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Abstract

The following system of additive functional equations 2f(x + y) = g(x) + g(y), g(x + y) = 2f(y − x) + 4f(x) in a
Banach algebra was investigated by Paokanta et al. [S. Paokanta, M. Dehghanian, C. Park and Y. Sayyari, System of
additive functional equations in Banach algebras (preprint)]. By using the system (A), Paokanta et al. [S. Paokanta,
M. Dehghanian, C. Park and Y. Sayyari, System of additive functional equations in Banach algebras (preprint)] also
investigated the notion of an f -hom-der in Banach algebras. In this note, we first show that the system of additive
functional equations (A) is equivalent to an additive functional equation and then some aspects related to f-hom-ders
are discussed. Finally, we present stability results of f -hom ders associated with the system of additive functional
equations (A).
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1 Introduction and preliminaries

By an algebra A, we mean that A is a complex linear vector space together with a bilinear mapping · : A×A → A
such that x · (y · z) = (x · y) · z for all x, y, z ∈ A. In this case, such a bilinear mapping is usually called an associative
multiplication in A. If A contains a special element e, called an identity, satisfying e · x = x · e = x for all x ∈ A, then
A is named as a unital algebra. One of the important associative algebras is the algebra of complex n-matrices Mn(C)
under the matrix multiplication. We note that Mn(C) is a unital algebra and it is not commutative (for n > 1). In
this case, Mn(C) is considered as a non-commutative algebra. For the case n = 1, we consider Mn(C) as the algebra
C. It is clear that C is unital and commutative. Moreover, every non-zero element of C has a multiplicative inverse.
Hence, C is an example of invertible algebras.

An interesting topic studied in an algebra is the notion of a (linear) derivation. A C-linear mapping g : A → A is
said to be a derivation if it satisfies the identity (related to Leibniz’s rule)

g(xy) = xg(y) + g(x)y for all x, y ∈ A.
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In the complex algebra C∞(0, 1) provided the pointwise product, the algebra of all infinitely differentiable complex
functions on (0, 1), we see that the mapping C∞(0, 1) ∋ f 7→ f ′ induces a derivation in C∞(0, 1). To generalize
this concept, Mirzavaziri and Moslehian [13, 14] investigated a notion of an f -derivation. For C-linear mappings
f, g : A → A, the mapping g is an f -derivation if

g(xy) = f(x)g(y) + g(x)f(y) for all x, y ∈ A.

Obviously that every derivation is an I-derivation where I denotes the identity mapping. Moreover, the notion of
f -derivation also covers the algebra homomorphisms. It it easy to see that if g : A → A is an algebra homomorphism
(that is, g is C-linear and multiplicative), then g is a 1

2g-derivation. In fact, for any x, y ∈ A we see that

g(xy) = g(x)g(y) =
1

2
g(x)g(y) +

1

2
g(x)g(y) =

(
1

2
g(x)

)
g(y) + g(x)

(
1

2
g(y)

)
.

Some results related to this notion can be seen for examples in [7, 10, 17, 19].

Combining the concepts of both derivations and algebra homomorphisms, Kheawborisut et al. [12] introduced a
hom-der in a fuzzy Banach algebra by using the formula

g(xy) = xg(y) + g(x)y.

If g forms a hom-der, then g is a derivation if and only if it is an algebra homomorphism. That is, the derivation
and the homomorphism are identical in the class of hom-ders. An example supporting the definition is the mapping
x 7→ 2x. As a generalization of hom-ders, Paokanta et al. [15] defined an f -hom-der as in the following definition:

Definition 1.1. [15, Definition 1.1] Suppose that A is an algebra and f, g : A → A are C-linear mappings. We say
that g is an f -hom-der if f is an algebra homomorphism and

g(x)g(y) = f(x)g(y) + g(x)f(y) for all x, y ∈ A. (1.1)

For a given algebra homomorphism f , we see that the mapping A ∋ x 7→ 2f(x) induces an f -hom-der. Hence, the
mapping 2f is an f -hom-der.

Note that the formula (1.1) is reasonable for certain mappings f, g : A → B where A and B are algebras.

We observe that all derivations we are discussing concerns linear mappings (in particular, they are additive map-
pings) in certain complex linear vector spaces. With this reason, it is natural to consider its approximate versions
based on the idea of Ulam. In 1940, Ulam [22], proposed an interesting question related to approximate group ho-
momorphisms in a metric commutative group. The question is known as Ulam’s stability problem. More precisely,
he proposed the following problem: For given a commutative group (G,+), a metric commutative group (H,+, d)
and a positive real number ε, does there exists a group homomorphism F : G → H and a real number δ > 0 such
that d(F (x), f(y)) ≤ ε for all approximate group homomorphisms f : G → H satisfying d(f(x + y), f(x) + f(y)) ≤ δ
for all x, y ∈ G? Hyers [5] confirmed that the answer of Ulam’s stability problem is affirmative in Banach spaces
with δ = ε. A natural generalization of Hyers’ stability result was presented by Aoki [1]. Rassias [21] independently
presented a generalization of Hyers’ result similar to that of Aoki [1]. Moreover, Rassias [21] also investigated the
linearity condition in his result. For some pioneered stability results regarding the stability of additive and related
functional equations can be seen for instances in [3, 4, 8, 11, 20] (and references therein). As a consequence of a fixed
point theorem proposed by Diaz and Margolis [6] and the direct method, many stability results concerning various
kinds of derivations in different spaces have been extensively studied by many authors and some examples are in
[2, 9, 12, 16, 18, 23].

Paokanta et al. [15] applied the fixed point result in proving some stability results of f -hom-ders in complex Banach
algebras associated with the system of additive functional equations:{

2f(x+ y) = g(x) + g(y),
g(x+ y) = 2f(y − x) + 4f(x).

(1.2)

By a direct computation, if f is additive and g := 2f then f and g are solutions of the system of additive functional
equations (1.2).

In this paper, we manage our study as in the following two sections:
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� In Section 2, we first solve the system of additive functional equations (1.2) in commutative groups and we also
give some observations on the f -hom-ders in a unital algebra. Finally, we present a relation between the system
(1.2) and f -hom-ders;

� In Section 3, we verify some stability results of f -hom-ders associated with the system of additive functional
equations (1.2) by using the direct method.

2 System of additive functional equations (1.2) and f-hom-ders

In this section, we solve the system of additive functional equations (1.2) in commutative groups. Moreover, under
some suitable conditions we give an explicit form of an f -hom-der in a unital algebra.

Now, we begin this section with solving the system of additive functional equations in certain commutative groups.
In addition, the following theorem covers [15, Lemma 2.1]

Theorem 2.1. Suppose that G is a group and H is a commutative group in which each of its element is of order
different from 2 and 5. Then mappings f, g : G→ H satisfy the system of additive functional equations{

2f(x+ y) = g(x) + g(y),
g(x+ y) = 2f(y − x) + 4f(x)

for all x, y ∈ G (2.1)

if and only if f, g are additive and g = 2f .

Proof . (=⇒) We first note that if u, v ∈ H and 2u = 2v then the commutativity of H implies that 2(u − v) =
2u− 2v = 0. Since o(u− v) ̸= 2 (where o(u− v) denotes the order of u− v in H), one obtains that u− v = 0.

By letting x = y = 0 in (2.1) we have that

2f(0) = 2g(0) and g(0) = 6f(0).

It follows that f(0) = g(0) and hence f(0) = g(0) = 6f(0). Using the cancellation law of the group H, we have that
5f(0) = 0. Note that o(f(0)) ̸= 2 and o(f(0)) < 5. In fact, o(f(0)) ∈ {1, 3, 4}. We consider the following.

� If o(f(0)) = 4, then 0 = 5f(0) = 4f(0) + f(0) = 0 + f(0) = f(0) which is impossible. Hence, o(f(0)) ̸= 4.

� If f(0) ̸= 0 and o(f(0)) = 3, then 0 = 5f(0) = 3f(0) + 2f(0) = 2f(0) which is impossible. Thus, f(0) = 0 or
o(f(0)) ∈ {1, 4}. By above consideration, we can see that o(f(0)) = 1, that is, f(0) = 0 and then g(0) = f(0) = 0.

Letting y = 0 in (2.1) shows that g = 2f . This implies the equality

2f(x+ y) = 2f(x) + 2f(y) for all x, y ∈ G. (2.2)

Hence, f is additive. Since g = 2f , (2.2) shows that g is additive.

(⇐=) Let x, y ∈ G be given. Since g = 2f , we have that

2f(x+ y) = 2f(x) + 2f(y) = g(x) + g(y)

and

g(x+ y) = 2f(x+ y) = 2f(y) + 2f(x) = (2f(y)− 2f(x)) + 4f(x) = 2f(y − x) + 4f(x).

This completes the proof. □

It is known that (Zn,+) is a commutative group. If n > 1 is odd and 5 ∤ n, then every element of (Zn,+) is of
order different from 2, 5.

Corollary 2.2. Suppose that A and B are algebras. If f, g : A → B are C-linear solutions of the system (1.2) and f
is an algebra homomorphism, then g is an f -hom-der. In particular, g is a 1

2f -derivation if A = B.
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Proof . Theorem 2.1 shows that g = 2f . For any x, y ∈ A, it follows that

g(x)g(y) = (2f(x))(2f(y))

= f(x)(2f(y)) + (2f(x))f(y)

= f(x)g(y) + g(x)f(y).

This shows that g is an f -hom-der. We see that

g(xy) = f(xy) + f(xy)

= f(x)f(y) + f(x)f(y)

=

(
1

2
f(x)

)
(2f(y)) + (2f(x))

(
1

2
f(y)

)
=

(
1

2
f(x)

)
g(y) + g(x)

(
1

2
f(y)

)
.

This finishes our proof. □

It is natural to ask that: Does the converse of Corollary 2.2 hold true?. The following theorem shows that the
answer is affirmative in a paticular situation.

For algebras A,B and a mapping f : A → B, we define

ZR
f(A) := {b ∈ B : f(x) = f(x)b for all x ∈ A}.

It is clear that if B is unital then its indentity belongs to ZR
f(A).

Theorem 2.3. Suppose that A is an algebra and B is a unital algebra. Suppose that f, g : A → B are given C-linear
mappings such that there exists u ∈ A such that g(u)− f(u) is invertible and g(u)(g(u)− f(u))−1 ∈ 2ZR

f(A). If g is an

f -hom-der, then f and g are sulutions of the system (1.2), that is, g = 2f .

Proof . Since g(u)(g(u)− f(u))−1 ∈ 2ZR
f(A), there exists u′ ∈ ZR

f(A) such that g(u)(g(u)− f(u))−1 = 2u′. It follows
that

f(x)g(u)(g(u)− f(u))−1 = f(x)(2u′) = 2f(x)u′ = 2f(x) for all x ∈ A.

By letting y = u in (1.1), we see that

g(x)g(u) = f(x)g(u) + g(x)f(u)

=⇒ g(x)g(u)− g(x)f(u) = f(x)g(u)

=⇒ g(x)(g(u)− f(u)) = f(x)g(u)

=⇒ g(x) = f(x)g(u)(g(u)− f(u))−1 = 2f(x)

for all x ∈ A. By Theorem 2.1, our proof is finished. □

Proposition 2.4. Suppose that A,B are algebras in which B is unital, u ∈ A, and f, g : A → B are given C-linear
mappings. Then the following assertions are equivalent.

1) g is an f -hom-der and there exists u ∈ A such that g(u)− f(u) is invertible and g(u)(g(u)− f(u))−1 ∈ 2ZR
f(A).

2) g = 2f and f is an algebra homomorphism such that f(u) is invertible.

Proof . (=⇒) By Theorem 2.3, g = 2f . We also see that

g(u)− f(u) = 2f(u)− f(u) = f(u)

and hence f(u) is invertible. This implies that 2) holds.

(⇐=) Note that g(u)− f(u) = f(u). So, g(u)− f(u) is invertible. We see that

g(u)(g(u)− f(u))−1 = g(u)f(u)−1 = 2f(u)f(u)−1 = 2e ∈ Zf(A).

This completes our proof. □
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Corollary 2.5. Suppose that A and B are unital algebras. Suppose that f, g : A → B are given C-linear mappings
such that g(e) = 2e and f is an algebra homomorphism with f(e) = e. Then g is an f -hom-der if and only if g = 2f .

Proof . It is obvious since e is invertible. □

Remark 2.6. If g = 2f and A = B, then g is an f -Lie-hom-der in a Lie algebra (A, [·, ·]), that is,

[g(x), g(y)] = [f(x), g(y)] + [g(x), f(y)] for all x, y ∈ A.

We end this subsection with the following example.

Example 2.7. Let A = B := M2(C). Note that A and B are unital algebras which are not invertible. Define two
mappings f, g : A → B by

f

(
a b
c d

)
:=

(
a b
−c d

)
and g

(
a b
c d

)
:=

(
−a b
c −d

)
for all a, b, c, d ∈ C. It is clear that both f and g are C-linear mappings. Moreover, they are not invertible. We note

that

(
2 0
0 3

)
is invertible and

f

(
2 0
0 −3

)
=

(
2 0
0 −3

)
and g

(
2 0
0 −3

)
=

(
−2 0
0 3

)
= −f

(
2 0
0 −3

)
.

So, we have

g

(
2 0
0 −3

)(
g

(
2 0
0 3

)
− f

(
2 0
0 −3

))−1

=

(
−2 0
0 3

)(
−4 0
0 6

)−1

= 2I2

By letting u :=

(
2 0
0 3

)
, it follows that g(u)− f(u) is invertible and g(u)(g(u)− f(u))−1 commutes to all elements of

A. Moreover, g ̸= 2f . If we define g′ := 2f , then we easily see that

g(u)− f(u) = f(u) and g(u)(g(u)− f(u))−1 = 2I2.

3 Stability results

In this section, we verify some stability results of f -hom-ders associated with the system of additive functional
equations (1.2) by using the direct method.

Firstly, we consider the approximate version of the system of additive functional equations (1.2) in a normed linear
space as in the following lemma.

Lemma 3.1. Suppose that X is a linear vector spaces, (Y, ∥ · ∥) is a normed linear space, and φ1, φ2 : X × X →
R+ := [0,∞) are given functions. If f, g : X → Y are mappings such that

∥2f(x+ y)− g(x)− g(y)∥ ≤ φ1(x, y); (3.1)

∥g(x+ y)− 2f(y − x)− 4f(x)∥ ≤ φ2(x, y) (3.2)

for all x, y ∈ X, then f and g satisfy

∥2f(x)− g(x)∥ ≤ ϕ(x); (3.3)

∥f(2x)− 2f(x)∥ ≤ ψ(x) (3.4)

for all x ∈ X where ϕ : X → Y, ψ : X → Y,K1 and K2 are defined by

K1 := φ1(0, 0) + 2φ2(0, 0) and K2 :=
1

5
(3φ2(0, 0) + φ2(0, 0)) ;

ϕ(x) := min{φ1(x, 0) +K2, φ2(0, x) +K1} and ψ(x) :=
1

2
φ1(x, x) + ϕ(x).
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Proof . By letting x = y = 0 in (3.1) and (3.2), we obtain that

∥2f(0)− 2g(0)∥ ≤ φ1(0, 0) and ∥g(0)− 6f(0)∥ ≤ φ2(0, 0). (3.5)

It follows that

∥10f(0)∥ = ∥2f(0)− 12f(0)∥
≤ ∥2f(0)− 2g(0)∥+ ∥2g(0)− 12f(0)∥
≤ φ1(0, 0) + 2φ2(0, 0).

We immidiately obtain that

∥f(0)∥ ≤ 1

10
φ1(0, 0) +

1

5
φ2(0, 0).

We note from (3.5) that

∥g(0)∥ ≤ min

{
1

2
φ1(0, 0) + ∥f(0)∥, φ2(0, 0) + 6∥f(0)∥

}
≤ min

{
1

5
(3φ1(0, 0) + φ2(0, 0)) ,

1

2
φ1(0, 0) +

1

5
(3φ1(0, 0) + 11φ2(0, 0))

}
=

1

5
(3φ1(0, 0) + φ2(0, 0)) .

So, we now let

K1 :=
1

5

(
1

2
φ1(0, 0) + φ2(0, 0)

)
and K2 :=

1

5
(3φ2(0, 0) + φ2(0, 0)) .

And we have that ∥f(0)∥ ≤ K1 and ∥g(0)∥ ≤ K2.

Next, we show that (3.3) holds for all x ∈ X. We see from (3.1) by letting y = 0 that

∥2f(x)− g(x)∥ ≤ ∥2f(x)− g(x)− g(0)∥+ ∥g(0)∥ ≤ φ1(x, 0) +K2 for all x ∈ X.

By letting x = 0 in (3.2), we have

∥g(y)− 2f(y)∥ ≤ φ2(0, y) + 4∥f(0)∥ ≤ φ2(0, y) + 4K1 for all y ∈ X.

These two inequalities imply that

∥2f(x)− g(x)∥ ≤ min {φ1(x, 0) +K2, φ2(0, x) + 4K1}

for all x ∈ X. This means that (3.3) holds by choosing

ϕ(x) := min {φ1(x, 0) +K2, φ2(0, x) +K1} .

Finally, we show that (3.4) holds. By letting x = y in (3.1), we see that

∥2f(2x)− 2g(x)∥ ≤ φ1(x, x) for all x ∈ X.

So, we have

∥2f(2x)− 4f(x)∥ ≤ ∥2f(2x)− 2g(x)∥+ ∥2g(x)− 4f(x)∥ ≤ φ1(x, x) + 2ϕ(x).

We have that

∥f(2x)− 2f(x)∥ ≤ 1

2
φ1(x, x) + ϕ(x) for all x ∈ X.

This completes the proof. □

To make the simplicity for our further consideration, we give the following remark.
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Remark 3.2. Suppose that f(0) = g(0) = 0. We define φ∗
1, φ

∗
2 : X ×X → R+ by

φ∗
i (x, y) :=

{
0 if x = y = 0;

φi(x, y) if x ̸= 0 or y ̸= 0.

for i = 1, 2. If f and g satisfy (3.1) and (3.2), then

∥2f(x+ y)− g(x)− g(y)∥ ≤ φ∗
1(x, y);

∥g(x+ y)− 2f(y − x)− 4f(x)∥ ≤ φ∗
2(x, y)

for all x, y ∈ X. Moreover, we also have

� φ∗
1 ≤ φ1 and φ∗

2 ≤ φ2;

� K1 = K2 = 0 and ϕ(0) = ψ(0) = 0;

� ϕ(x) = min {φ∗
1(x, 0), φ

∗
2(0, x)} for all x ̸= 0;

� ψ(x) = 1
2φ

∗
1(x, x) + min {φ∗

1(x, 0), φ
∗
2(0, x)} for all x ̸= 0.

To support Lemma 3.1, we consider the following example.

Example 3.3. Let f, g : C → C be mappings defined by

f(x) := 2
√

|x| and g(x) := 2
√
2
√
|x| for all x ∈ C.

For any x, y ∈ C, we see that

|2f(x+ y)− g(x)− g(y)| =
∣∣4√|x+ y| − 2

√
2
√

|x| − 2
√
2
√

|y|
∣∣ =: φ1(x, y);

|g(x+ y)− 2f(y − x)− 4f(x)| =
∣∣2√2

√
|x+ y| − 4

√
|y − x| − 8

√
|x|

∣∣ =: φ2(x, y).

We also note that

φ1(x, 0) = 2(2−
√
2)
√
|x| and φ2(0, x) = 2(2−

√
2)
√
|x|;

φ1(x, x) = (4
√
2− 4

√
2)
√
|x| = 0.

It follows that

ϕ(x) := min{φ1(x, 0), φ2(0, x)} = 2(2−
√
2)
√
|x|;

ψ(x) :=
1

2
φ1(x, x) + ϕ(x) = ϕ(x) = 2(2−

√
2)
√
|x|.

Lemma 3.1 asserts that ∣∣4− 2
√
2
∣∣√|x| = |2f(x)− g(x)| ≤ ϕ(x) = 2(2−

√
2)
√

|x|;∣∣2√2− 4
∣∣√|x| = |f(2x)− 2f(x)| ≤ ψ(x) = 2(2−

√
2)
√
|x|.

So, |2f(x) − g(x)| = ϕ(x) and |f(2x) − 2f(x)| = ψ(x) for all x ∈ C. This shows that our estimations (3.3) and (3.2)
are sharp for a particular case.

The following lemma is obvious.

Lemma 3.4. Suppose that X,Y are linear spaces, ξ : X → R+ is a given function, and f, g : X → Y are mappings
such that

∥2f(x)− g(x)∥ ≤ ξ(x) for all x ∈ X. (3.6)

For i ∈ {−1, 1}, if limn→∞
1

2in ξ(2
inx) = 0 for all x ∈ X then

(
1

2in f(2
inx)

)
converges if and only if

(
1

2in g(2
inx)

)
converges. In this case, we have

lim
n→∞

1

2in
g(2inx) = 2 lim

n→∞

1

2in
f(2inx).
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Proof . The proof is straightforward. □

By a Banach algebra B, we mean an algebra B together with a complete norm ∥ ·∥ on B which is sub-multiplicative,
that is,

∥xy∥ ≤ ∥x∥∥y∥ for all x, y ∈ B.

By using Hyers’ direct method, we are in a position to verify some stability results of f -hom-ders associated with
the system of additive functions (1.2) in Banach algebras.

Theorem 3.5. Suppose that A is an algebra and (B, ∥ · ∥) is a Banach algebra. Suppose that φ1, φ2 : A × A → R+

are functions with φ1(0, 0) = 0 and f, g : A → B are mappings that satisfy

∥2f(λx+ y)− g(λx)− λg(y)∥ ≤ φ1(x, y);

∥g(λx+ λy)− 2f(λy − λx)− 4λf(x)∥ ≤ φ1(x, y);

∥f(xy)− f(x)f(y)∥ ≤ φ2(x, y)

for all x, y ∈ A and all λ ∈ T1 := {λ ∈ C : |λ| = 1}. If φ1 and φ2 satisfy

Φ(x, y) :=

∞∑
n=0

1

2n
φ1(2

nx, 2ny) <∞ for all x, y ∈ A; (3.7)

lim
n→∞

1

4n
φ2(2

nx, 2ny) = 0 for all x, y ∈ A,

then there exist uniquely C-linear mappings F,G : A → B such that G is an F -hom-der satisfying the inequalities{
∥F (x)− f(x)∥ ≤ Λ(x) for all x ∈ A;

∥G(x)− g(x)∥ ≤ 2Λ(x) + min{φ1(x, 0), φ1(0, x)} for all x ∈ A,

where Λ(x) := 1
2

(
1
2Φ(x, x) + min{Φ(x, 0),Φ(0, x)}

)
. Moreover, G = 2F .

Proof . Obviously f(0) = g(0) = 0. Lemma 3.1 states that∥∥∥1
2
f(2x)− f(x)

∥∥∥ ≤ 1

4
φ1(x, x) +

1

2
min{φ1(x, 0), φ1(0, x)} for all x ∈ A.

For any m > n, it can be seen that∥∥∥ 1

2n
f(2nx)− 1

2m
f(2mx)

∥∥∥ =

m−1∑
k=n

∥∥∥ 1

2k
f(2kx)− 1

2k+1
f(2k+1x)

∥∥∥
≤ 1

4

m−1∑
k=n

1

2k
φ1(2

kx, 2kx) +
1

2
min

{
m−1∑
k=n

1

2k
φ1(2

kx, 0),

m−1∑
k=n

1

2k
φ1(0, 2

kx)

}
for all x ∈ A. It follows from (3.7) that the sequence ( 1

2n f(2
nx))∞n=0 is Cauchy for all x ∈ A. So, we can define

F : A → B by F (x) := limn→∞
1
2n f(2

nx) for all x ∈ A. We see from Lemma 3.1 that

∥2f(x)− g(x)∥ ≤ min{φ1(x, 0) + φ1(0, x)} for all x ∈ A.

Lemma 3.4 and (3.7) assert that G(x) := limn→∞
1
2n g(2

nx) = 2F (x) for all x ∈ A. We also see that

∥G(x)− g(x)∥ ≤ 2Λ(x) + min{φ1(x, 0) + φ1(0, x)} for all x ∈ A.

As in the proof of [15, Theorem 2.2] and Theorem 2.1, we have that F and G are C-linear mappings. Moreover, F
is an algebra homomorphism. Hence, G is an F -hom-der by Corollary 2.2.

This completes the proof. □

Remark 3.6. According to Theorem 3.5, if there exists another mapping H : A → B such that H is an F -hom-der
satisfying {

2F (x+ y) = H(x) +H(y);
H(x+ y) = 2F (y − x) + 4F (x)

for all x, y ∈ A,

then H = G. This shows us that 2F is the unique F -hom-der in the class of solutions of the system of functional
equations (1.2).
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Theorem 3.7. Suppose that A is an algebra and (B, ∥ · ∥) is a Banach algebra. Suppose that φ1, φ2 : A × A → R+

are functions and f, g : A → A are mappings that satisfy

∥2f(λx+ y)− g(λx)− λg(y)∥ ≤ φ1(x, y);

∥g(λx+ λy)− 2f(λy − λx)− 4λf(x)∥ ≤ φ1(x, y);

∥f(xy)− f(x)f(y)∥ ≤ φ2(x, y)

for all x, y ∈ A and all λ ∈ T1. If φ1 and φ2 satisfy

Φ(x, y) :=

∞∑
n=1

2nφ1

( x

2n
,
y

2n

)
<∞ for all x, y ∈ A;

lim
n→∞

4nφ2

( x

2n
,
y

2n

)
= 0 for all x, y ∈ A,

then there exist uniquely C-linear mappings F,G : A → B such that G is an F -hom-der satisfying the inequalities{
∥F (x)− f(x)∥ ≤ Λ(x) for all x ∈ A;

∥G(x)− g(x)∥ ≤ 2Λ(x) + min{φ1(x, 0), φ1(0, x)} for all x ∈ A,

where Λ(x) := 1
2

(
1
2Φ(x, x) + min{Φ(x, 0),Φ(0, x)}

)
. Moreover, G = 2F .

Proof . The proof is quite similar to that of Theorem 3.5. □

To see the variety of the control functions φ1, φ2 : A×A → R+, the following example is presented.

Example 3.8. Suppose that φ1, φ2 : A × A → R+ are functions and L1, L2 are positive real numbers such that
L1, L2 < 1. Then the following assertions are true.

1) If φi(2x, 2y) ≤ 2iLiφi(x, y) for all x, y ∈ A and all i = 1, 2, then

∞∑
n=0

1

2n
φ1(2

nx, 2ny) ≤ 1

1− L1
φ1(x, y) and lim

n→∞

1

4n
φ2(2

nx, 2ny) = 0

for all x, y ∈ A.

2) If φi

(
x
2 ,

y
2

)
≤ Li

2i φi(x, y) for all x, y ∈ A and all i = 1, 2, then

∞∑
n=1

2nφ1

( x

2n
,
y

2n

)
≤ L

1− L1
φ1(x, y) and lim

n→∞
4nφ2

( x

2n
,
y

2n

)
= 0

for all x, y ∈ A.
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