) + \lambda$. Since ϕ is wk^* -continuous, ψ is wk^* -continuous. We claim that $\mathcal{A}^{\#}$ is left ψ -Connes biprojective if and only if dim $\mathcal{A} = 1$. Let $\mathcal{A}^{\#}$ be a left ψ -Connes biprojective dual Banach algebra. Since $\mathcal{A}^{\#}$ is unital, the argument as in Theorem 2.5 implies that $\mathcal{A}^{\#}$ is left ψ -contractible. Then there exists an element $m = (a, \lambda)$ in $\mathcal{A}^{\#}$ such that $xm = \psi(x)m$ and $\psi(m) = 1$ for every $x \in \mathcal{A}^{\#}$. So $x = \psi(m)x = \psi(x)m$. For every $b \in \mathcal{A}$, let x = (b, 0). It is easy to see that $b = \phi(b)a$. Thus dim $(\mathcal{A}) = 1$.

Conversely if $\dim(\mathcal{A}) = 1$, then $\mathcal{A} \cong \mathbb{C}$ as a Banach algebra. It is obvious that $\mathcal{A}^{\#}$ is left ψ -Connes biprojective.

We denote
$$Z(\mathcal{A}) = \{a_0 \in A | aa_0 = a_0 a, \forall a \in A\}.$$

Lemma 2.7. Let \mathcal{A} be a dual Banach algebra with $\phi \in \Delta_{w^*}(\mathcal{A})$ and also let a_0 be an element of $Z(\mathcal{A})$ such that $\phi(a_0) \neq 0$. If \mathcal{A} is left ϕ -Connes biprojective, then \mathcal{A} is left ϕ -Connes amenable.

Proof. Suppose that $\rho : \mathcal{A} \longrightarrow (\sigma wc(\mathcal{A} \otimes_p \mathcal{A})^*)^*$ is a bounded linear map, $\rho(ab) = \phi(b)\rho(a) = a\rho(b)$ and $\phi \circ \pi_{\sigma wc} \circ \rho(a) = \phi(a)$ for all $a, b \in \mathcal{A}$. Without loss of generality we may assume that $\phi(a_0) = 1$. Since $a_0 \in Z(\mathcal{A})$, we have

$$a \cdot \rho(a_0) = \rho(aa_0) = \rho(a_0a) = \phi(a)\rho(a_0).$$

Define $M := \pi_{\sigma wc}(\rho(a_0)) \in \mathcal{A}$. The map $\pi_{\sigma wc}$ is an \mathcal{A} -bimodule morphism, so we have

$$aM = a\pi_{\sigma wc}(\rho(a_0)) = \pi_{\sigma wc}(a \cdot \rho(a_0)) = \phi(a)M,$$

and

$$\phi(M) = \phi \circ \pi_{\sigma wc} \circ \rho(a_0) = \phi(a_0) = 1.$$

Apply [7, Proposition 2.3] follows that \mathcal{A} is left ϕ -Connes amenable. \Box

3 Applications

Recall that a discrete semigroup S is weakly left (respectively, right) cancellative if $s^{-1}F = \{x \in S : sx \in F\}$ (respectively, $Fs^{-1} = \{x \in S : xs \in F\}$) is finite for each $s \in S$ and each finite subset F of S. Also S is called weakly cancellative if it is both weakly left cancellative and weakly right cancellative [1, Definition 3.14]. Note that $\ell^1(S)$ is a dual Banach algebra if and only if S is weakly cancellative [1, Theorem 4.6].

For the semigroup algebra $\ell^1(S)$ related to any discrete semigroup S, there exists a multiplicative linear functional (character) on $\ell^1(S)$. In fact the augmentation character on $\ell^1(S)$ defined by

$$\sum_{s \in S} \alpha_s \delta_s \mapsto \sum_{s \in S} \alpha_s,$$

and it is denoted by ϕ_{∞} or ϕ_S .

Proposition 3.1. Let S be a unital weakly cancellative semigroup and let $\phi_S \in \Delta_{w^*}(\ell^1(S))$. Then $\ell^1(S)$ is left ϕ_S -Connes biprojective if and only if S is a finite group.

Proof. Suppose that $e \in S$ is unit. Then δ_e is a unit for $\ell^1(S)$. If $\ell^1(S)$ is left ϕ_S -Connes biprojective, then Theorem 2.5 implies that $\ell^1(S)$ is left ϕ_S -contractible. Thus there exists $m \in \ell^1(S)$ such that $am = \phi_S(a)m$ and $\phi_S(m) = 1$ for every $a \in \mathcal{A}$. By [2, Theorem 4.3], S is a group. Also [6, Theorem 6.1] implies that S is compact. Since S is discrete, S must be in the

Conversely is clear. \Box

Remark 3.2. Consider $S = \mathbb{N}$ with the binary operation $(m, n) \mapsto \max\{m, n\}$, where m and n are in \mathbb{N} and it is denoted by \mathbb{N}_{\vee} . Then \mathbb{N}_{\vee} is a weakly cancellative semigroup [1, Example 3.36]. The augmentation character on $\ell^1(\mathbb{N}_{\vee})$ is not wk^* -continuous; to see this, by contrary suppose that the augmentation character is wk^* -continuous. Using [14, Example 5.5; Proposition 2.2], follows that $\ell^1(\mathbb{N}_{\vee})$ is left ϕ_{∞} -amenable. So $\ell^1(\mathbb{N}_{\vee})$ is left ϕ_{∞} -Connes amenable [7, Proposition 2.3]. Hence similar to the proof of previous Proposition \mathbb{N}_{\vee} is finite, which is a contradiction.

Let \mathcal{A} be a dual Banach algebra and let I be a totally ordered set. Then the set of all $I \times I$ -upper triangular matrices with the usual matrix operations and the finite ℓ^1 -norm $\| [a_{i,j}]_{i,j\in I} \| = \sum_{i,j\in I} \| a_{i,j} \| < \infty$ becomes a dual

Banach algebra [15] and it is denoted by

$$UP(I, \mathcal{A}) = \left\{ \left[a_{i,j} \right]_{i,j \in I}; a_{i,j} \in A \text{ and } a_{i,j} = 0 \text{ for every } i > j \right\}.$$

Let \mathcal{A} be a dual Banach algebra and let $\phi \in \Delta_{wk^*}(\mathcal{A})$. Then define $\psi_{\phi} : UP(I, \mathcal{A}) \longrightarrow \mathbb{C}$ by $\psi_{\phi}((a_{ij})) = \phi(a_{i_0i_0})$, where I be a totally ordered set which has a smallest element. One can see that ψ_{ϕ} is a wk^* -continuous character on $UP(I, \mathcal{A})$. Suppose that (a_{α}) is a net in $UP(I, \mathcal{A})$ such that $a_{\alpha} \xrightarrow{wk^*} b$. Consider $F \in UP(I, \mathcal{A})_*$ which all of entries are zero except (i_0, i_0) -th. It follows that $a_{i_0, i_0}^{\alpha}(F_{i_0, i_0}) \rightarrow b_{i_0, i_0}(F_{i_0, i_0})$, where F_{i_0, i_0} is an arbitrary element in \mathcal{A}_* . So $a_{i_0, i_0}^{\alpha} \xrightarrow{wk^*} b_{i_0, i_0}$. Since ϕ is wk^* -continuous, $\psi_{\phi}(a_{\alpha}) \longrightarrow \psi_{\phi}(b)$. **Theorem 3.3.** Let \mathcal{A} be a dual Banach algebra with a right identity and $\phi \in \Delta_{wk^*}(\mathcal{A})$ and also let I be a totally ordered set which has a smallest element. Then $UP(I, \mathcal{A})$ is right ψ_{ϕ} -Connes biprojective if and only if |I| = 1 and \mathcal{A} is right ϕ -Connes biprojective.

Proof. Suppose that $UP(I, \mathcal{A})$ is right ψ_{ϕ} -Connes biprojective. Since \mathcal{A} has a right identity, $UP(I, \mathcal{A})$ has a right approximate identity [13, Lemma 5.1]. Similar with Theorem 2.5, $UP(I, \mathcal{A})$ is right ψ_{ϕ} -contractible. So there exist m in $UP(I, \mathcal{A})$ such that $ma = \psi_{\phi}(a)m$ and $\psi_{\phi}(m) = \phi(m_{i_0i_0}) = 1$ for every $a \in UP(I, \mathcal{A})$. Suppose that I has at least two elements. Let a be a matrix in $UP(I, \mathcal{A})$ which (i_0, j) -th entry is e and others are zero, where $j \neq i_0$ and e is a right identity for \mathcal{A} . So $ma = \psi_{\phi}(a)m = 0$. It follows that $m_{i_0i_0} = 0$, which is a contradiction with $\phi(m_{i_0i_0}) = 1$. Converse is clear. \Box Let \mathcal{A} be a dual Banach algebra and let $\phi \in \Delta_{wk^*}(\mathcal{A})$. Consider I as a finite set $\{i_1, i_2, \ldots, i_n\}$. Define $\psi_{\phi} : UP(I, \mathcal{A}) \longrightarrow \mathbb{C}$ by $\psi_{\phi}((a_{i_j})) = \phi(a_{i_ni_n})$. One can see that ψ_{ϕ} is a wk^* -continuous character on $UP(I, \mathcal{A})$.

Theorem 3.4. Let \mathcal{A} be a dual Banach algebra and $\phi \in \Delta_{wk^*}(\mathcal{A})$ and I be a finite set such that $Z(\mathcal{A}) \cap (\mathcal{A} - \ker \phi) \neq \emptyset$. Then $UP(I, \mathcal{A})$ is left ψ_{ϕ} -Connes biprojective if and only if |I| = 1 and \mathcal{A} is left ϕ -Connes biprojective.

Proof. Let $UP(I, \mathcal{A})$ be left ψ_{ϕ} -Connes biprojective. Suppose that there exists $a_0 \in \mathcal{A}$ such that $aa_0 = a_0a$ and $\phi(a_0) = 1$. Put $\mathcal{A}_0 = \begin{pmatrix} a_0 & 0 & 0 & 0 \\ 0 & a_0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_0 \end{pmatrix}_{i_n \times i_n}$. By an easy calculation $\mathcal{A}_0 B = B\mathcal{A}_0$ for every $B \in UP(I, \mathcal{A})$ and

 $\psi_{\phi}(\mathcal{A}_0) = \phi(a_0) = 1$. Therefore, it conclude that $\mathcal{A}_0 \in Z(UP(I, \mathcal{A})) \cap (UP(I, \mathcal{A}) - \ker \psi_{\phi})$. Proposition 2.3 implies that $UP(I, \mathcal{A})$ is left ψ_{ϕ} -Connes amenable. Clearly, ψ_{ϕ} is a wk^* -continuous map. By [7, Proposition 2.3], $UP(I, \mathcal{A})$ is left ψ_{ϕ} -contractible. We assume in contradiction $|I| \ge 2$. Define $J = \{[a_{ij}] \in UP(I, \mathcal{A}) \mid a_{ij} = 0 \quad \forall j \ne i_n\}$. It is clear that J is a closed ideal of $UP(I, \mathcal{A})$ and $\psi_{\phi|J} \ne 0$. By [6, Proposition 3.8], J is left $\psi_{\phi|J}$ -contractible. It means that there exists $m \in J$ such that $xm = \psi_{\phi|J}(x)m$ for all $x \in J$ and $\psi_{\phi|J}(m) = 1$.

Now if
$$x = \begin{pmatrix} 0 & 0 & \cdots & a_{i_1 i_n} \\ 0 & 0 & \cdots & a_{i_2 i_n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{i_n i_n} \end{pmatrix}$$
 and $m = \begin{pmatrix} 0 & 0 & \cdots & m_{1n} \\ 0 & 0 & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & m_{nn} \end{pmatrix}$, then we have that $a_{kn} = \phi(a_{nn})m_{kn}$ for all $k = (a_{nn})m_{kn}$ for $k = (a_{nn})m_{kn}$ for $k = (a_{nn})m_{kn}$ for $k =$

 $(0 \ 0 \ \cdots \ a_{i_n i_n})$ $(0 \ 0 \ \cdots \ m_{nn})$ $1, \dots, n \text{ and } \psi_{\phi|_J}(m) = \phi(m_{nn}) = 1.$ Put $a_{1n} = m_{nn}$ and $a_{nn} = 0$ or $(a_{nn} \in \ker \phi)$. Hence $m_{nn}^2 = 0$ and $\phi(m_{nn}^2) = \phi(m_{nn}) = 0$, which is a contradiction \Box

Example 3.5. Consider the semigroup $S = \mathbb{N}_{\vee}$ as in Remark 3.2. It is clear that 1 is a unit for \mathbb{N}_{\vee} . Therefore δ_1 is a unit for the dual Banach algebra $\ell^1(\mathbb{N}_{\vee})$. Define $\phi_{n_0} : \ell^1(S) \to \mathbb{C}$ by $\phi_{n_0}(\sum_{i=1}^{\infty} a_i \delta_i) = \sum_{i=1}^{n_0} a_i$. One can see that ϕ_{n_0} is a wk^* -continuous character on $\ell^1(\mathbb{N}_{\vee})$. We have the following statement:

Let I be a totally ordered set which has a smallest element. Define $\psi : UP(I, \ell^1(\mathbb{N}_{\vee})) \longrightarrow \mathbb{C}$ by $\psi_{n_0}((a_{ij})) = \phi_{n_0}(a_{i_0i_0})$. Apply Theorem 3.3 the dual Banach algebra $UP(I, \ell^1(\mathbb{N}_{\vee}))$ is not right ψ_{n_0} -Connes biflat, unless I is a singleton set.

Example 3.6. Consider the Banach algebra ℓ^1 of all sequences a = (a(n)) of complex numbers with

$$\|a\| := \sum_{n=1}^{\infty} |a(n)| < \infty.$$

and the following product

$$(a * b)(n) = \begin{cases} a(1)b(1) & \text{if } n = 1\\ a(1)b(n) + b(1)a(n) + a(n)b(n) & \text{if } n > 1 \end{cases}$$

for every $a, b \in \ell^1$. Define $\varphi_1 : \ell^1 \longrightarrow \mathbb{C}$ by $\varphi_1(a) = a(1)$ for every $a \in \ell^1$. It is easy to see that φ_1 is a w^* -continuous character on $(\ell^1, *)$. Following [16, Example 3.4], $(\ell^1, *)$ is a dual Banach algebra with respect to c_0 , which is not left ϕ_1 -Connes amenable. Since $(\ell^1, *)$ has a unit δ_1 , where δ_1 is equal to 1 at n = 1 and 0 elsewhere, Theorem 2.5 implies that $(\ell^1, *)$ is not left ϕ_1 -Connes biprojective.

Acknowledgment

The authors wish to thank the anonymous referee for his/her careful reading of the manuscript and his/her useful suggestions and comments. The first author is thankful to Ilam university, for it's support.

References

- H.G. Dales, A.T.M. Lau and D. Strauss, Banach algebras on semigroups and their compactifications, Memoir Amer. Math. Soc. 966 (2010).
- [2] A. Ghaffari and S. Javadi, φ-Connes amenability of dual Banach algebras, Bull. Iran. Math. Soc. 43 (2017), no.1, 25–39.
- [3] A.Ya. Helemskii, The homology of Banach and topological algebras, Kluwer, Academic Press, Dordrecht, 1989.
- [4] Z. Hu, M.S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math. 193 (2009), 53–78.
- [5] A. Mahmoodi, On ϕ -Connes amenability for dual Banach algebras, J. Linear Topol. Alg. 3 (2014), 211–217.
- [6] R. Nasr-Isfahani and S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Stud. Math. 202 (2011), no. 3, 205–225.
- [7] M. Ramezanpour, Character Connes amenability of dual Banach algebras, Czech Math. J. 68 (2018), 243–255.
- [8] P. Ramsden, Biflatness of semigroup algebras, Semigroup Forum 79 (2009), 515–530.
- [9] V. Runde, Amenability for dual Banach algebras, Studia Math. 148 (2001), 47–66.
- [10] V. Runde, Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule, Math. Scand. 95 (2004), 124–144.
- [11] V. Runde, Lectures on amenability, Lecture Notes in Mathematics, Vol. 1774, Springer-Verlag, Berlin, 2002.
- [12] A. Sahami, Left φ-biprojectivity of some Banach algebras, https://arxiv.org/abs/1905.05556 (2019).
- [13] A. Sahami, On biflatness and φ-bifltness of some Banach algebras, U.P.B. Sci. Bull. Ser. A 80 (2018), no. 1, 111–122.
- [14] A. Sahami and A. Pourabbas, On φ-biflat and φ-biprojective Banach algebras, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 789–801.
- [15] S.F. Shariati, A. Pourabbas and A. Sahami, On connes amenability of upper triangular matrix algebras, U.P.B. Sci. Bull. Series A 80 (2018), no. 2, 145–152.
- [16] S.F. Shariati, A. Pourabbas and A. Sahami, WAP-biprojectivity of the enveloping dual Banach algebras, Boll. Unione Mat. Ital. https://doi.org/10.1007/s40574-019-00205-9(2019).
- [17] A. Shirinkalam and A. Pourabbas, Connes-biprojective dual Banach algebras, U.P.B. Sci. Bull. Ser. A 78 (2016), no. 3, 175–184.