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Abstract

Let A be an algebra. A derivation on A is a linear mapping δ : A → A such that δ(ab) = δ(a)b+aδ(b) for every a, b ∈ A.
As a dual to this notion, we consider a linear mapping ∆ : A → A with the property ∆(a)∆(b) = ∆(∆(a)b + a∆(b))
for every a, b ∈ A and we call it an integration. In this paper, we give some examples, counterexamples and facts
concerning integrations on algebras. Furthermore, we state and prove a characterization for integrations on finite
dimensional matrix algebras.
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1 Introduction

Recall that the Leibniz rule for derivatives states that (fg)′ = f ′g + fg′ for each two differentiable functions. This is
the main idea for the Leibniz property of a derivation on an algebra. By its definition, a linear mapping δ on an algebra
A is called a derivation if δ(ab) = δ(a)b+ aδ(b) for every a, b ∈ A. The dual process to the Leibniz rule is integration
by parts or partial integration process which is stated as

∫
udv = uv −

∫
vdu or, equivalently, uv =

∫
udv +

∫
vdu.

Substituting u and v into
∫
t and

∫
s respectively, we arrive at

∫
t
∫
s =

∫
((
∫
t)s + t(

∫
s)). This motivates us to

consider those linear mappings ∆ : A → A with the property ∆(a)∆(b) = ∆(∆(a)b + a∆(b)) for every a, b ∈ A. We
use the terminology integration for such linear mappings and we are interested to investigate the relation between
derivations and integrations on algebras.

The integration operator is a special case of Rota-Baxter operators introduced by G. Baxter in 1960 [1].

It is not so surprising to us that there should be a calculus theory to link these notions to each other. Once we
define an integration, we can consider many other notions concerning it as a dual to the notions of inner derivation,
approximately inner derivations, local derivations, Jordan derivations and so on (see, for example [2, 4, 6, 7, 8]).

In Section 2, we give some examples, counterexamples and facts concerning integrations on algebras. In Section 3,
we state and prove a characterization for integrations on finite dimensional matrix algebras.

Throughout the paper, A is an unital algebra with unit ι and for a positive integer n, the algebra of all complex
n×n matrices is denoted by Mn(C) . Recall that the matrix algebra Mn(C) has a system of matrix units {Eij}1⩽i,j⩽n

with the following properties:
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i. E∗
ij = Eji;

ii. EijEkℓ = δjkEiℓ;

ii.
∑n

i=1 Eii is the n× n identity matrix In,

where δjk is the Kronecker delta. By corollary 1.28 [15], a factor of type In is nothing but the Mn(C) and then has
such a system of matrix units.

2 Preliminaries

We begin this section with the definition of an integration.

Definition 2.1. A linear mapping ∆ : A → A is called an integration if ∆(a)∆(b) = ∆(∆(a)b + a∆(b)) for every
a, b ∈ A.

Recall that an element ε of an algebra A is called idempotent if ε2 = ε and an element ν is called a square nilpotent if
ν2 = 0.

Example 2.2. Let A be an associative algebra and let x0 be a square nilpotent of A, i.e. x2
0 = 0. A linear mapping

∆ : A → A defined by ∆(a) = ax0 is an integration on A.

In the following proposition we see that the above example is a typical example of an integration. The proof is
straightforward and so we omit it.

Proposition 2.3. Let A be an algebra and ∆ : A → A be a linear mapping. If ∆ satisfies one of the following
conditions, then ∆ is an integration on A.

i. there is a square nilpotent ν such that ∆(a) = νaν for all a ∈ A;

ii. there is a square nilpotent ν and an idempotent ε with εν = ν such that ∆(a) = νaε for all a ∈ A;

iii. there is a square nilpotent ν and an idempotent ε with νε = ν such that ∆(a) = εaν for all a ∈ A;

iv. there is a square nilpotent ν and an idempotent ε with εν = ν and νε = 0 such that ∆(a) = εaν − νaε for all
a ∈ A;

v. there is a square nilpotent ν and an idempotent ε with εν = 0 and νε = ν such that ∆(a) = εaν − νaε for all
a ∈ A.

The above proposition provides a collection of non-trivial examples of integrations and gives a good idea for the
following definition. Prior to define the following notion, we recall that an inner derivation δa0

implemented by an
element a0 of an algebra A is the derivation defined by δa0

(a) = a0a − aa0 for each a ∈ A. It is known that each
derivation on Mn(C) is inner and the celebrated Kadison-Sakai theorem [6, 11, 14] states that every derivation on a von
Neumann algebra is inner. One of our goal in this paper is to find an appropriate definition for an inner integration.

Definition 2.4. Let A be an algebra and ∆ : A → A be a linear mapping. Then

i. ∆ is called a square nilpotent integration if there is a square nilpotent ν such that ∆(a) = νaν, for all a ∈ A;

ii. ∆ is called a nil-idempotent integration if there is a square nilpotent ν and an idempotent ε with εν = ν such
that ∆(a) = νaε, for all a ∈ A;

iii. ∆ is called an idem-nilpotent integration if there is a square nilpotent ν and an idempotent ε with νε = ν such
that ∆(a) = εaν, for all a ∈ A;

iv. ∆ is called a left nil integration if there is a square nilpotent ν and an idempotent ε with εν = ν and νε = 0
such that ∆(a) = εaν − νaε, for all a ∈ A;
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v. ∆ is called a right nil integration if there is a square nilpotent ν and an idempotent ε with εν = 0 and νε = ν
such that ∆(a) = εaν − νaε, for all a ∈ A.

Proposition 2.5. Let A be an algebra and ∆ : A → A be a linear mapping. Then

i. if ∆ is a square nilpotent integration, then ∆(∆(a)b) = ∆(a∆(b)) = 0 for all a, b ∈ A;

ii. if ∆ is a nil-idempotent integration, then ∆(∆(a)b) = ∆2(a∆(b)) = 0 for all a, b ∈ A;

iii. if ∆ is an idem-nilpotent integration, then ∆2(∆(a)b) = ∆(a∆(b)) = 0 for all a, b ∈ A;

iv. if ∆ is a left nil integration, then ∆2(∆(a)b) = ∆2(a∆(b)) = 0 for all a, b ∈ A;

v. if ∆ is a right nil integration, then ∆2(∆(a)b) = ∆2(a∆(b)) = 0 for all a, b ∈ A;

Proof . Straightforward. 2

Definition 2.6. Let A be an algebra and ∆ : A → A be a linear mapping. Then ∆ is called an integration of
nilpotency r if there is a positive integer r such that ∆r(∆(a)b) = ∆r(a∆(b)) = 0 for each a, b ∈ A.

Definition 2.7. Let A be an algebra and ∆ : A → A be a linear mapping. Then ∆ is called an inner integration if
there is a positive integer m, there are positive linear functionals φk : A → C (1 ⩽ k ⩽ m) and there are t1, . . . , tm ∈ A
with the following properties

∆(a) =

m∑
k=1

φk(a)tk, a ∈ A

tktℓ = αkℓtk + βkℓtℓ 1 ⩽ k, ℓ ⩽ m,

for some αkℓ, βkℓ ∈ C, that at least one of the complex numbers αkℓ or βkℓ is zero. In this case we say that ∆ is an
inner integration implemented by {φk}1⩽k⩽m ∪ {tk}1⩽k⩽m with respect to {αkℓ}1⩽k,ℓ⩽m or {βkℓ}1⩽k,ℓ⩽m.

Note that if tktℓ = 0 for all 1 ⩽ k, ℓ ⩽ m, then ∆ is an inner integration of nilpotency 1. In this case, we have
∆(a)∆(b) = 0 for each a, b ∈ A.

Example 2.8. A linear mapping ∆ : Mn(C) → Mn(C) defined by

∆(A) = E12A = a21E11 + a22E12 = a21∆(E21) + a22∆(E22) = φ1(a)t1 + φ2(a)t2

is an inner integration implemented by {φ1, φ2,∆(E21),∆(E22)}, for every A = (aij) ∈ Mn(C).

Proposition 2.9. Let A be an algebra and ∆ : A → A be an inner integration implemented by {φk}1⩽k⩽m∪{tk}1⩽k⩽m

with respect to {αkℓ}1⩽k,ℓ⩽m with αkℓ = δkℓ and βkℓ = 0 . Then ȷ =
∑m

k=1 tk is the identity of the algebra ∆(A).

Proof . We have

∆(a)(

m∑
ℓ=1

tℓ) = (

m∑
k=1

φk(a)tk)(

m∑
ℓ=1

tℓ) =

m∑
k=1

m∑
ℓ=1

φk(a)tktℓ

=

m∑
k=1

m∑
ℓ=1

φk(a)δkℓtk

=

m∑
k=1

φk(a)tk = ∆(a).

2

In the present section, we give some elementary facts concerning integrations and inner integrations. Note that
square nilpotent, nil-idempotent, idem-nilpotent, left and right nil integrations are all of nilpotency at most two.
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Proposition 2.10. Let A be an algebra, ∆ be an integration on A and let n ⩾ 2 be a positive integer. Then

Πn
i=1∆(ai) = ∆

(
Σn

i=1Π
i−1
j=1∆(aj) · ai ·Πn

j=i+1∆(aj)
)

(∗)

for every a1, . . . , an ∈ A.

Proof . We use induction on n. For n = 2 the result is true by the definition of an integration. Let us assume that
(∗) is true for n. For n+ 1 we have

Πn+1
i=1 ∆(ai) = Πn

i=1∆(ai) ·∆(an+1)

= ∆
(
Σn

i=1Π
i−1
j=1∆(aj) · ai ·Πn

j=i+1∆(aj)
)
·∆(an+1)

= ∆(∆(Σn
i=1Π

i−1
j=1∆(aj) · ai ·Πn

j=i+1∆(aj)) · an+1

+Σn
i=1Π

i−1
j=1∆(aj) · ai ·Πn

j=i+1∆(aj) ·∆(an+1))

= ∆(Πn
i=1∆(ai) · an+1

+Σn
i=1Π

i−1
j=1∆(aj) · ai ·Πn+1

j=i+1∆(aj))

= ∆(Σn+1
i=1 Π

i−1
j=1∆(aj) · ai ·Πn+1

j=i+1∆(aj)).

2

Corollary 2.11. Let A be a unital algebra with unit ι. Let ∆ be an integration on A and let n be a positive integer.
If x = ∆(ι) then ∆(xn−1) = xn

n .

Proof . Putting a1 = . . . = an = ι in Proposition 2.10, we have

xn = ∆(ι)n = ∆(Σn
i=1x

i−1ιxn−i) = n∆(xn−1).

2

Though, there are many examples of derivations on algebras whose ranges are not algebras, we can easily see that
the range of an integration is obviously an algebra. However, even if the algebra A has unit ι we can show that
ι /∈ ∆(A). In contrary, suppose that ι = ∆(a) for some a ∈ A then

ι = ι2 = ∆(a)2 = ∆(∆(a)a+ a∆(a)) = 2∆(a) = 2ι,

which is a contradiction. Nevertheless, the example ∆ : Mn(C) → Mn(C) defined by ∆(A) = E12AE11 for each
A ∈ Mn(C) shows that the range of an integration can be unital. Note that the mentioned integration is a nil-
idempotent integration and the unit of its range is E11.

It is known for two derivations δ1 and δ2 on an algebra A and a scalar c, the linear mapping cδ1 + δ2 is again a
derivation. A natural question which arises is whether this fact true for integrations or not. The following proposition
gives a necessary and sufficient condition for an affirmative answer is some cases.

Proposition 2.12. Let ∆1 and ∆2 be two integration on an algebra A and c be a scalar. Then c∆1 + ∆2 is an
integration on A if and only if

∆1(a)∆2(b) + ∆2(a)∆1(b) = ∆1(∆2(a)b+ a∆2(b)) + ∆2(∆1(a)b+ a∆1(b),

In particular, a scalar multiple of an integration is again an integration.

Proof . Straightforward.

2

As the final part of this section we give a transient consideration on a generalization of the Leibniz rule and the
notion of a higher derivation.

Considering the Leibniz rule we can inductively prove that δn(ab) = Σn
i=0

(
n
i

)
δi(a)δn−i(b), for a derivation δ and a

positive integer n. This is the starting point of studying the behaviour of the sequence {dn}∞n=0, where dn = δn

n! . The
sequence is an example of a higher derivation and there are some characterizations for higher derivations on algebras
(see [3, 5, 9, 10, 12, 13]). Using this idea, we have the following theorem.
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Theorem 2.13. Let A be an algebra, ∆ be an integration on A and let n be a positive integer. Then

∆n(a)∆n(b) = ∆n

(
n∑

i=0

(
n

i

)
∆i(a)∆n−i(b)

)
,

for every a, b ∈ A.

Proof . We can inductively prove the result. For n = 1 the result is obvious by the definition of an integration. Let
the result be true for n. For n+ 1 we have

∆n+1(a)∆n+1(b) = ∆n(∆(a))∆n(∆(b))

= ∆n

(
n∑

i=0

(
n

i

)
∆i(∆(a))∆n−i(∆(b))

)

= ∆n

(
n∑

i=0

(
n

i

)
∆(∆i(a))∆(∆n−i(b))

)
.

Now using the partial integration process for the integration ∆, we can write

∆n+1(a)∆n+1(b)

= ∆n∆

(
n∑

i=0

(
n

i

)
∆i+1(a)∆n+1−(i+1)(b) +

n∑
i=0

(
n

i

)
∆i(a)∆n+1−i(b)

)

= ∆n∆

(
n+1∑
k=1

(
n

k − 1

)
∆k(a)∆n+1−k(b) +

n∑
k=0

(
n

k

)
∆k(a)∆n+1−k(b)

)

= ∆n+1

(
n+1∑
k=0

(
n+ 1

k

)
∆k(a)∆n+1−k(b)

)
.

2

Prior to the definition of a higher integration, let us give a simple corollary from the above theorem. We use this
in the next section. Note that for an integration ∆ the linear mapping ∆2 is not necessarily an integration.

Corollary 2.14. Let A be an algebra and ∆ : A → A be an integration of nilpotency r. Then D : A → A defined by
D = ∆r is an integration of nilpotency 1.

Proof . We have

D(a)D(b) = ∆r(a)∆r(b)

= ∆r

(
r∑

i=0

(
r

i

)
∆i(a)∆r−i(b)

)
= 0

= ∆r(∆r(a)b+ a∆r(b))

= D(D(a)b+ aD(b)).

2

Definition 2.15. Let A be an algebra. A sequence {Dn}∞n=0 is called a higher integration if D0 is the identity
mapping on A and

Dn(a)Dn(b) = Dn(Σ
n
i=0Dk(a)Dn−k(b))

for every a, b ∈ A.

Theorem 2.16. Let ∆ be an integration on an algebra A. Define Dn : A → A by Dn = ∆n

n! and let D0 be the identity
mapping on A. Then {Dn}∞n=0 is higher integration.

Proof . Divide both sides of the equation mentioned in Theorem 2.13 by n!2. 2
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3 Integrations on simle finite dimensional C*-algebras

In this section we assume that A is a simle finite dimensional C*-algebra. By proof of the theorem 11.2 [15], each
element a ∈ A can be written as a =

∑n
i,j=1 aij(a)eij , such that aij(a) ∈ Mn(C) and {eij}1⩽i,j⩽n is a finite system

of matrix units with the following properties:

i. e∗ij = eji;

ii. eijekℓ = δjkeiℓ;

ii.
∑n

i=1 eii is the identity ι of A ,

where δjk is the Kronecker delta. In fact the map T : A → Mn(C) defined by T (a) = (aij(a))ij , is a ∗−isomorphism.
For two elements a, b ∈ A we have

ab = (

n∑
i,j=1

aij(a)eij)(

n∑
r,s=1

brs(b)ers) =

n∑
i,s=1

(

n∑
r=1

air(a)brs(b))eis.

The trace of a, denoted by tr(a), is defined by tr(a) =
∑n

i=1 aii(a). The following fact about the trace functional is
useful.

Lemma 3.1. Let a, b ∈ A . Then tr(ab) = tr(ba) and tr(aeij) = aji(a).

Proof . Straightforward. 2

As an example, if H is a finite dimensional Hilbert space, then B(H) has such a matrix unit. We can therefore
deduce that results of this section are true forMn(C). In this section, our ultimate goal is to prove that each integration
on such algebras is inner.

Lemma 3.2. Let ∆ : A → A be a linear mapping and dim(∆(A )) = m for a positive integer m. Then there are
f1, . . . , fm, t1, . . . , tm ∈ A such that ∆(a) =

∑m
k=1 tr(afk)tk.

Proof . Let {t1, . . . , tm} be a basis for ∆(A ). Thus there are linear functionals φk : A → C (1 ⩽ k ⩽ m) such that
∆(a) =

∑m
k=1 φk(a)tk. Now let fk =

∑n
i,j=1 φk(eji)eij . This implies that (fk)ij = φk(eji). We can write

∆(a) =

m∑
k=1

φk(a)tk =

m∑
k=1

φk(

n∑
i,j=1

aij(a)eij)tk

=

m∑
k=1

n∑
i,j=1

aij(a)φk(eij)tk =

m∑
k=1

n∑
i,j=1

aij(a)(fk)jitk

=

m∑
k=1

n∑
i=1

(afk)iitk =

m∑
k=1

tr(afk)tk.

2

Definition 3.3. Let ∆ : A → A be a linear mapping. We say that ∆ is representable by {fk}1⩽k⩽m ∪ {tk}1⩽k⩽m

if ∆(a) =
∑m

k=1 tr(afk)tk.

Proposition 3.4. Let ∆ : A → A be an integration. Then ∆ can be represented by {fk}1⩽k⩽m ∪ {tk}1⩽k⩽m with
the following properties

i. there is a subset N = {(ik, jk) : 1 ⩽ k ⩽ m} of the set N2
n = {(i, j) : 1 ⩽ i, j ⩽ n} such that tk = ∆(eikjk) for

1 ⩽ k ⩽ m and ∆(eij) = 0 for (i, j) /∈ N ;

ii. fk = ejkik for 1 ⩽ k ⩽ m;

iii. tktℓ = αkℓtk + βkℓtℓ for 1 ⩽ k, ℓ ⩽ m, that at least one of the complex numbers αkℓ or βkℓ is zero.
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Proof . Let dim(∆(A )) = m. We know that U = {∆(eij) : (i, j) ∈ N2
n} generates ∆(A ). Thus it contains a basis

{∆(eikjk) : 1 ⩽ k ⩽ m}. Put tk = ∆(eikjk).

Applying the notations used in Lemma 3.2 we have ∆(a) =
∑m

k=1 tr(afk)tk. Considering tℓ = ∆(eiℓjℓ) =∑m
k=1 tr(eiℓjℓfk)tk and the fact that {t1, . . . , tm} is an independence set, we can deduce that (fk)jℓiℓ = tr(eiℓjℓfk) = δkℓ.

Thus fk = ejkik .

Now we have

tktℓ = ∆(eikjk)∆(eiℓjℓ)

= ∆(∆(eikjk)eiℓjℓ + eikjk∆(eiℓjℓ))

= ∆(tkeiℓjℓ + eikjktℓ)

=

m∑
r=1

tr(tkeiℓjℓfr)tr +

m∑
r=1

tr(eikjktℓfr)tr

=

m∑
r=1

tr(tkeiℓjℓejrir )tr +

m∑
r=1

tr(eikjktℓejrir )tr

=

m∑
r=1

δjℓjr tr(tkeiℓir )tr +

m∑
r=1

tr(ejrireikjktℓ)tr

=

m∑
r=1

δjℓjr tr(tkeiℓir )tr +

m∑
r=1

δiriktr(ejrjktℓ)tr

=

m∑
r=1

δjℓjrδiℓir (tk)irir tr +

m∑
r=1

δirikδjrjk(tℓ)jrjr tr

= (tk)iℓiℓtℓ + (tℓ)jkjktk.

We can therefore deduce that
t2k = αktk, tktℓ = αkℓtk + βkℓtℓ (∗)

for some αk, αkℓ, βkℓ ∈ C. We have αktktℓ = t2ktℓ = αkℓt
2
k + βkℓtktℓ = αkαkℓtk + βkℓtktℓ.

Now there are two cases:

If αk = 0, then βkℓ = 0 or tktℓ = 0. Regarding to (∗), in any case we have βkℓ = 0.

And if αk ̸= 0 and βkℓ ̸= 0, then
(αkβkℓ − β2

kℓ)tℓ = αkℓβkℓtk,

and since {tk, tℓ} is an independence set we have αkℓ = 0. Anyhow, at least one of the complex numbers βkℓ or αkℓ is
zero, and thus we have the result. 2

Theorem 3.5. Let A be a simple finite dimensional C*-algebra, and let ∆ : A → A be a linear mapping. Then ∆
is an integration if and only if it is an inner integration implemented by the trace functionals φk : A → C defined by
φk(a) = tr(aejkik) and the set {tk = ∆(eikjk) : 1 ⩽ k ⩽ m} with respect to αkℓ = ∆(eiℓjℓ)jkjk or βkℓ = ∆(eikjk)iℓiℓ ,
that at least one of the complex numbers αkℓ or βkℓ is zero. i.e.,

∆(a) =

n∑
k=1

tr(aejkik)∆(eikjk), a ∈ A

∆(eikjk)∆(eiℓjℓ) = ∆(eiℓjℓ)jkjk∆(eikjk) + ∆(eikjk)iℓiℓ∆(eiℓjℓ) 1 ⩽ k, ℓ ⩽ m.

Proof . Straightforward. 2
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