Integration as a generalization of the integral operator

Nosrat Baloochshahriyari ${ }^{\text {a }}$, Ali Reza Janfadaa ${ }^{\text {a,* }}$, Madjid Mirzavaziri ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics, University of Birjand, Birjand, Iran
${ }^{b}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

(Communicated by Ali Jabbari)

Abstract

Let \mathfrak{A} be an algebra. A derivation on \mathfrak{A} is a linear mapping $\delta: \mathfrak{A} \rightarrow \mathfrak{A}$ such that $\delta(a b)=\delta(a) b+a \delta(b)$ for every $a, b \in \mathfrak{A}$. As a dual to this notion, we consider a linear mapping $\Delta: \mathfrak{A} \rightarrow \mathfrak{A}$ with the property $\Delta(a) \Delta(b)=\Delta(\Delta(a) b+a \Delta(b))$ for every $a, b \in \mathfrak{A}$ and we call it an integration. In this paper, we give some examples, counterexamples and facts concerning integrations on algebras. Furthermore, we state and prove a characterization for integrations on finite dimensional matrix algebras.

Keywords: Derivation, integration, C*-algebra, matrix algebra
2020 MSC: 46L57, 47B47, 46L10, 47C15, 13N15, 16W25, 17A36

1 Introduction

Recall that the Leibniz rule for derivatives states that $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$ for each two differentiable functions. This is the main idea for the Leibniz property of a derivation on an algebra. By its definition, a linear mapping δ on an algebra \mathfrak{A} is called a derivation if $\delta(a b)=\delta(a) b+a \delta(b)$ for every $a, b \in \mathfrak{A}$. The dual process to the Leibniz rule is integration by parts or partial integration process which is stated as $\int u d v=u v-\int v d u$ or, equivalently, $u v=\int u d v+\int v d u$. Substituting u and v into $\int t$ and $\int s$ respectively, we arrive at $\int t \int s=\int\left(\left(\int t\right) s+t\left(\int s\right)\right)$. This motivates us to consider those linear mappings $\Delta: \mathfrak{A} \rightarrow \mathfrak{A}$ with the property $\Delta(a) \Delta(b)=\Delta(\Delta(a) b+a \Delta(b))$ for every $a, b \in \mathfrak{A}$. We use the terminology integration for such linear mappings and we are interested to investigate the relation between derivations and integrations on algebras.

The integration operator is a special case of Rota-Baxter operators introduced by G. Baxter in 1960 [1].
It is not so surprising to us that there should be a calculus theory to link these notions to each other. Once we define an integration, we can consider many other notions concerning it as a dual to the notions of inner derivation, approximately inner derivations, local derivations, Jordan derivations and so on (see, for example [2, 4, 6, 7, 8]).

In Section 2, we give some examples, counterexamples and facts concerning integrations on algebras. In Section 3, we state and prove a characterization for integrations on finite dimensional matrix algebras.

Throughout the paper, \mathfrak{A} is an unital algebra with unit ι and for a positive integer n, the algebra of all complex $n \times n$ matrices is denoted by $M_{n}(\mathbb{C})$. Recall that the matrix algebra $M_{n}(\mathbb{C})$ has a system of matrix units $\left\{E_{i j}\right\}_{1 \leqslant i, j \leqslant n}$ with the following properties:

[^0]i. $E_{i j}^{*}=E_{j i}$;
ii. $E_{i j} E_{k \ell}=\delta_{j k} E_{i \ell}$;
ii. $\sum_{i=1}^{n} E_{i i}$ is the $n \times n$ identity matrix I_{n},
where $\delta_{j k}$ is the Kronecker delta. By corollary 1.28 [15], a factor of type \mathbf{I}_{n} is nothing but the $M_{n}(\mathbb{C})$ and then has such a system of matrix units.

2 Preliminaries

We begin this section with the definition of an integration.
Definition 2.1. A linear mapping $\Delta: \mathfrak{A} \rightarrow \mathfrak{A}$ is called an integration if $\Delta(a) \Delta(b)=\Delta(\Delta(a) b+a \Delta(b))$ for every $a, b \in \mathfrak{A}$.

Recall that an element ε of an algebra \mathfrak{A} is called idempotent if $\varepsilon^{2}=\varepsilon$ and an element ν is called a square nilpotent if $\nu^{2}=0$.

Example 2.2. Let \mathcal{A} be an associative algebra and let x_{0} be a square nilpotent of \mathcal{A}, i.e. $x_{0}^{2}=0$. A linear mapping $\Delta: \mathcal{A} \rightarrow \mathcal{A}$ defined by $\Delta(a)=a x_{0}$ is an integration on \mathcal{A}.

In the following proposition we see that the above example is a typical example of an integration. The proof is straightforward and so we omit it.

Proposition 2.3. Let \mathfrak{A} be an algebra and $\Delta: \mathfrak{A} \rightarrow \mathfrak{A}$ be a linear mapping. If Δ satisfies one of the following conditions, then Δ is an integration on \mathfrak{A}.
i. there is a square nilpotent ν such that $\Delta(a)=\nu a \nu$ for all $a \in \mathfrak{A}$;
ii. there is a square nilpotent ν and an idempotent ε with $\varepsilon \nu=\nu$ such that $\Delta(a)=\nu a \varepsilon$ for all $a \in \mathfrak{A}$;
iii. there is a square nilpotent ν and an idempotent ε with $\nu \varepsilon=\nu$ such that $\Delta(a)=\varepsilon a \nu$ for all $a \in \mathfrak{A}$;
iv. there is a square nilpotent ν and an idempotent ε with $\varepsilon \nu=\nu$ and $\nu \varepsilon=0$ such that $\Delta(a)=\varepsilon a \nu-\nu a \varepsilon$ for all $a \in \mathfrak{A} ;$
v. there is a square nilpotent ν and an idempotent ε with $\varepsilon \nu=0$ and $\nu \varepsilon=\nu$ such that $\Delta(a)=\varepsilon a \nu-\nu a \varepsilon$ for all $a \in \mathfrak{A}$.

The above proposition provides a collection of non-trivial examples of integrations and gives a good idea for the following definition. Prior to define the following notion, we recall that an inner derivation $\delta_{a_{0}}$ implemented by an element a_{0} of an algebra \mathfrak{A} is the derivation defined by $\delta_{a_{0}}(a)=a_{0} a-a a_{0}$ for each $a \in \mathfrak{A}$. It is known that each derivation on $M_{n}(\mathbb{C})$ is inner and the celebrated Kadison-Sakai theorem [6, 11, 14] states that every derivation on a von Neumann algebra is inner. One of our goal in this paper is to find an appropriate definition for an inner integration.

Definition 2.4. Let \mathfrak{A} be an algebra and $\Delta: \mathfrak{A} \rightarrow \mathfrak{A}$ be a linear mapping. Then
i. Δ is called a square nilpotent integration if there is a square nilpotent ν such that $\Delta(a)=\nu a \nu$, for all $a \in \mathfrak{A}$;
ii. Δ is called a nil-idempotent integration if there is a square nilpotent ν and an idempotent ε with $\varepsilon \nu=\nu$ such that $\Delta(a)=\nu a \varepsilon$, for all $a \in \mathfrak{A}$;
iii. Δ is called an idem-nilpotent integration if there is a square nilpotent ν and an idempotent ε with $\nu \varepsilon=\nu$ such that $\Delta(a)=\varepsilon a \nu$, for all $a \in \mathfrak{A} ;$
iv. Δ is called a left nil integration if there is a square nilpotent ν and an idempotent ε with $\varepsilon \nu=\nu$ and $\nu \varepsilon=0$ such that $\Delta(a)=\varepsilon a \nu-\nu a \varepsilon$, for all $a \in \mathfrak{A}$;
v. Δ is called a right nil integration if there is a square nilpotent ν and an idempotent ε with $\varepsilon \nu=0$ and $\nu \varepsilon=\nu$ such that $\Delta(a)=\varepsilon a \nu-\nu a \varepsilon$, for all $a \in \mathfrak{A}$.

Proposition 2.5. Let \mathfrak{A} be an algebra and $\Delta: \mathfrak{A} \rightarrow \mathfrak{A}$ be a linear mapping. Then
i. if Δ is a square nilpotent integration, then $\Delta(\Delta(a) b)=\Delta(a \Delta(b))=0$ for all $a, b \in \mathfrak{A}$;
ii. if Δ is a nil-idempotent integration, then $\Delta(\Delta(a) b)=\Delta^{2}(a \Delta(b))=0$ for all $a, b \in \mathfrak{A}$;
iii. if Δ is an idem-nilpotent integration, then $\Delta^{2}(\Delta(a) b)=\Delta(a \Delta(b))=0$ for all $a, b \in \mathfrak{A}$;
iv. if Δ is a left nil integration, then $\Delta^{2}(\Delta(a) b)=\Delta^{2}(a \Delta(b))=0$ for all $a, b \in \mathfrak{A}$;
v. if Δ is a right nil integration, then $\Delta^{2}(\Delta(a) b)=\Delta^{2}(a \Delta(b))=0$ for all $a, b \in \mathfrak{A}$;

Proof. Straightforward.
Definition 2.6. Let \mathfrak{A} be an algebra and $\Delta: \mathfrak{A} \rightarrow \mathfrak{A}$ be a linear mapping. Then Δ is called an integration of nilpotency r if there is a positive integer r such that $\Delta^{r}(\Delta(a) b)=\Delta^{r}(a \Delta(b))=0$ for each $a, b \in \mathfrak{A}$.

Definition 2.7. Let \mathfrak{A} be an algebra and $\Delta: \mathfrak{A} \rightarrow \mathfrak{A}$ be a linear mapping. Then Δ is called an inner integration if there is a positive integer m, there are positive linear functionals $\varphi_{k}: \mathfrak{A} \rightarrow \mathbb{C}(1 \leqslant k \leqslant m)$ and there are $t_{1}, \ldots, t_{m} \in \mathfrak{A}$ with the following properties

$$
\begin{aligned}
\Delta(a) & =\sum_{k=1}^{m} \varphi_{k}(a) t_{k}, \quad a \in \mathfrak{A} \\
t_{k} t_{\ell} & =\alpha_{k \ell} t_{k}+\beta_{k \ell} t_{\ell} \quad 1 \leqslant k, \ell \leqslant m
\end{aligned}
$$

for some $\alpha_{k \ell}, \beta_{k \ell} \in \mathbb{C}$, that at least one of the complex numbers $\alpha_{k \ell}$ or $\beta_{k \ell}$ is zero. In this case we say that Δ is an inner integration implemented by $\left\{\varphi_{k}\right\}_{1 \leqslant k \leqslant m} \cup\left\{t_{k}\right\}_{1 \leqslant k \leqslant m}$ with respect to $\left\{\alpha_{k \ell}\right\}_{1 \leqslant k, \ell \leqslant m}$ or $\left\{\beta_{k \ell}\right\}_{1 \leqslant k, \ell \leqslant m}$.

Note that if $t_{k} t_{\ell}=0$ for all $1 \leqslant k, \ell \leqslant m$, then Δ is an inner integration of nilpotency 1 . In this case, we have $\Delta(a) \Delta(b)=0$ for each $a, b \in \mathfrak{A}$.

Example 2.8. A linear mapping $\Delta: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ defined by

$$
\Delta(A)=E_{12} A=a_{21} E_{11}+a_{22} E_{12}=a_{21} \Delta\left(E_{21}\right)+a_{22} \Delta\left(E_{22}\right)=\varphi_{1}(a) t_{1}+\varphi_{2}(a) t_{2}
$$

is an inner integration implemented by $\left\{\varphi_{1}, \varphi_{2}, \Delta\left(E_{21}\right), \Delta\left(E_{22}\right)\right\}$, for every $A=\left(a_{i j}\right) \in M_{n}(\mathbb{C})$.
Proposition 2.9. Let \mathfrak{A} be an algebra and $\Delta: \mathfrak{A} \rightarrow \mathfrak{A}$ be an inner integration implemented by $\left\{\varphi_{k}\right\}_{1 \leqslant k \leqslant m} \cup\left\{t_{k}\right\}_{1 \leqslant k \leqslant m}$ with respect to $\left\{\alpha_{k \ell}\right\}_{1 \leqslant k, \ell \leqslant m}$ with $\alpha_{k \ell}=\delta_{k \ell}$ and $\beta_{k \ell}=0$. Then $\jmath=\sum_{k=1}^{m} t_{k}$ is the identity of the algebra $\Delta(\mathfrak{A})$.

Proof. We have

$$
\begin{aligned}
\Delta(a)\left(\sum_{\ell=1}^{m} t_{\ell}\right) & =\left(\sum_{k=1}^{m} \varphi_{k}(a) t_{k}\right)\left(\sum_{\ell=1}^{m} t_{\ell}\right)=\sum_{k=1}^{m} \sum_{\ell=1}^{m} \varphi_{k}(a) t_{k} t_{\ell} \\
& =\sum_{k=1}^{m} \sum_{\ell=1}^{m} \varphi_{k}(a) \delta_{k \ell} t_{k} \\
& =\sum_{k=1}^{m} \varphi_{k}(a) t_{k}=\Delta(a) .
\end{aligned}
$$

In the present section, we give some elementary facts concerning integrations and inner integrations. Note that square nilpotent, nil-idempotent, idem-nilpotent, left and right nil integrations are all of nilpotency at most two.

Proposition 2.10. Let \mathfrak{A} be an algebra, Δ be an integration on \mathfrak{A} and let $n \geqslant 2$ be a positive integer. Then

$$
\begin{equation*}
\Pi_{i=1}^{n} \Delta\left(a_{i}\right)=\Delta\left(\sum_{i=1}^{n} \Pi_{j=1}^{i-1} \Delta\left(a_{j}\right) \cdot a_{i} \cdot \Pi_{j=i+1}^{n} \Delta\left(a_{j}\right)\right) \tag{*}
\end{equation*}
$$

for every $a_{1}, \ldots, a_{n} \in \mathfrak{A}$.
Proof . We use induction on n. For $n=2$ the result is true by the definition of an integration. Let us assume that $(*)$ is true for n. For $n+1$ we have

$$
\begin{aligned}
\Pi_{i=1}^{n+1} \Delta\left(a_{i}\right)= & \Pi_{i=1}^{n} \Delta\left(a_{i}\right) \cdot \Delta\left(a_{n+1}\right) \\
= & \Delta\left(\sum_{i=1}^{n} \Pi_{j=1}^{i-1} \Delta\left(a_{j}\right) \cdot a_{i} \cdot \Pi_{j=i+1}^{n} \Delta\left(a_{j}\right)\right) \cdot \Delta\left(a_{n+1}\right) \\
= & \Delta\left(\Delta\left(\sum_{i=1}^{n} \Pi_{j=1}^{i-1} \Delta\left(a_{j}\right) \cdot a_{i} \cdot \Pi_{j=i+1}^{n} \Delta\left(a_{j}\right)\right) \cdot a_{n+1}\right. \\
& \left.+\sum_{i=1}^{n} \Pi_{j=1}^{i-1} \Delta\left(a_{j}\right) \cdot a_{i} \cdot \Pi_{j=i+1}^{n} \Delta\left(a_{j}\right) \cdot \Delta\left(a_{n+1}\right)\right) \\
= & \Delta\left(\Pi_{i=1}^{n} \Delta\left(a_{i}\right) \cdot a_{n+1}\right. \\
& \left.+\sum_{i=1}^{n} \Pi_{j=1}^{i-1} \Delta\left(a_{j}\right) \cdot a_{i} \cdot \Pi_{j=i+1}^{n+1} \Delta\left(a_{j}\right)\right) \\
= & \Delta\left(\sum_{i=1}^{n+1} \Pi_{j=1}^{i-1} \Delta\left(a_{j}\right) \cdot a_{i} \cdot \Pi_{j=i+1}^{n+1} \Delta\left(a_{j}\right)\right) .
\end{aligned}
$$

Corollary 2.11. Let \mathfrak{A} be a unital algebra with unit ι. Let Δ be an integration on \mathfrak{A} and let n be a positive integer. If $x=\Delta(\iota)$ then $\Delta\left(x^{n-1}\right)=\frac{x^{n}}{n}$.

Proof . Putting $a_{1}=\ldots=a_{n}=\iota$ in Proposition 2.10, we have

$$
x^{n}=\Delta(\iota)^{n}=\Delta\left(\sum_{i=1}^{n} x^{i-1} \iota x^{n-i}\right)=n \Delta\left(x^{n-1}\right)
$$

Though, there are many examples of derivations on algebras whose ranges are not algebras, we can easily see that the range of an integration is obviously an algebra. However, even if the algebra \mathfrak{A} has unit ι we can show that $\iota \notin \Delta(\mathfrak{A})$. In contrary, suppose that $\iota=\Delta(a)$ for some $a \in \mathfrak{A}$ then

$$
\iota=\iota^{2}=\Delta(a)^{2}=\Delta(\Delta(a) a+a \Delta(a))=2 \Delta(a)=2 \iota
$$

which is a contradiction. Nevertheless, the example $\Delta: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ defined by $\Delta(A)=E_{12} A E_{11}$ for each $A \in M_{n}(\mathbb{C})$ shows that the range of an integration can be unital. Note that the mentioned integration is a nilidempotent integration and the unit of its range is E_{11}.

It is known for two derivations δ_{1} and δ_{2} on an algebra \mathfrak{A} and a scalar c, the linear mapping $c \delta_{1}+\delta_{2}$ is again a derivation. A natural question which arises is whether this fact true for integrations or not. The following proposition gives a necessary and sufficient condition for an affirmative answer is some cases.

Proposition 2.12. Let Δ_{1} and Δ_{2} be two integration on an algebra \mathfrak{A} and c be a scalar. Then $c \Delta_{1}+\Delta_{2}$ is an integration on \mathfrak{A} if and only if

$$
\Delta_{1}(a) \Delta_{2}(b)+\Delta_{2}(a) \Delta_{1}(b)=\Delta_{1}\left(\Delta_{2}(a) b+a \Delta_{2}(b)\right)+\Delta_{2}\left(\Delta_{1}(a) b+a \Delta_{1}(b)\right.
$$

In particular, a scalar multiple of an integration is again an integration.
Proof. Straightforward.

As the final part of this section we give a transient consideration on a generalization of the Leibniz rule and the notion of a higher derivation.

Considering the Leibniz rule we can inductively prove that $\delta^{n}(a b)=\sum_{i=0}^{n}\binom{n}{i} \delta^{i}(a) \delta^{n-i}(b)$, for a derivation δ and a positive integer n. This is the starting point of studying the behaviour of the sequence $\left\{d_{n}\right\}_{n=0}^{\infty}$, where $d_{n}=\frac{\delta^{n}}{n!}$. The sequence is an example of a higher derivation and there are some characterizations for higher derivations on algebras (see 3, 5, 9, 10, 12, 13). Using this idea, we have the following theorem.

Theorem 2.13. Let \mathfrak{A} be an algebra, Δ be an integration on \mathfrak{A} and let n be a positive integer. Then

$$
\Delta^{n}(a) \Delta^{n}(b)=\Delta^{n}\left(\sum_{i=0}^{n}\binom{n}{i} \Delta^{i}(a) \Delta^{n-i}(b)\right)
$$

for every $a, b \in \mathfrak{A}$.
Proof . We can inductively prove the result. For $n=1$ the result is obvious by the definition of an integration. Let the result be true for n. For $n+1$ we have

$$
\begin{aligned}
\Delta^{n+1}(a) \Delta^{n+1}(b) & =\Delta^{n}(\Delta(a)) \Delta^{n}(\Delta(b)) \\
& =\Delta^{n}\left(\sum_{i=0}^{n}\binom{n}{i} \Delta^{i}(\Delta(a)) \Delta^{n-i}(\Delta(b))\right) \\
& =\Delta^{n}\left(\sum_{i=0}^{n}\binom{n}{i} \Delta\left(\Delta^{i}(a)\right) \Delta\left(\Delta^{n-i}(b)\right)\right) .
\end{aligned}
$$

Now using the partial integration process for the integration Δ, we can write

$$
\begin{aligned}
& \Delta^{n+1}(a) \Delta^{n+1}(b) \\
= & \Delta^{n} \Delta\left(\sum_{i=0}^{n}\binom{n}{i} \Delta^{i+1}(a) \Delta^{n+1-(i+1)}(b)+\sum_{i=0}^{n}\binom{n}{i} \Delta^{i}(a) \Delta^{n+1-i}(b)\right) \\
= & \Delta^{n} \Delta\left(\sum_{k=1}^{n+1}\binom{n}{k-1} \Delta^{k}(a) \Delta^{n+1-k}(b)+\sum_{k=0}^{n}\binom{n}{k} \Delta^{k}(a) \Delta^{n+1-k}(b)\right) \\
= & \Delta^{n+1}\left(\sum_{k=0}^{n+1}\binom{n+1}{k} \Delta^{k}(a) \Delta^{n+1-k}(b)\right) .
\end{aligned}
$$

Prior to the definition of a higher integration, let us give a simple corollary from the above theorem. We use this in the next section. Note that for an integration Δ the linear mapping Δ^{2} is not necessarily an integration.

Corollary 2.14. Let \mathfrak{A} be an algebra and $\Delta: \mathfrak{A} \rightarrow \mathfrak{A}$ be an integration of nilpotency r. Then $D: \mathfrak{A} \rightarrow \mathfrak{A}$ defined by $D=\Delta^{r}$ is an integration of nilpotency 1 .

Proof . We have

$$
\begin{aligned}
D(a) D(b) & =\Delta^{r}(a) \Delta^{r}(b) \\
& =\Delta^{r}\left(\sum_{i=0}^{r}\binom{r}{i} \Delta^{i}(a) \Delta^{r-i}(b)\right) \\
& =0 \\
& =\Delta^{r}\left(\Delta^{r}(a) b+a \Delta^{r}(b)\right) \\
& =D(D(a) b+a D(b)) .
\end{aligned}
$$

Definition 2.15. Let \mathfrak{A} be an algebra. A sequence $\left\{D_{n}\right\}_{n=0}^{\infty}$ is called a higher integration if D_{0} is the identity mapping on \mathfrak{A} and

$$
D_{n}(a) D_{n}(b)=D_{n}\left(\sum_{i=0}^{n} D_{k}(a) D_{n-k}(b)\right)
$$

for every $a, b \in \mathfrak{A}$.
Theorem 2.16. Let Δ be an integration on an algebra \mathfrak{A}. Define $D_{n}: \mathfrak{A} \rightarrow \mathfrak{A}$ by $D_{n}=\frac{\Delta^{n}}{n!}$ and let D_{0} be the identity mapping on \mathfrak{A}. Then $\left\{D_{n}\right\}_{n=0}^{\infty}$ is higher integration.

Proof . Divide both sides of the equation mentioned in Theorem 2.13 by $n!^{2}$.

3 Integrations on simle finite dimensional C*-algebras

In this section we assume that \mathscr{A} is a simle finite dimensional C^{*}-algebra. By proof of the theorem 11.2 [15], each element $a \in \mathscr{A}$ can be written as $a=\sum_{i, j=1}^{n} a_{i j}(a) e_{i j}$, such that $a_{i j}(a) \in M_{n}(\mathbb{C})$ and $\left\{e_{i j}\right\}_{1 \leqslant i, j \leqslant n}$ is a finite system of matrix units with the following properties:
i. $e_{i j}^{*}=e_{j i}$;
ii. $e_{i j} e_{k \ell}=\delta_{j k} e_{i \ell}$;
ii. $\sum_{i=1}^{n} e_{i i}$ is the identity ι of \mathscr{A},
where $\delta_{j k}$ is the Kronecker delta. In fact the map $T: \mathscr{A} \rightarrow M_{n}(\mathbb{C})$ defined by $T(a)=\left(a_{i j}(a)\right)_{i j}$, is a $*$-isomorphism. For two elements $a, b \in \mathscr{A}$ we have

$$
a b=\left(\sum_{i, j=1}^{n} a_{i j}(a) e_{i j}\right)\left(\sum_{r, s=1}^{n} b_{r s}(b) e_{r s}\right)=\sum_{i, s=1}^{n}\left(\sum_{r=1}^{n} a_{i r}(a) b_{r s}(b)\right) e_{i s} .
$$

The trace of a, denoted by $\operatorname{tr}(a)$, is defined by $\operatorname{tr}(a)=\sum_{i=1}^{n} a_{i i}(a)$. The following fact about the trace functional is useful.

Lemma 3.1. Let $a, b \in \mathscr{A}$. Then $\operatorname{tr}(a b)=\operatorname{tr}(b a)$ and $\operatorname{tr}\left(a e_{i j}\right)=a_{j i}(a)$.
Proof. Straightforward.
As an example, if \mathfrak{H} is a finite dimensional Hilbert space, then $\mathbf{B}(\mathfrak{H})$ has such a matrix unit. We can therefore deduce that results of this section are true for $M_{n}(\mathbb{C})$. In this section, our ultimate goal is to prove that each integration on such algebras is inner.

Lemma 3.2. Let $\Delta: \mathscr{A} \rightarrow \mathscr{A}$ be a linear mapping and $\operatorname{dim}(\Delta(\mathscr{A}))=m$ for a positive integer m. Then there are $f_{1}, \ldots, f_{m}, t_{1}, \ldots, t_{m} \in \mathscr{A}$ such that $\Delta(a)=\sum_{k=1}^{m} \operatorname{tr}\left(a f_{k}\right) t_{k}$.

Proof . Let $\left\{t_{1}, \ldots, t_{m}\right\}$ be a basis for $\Delta(\mathscr{A})$. Thus there are linear functionals $\varphi_{k}: \mathscr{A} \rightarrow \mathbb{C}(1 \leqslant k \leqslant m)$ such that $\Delta(a)=\sum_{k=1}^{m} \varphi_{k}(a) t_{k}$. Now let $f_{k}=\sum_{i, j=1}^{n} \varphi_{k}\left(e_{j i}\right) e_{i j}$. This implies that $\left(f_{k}\right)_{i j}=\varphi_{k}\left(e_{j i}\right)$. We can write

$$
\begin{aligned}
\Delta(a) & =\sum_{k=1}^{m} \varphi_{k}(a) t_{k}=\sum_{k=1}^{m} \varphi_{k}\left(\sum_{i, j=1}^{n} a_{i j}(a) e_{i j}\right) t_{k} \\
& =\sum_{k=1}^{m} \sum_{i, j=1}^{n} a_{i j}(a) \varphi_{k}\left(e_{i j}\right) t_{k}=\sum_{k=1}^{m} \sum_{i, j=1}^{n} a_{i j}(a)\left(f_{k}\right)_{j i} t_{k} \\
& =\sum_{k=1}^{m} \sum_{i=1}^{n}\left(a f_{k}\right)_{i i} t_{k}=\sum_{k=1}^{m} \operatorname{tr}\left(a f_{k}\right) t_{k}
\end{aligned}
$$

Definition 3.3. Let $\Delta: \mathscr{A} \rightarrow \mathscr{A}$ be a linear mapping. We say that Δ is representable by $\left\{f_{k}\right\}_{1 \leqslant k \leqslant m} \cup\left\{t_{k}\right\}_{1 \leqslant k \leqslant m}$ if $\Delta(a)=\sum_{k=1}^{m} \operatorname{tr}\left(a f_{k}\right) t_{k}$.

Proposition 3.4. Let $\Delta: \mathscr{A} \rightarrow \mathscr{A}$ be an integration. Then Δ can be represented by $\left\{f_{k}\right\}_{1 \leqslant k \leqslant m} \cup\left\{t_{k}\right\}_{1 \leqslant k \leqslant m}$ with the following properties
i. there is a subset $N=\left\{\left(i_{k}, j_{k}\right): 1 \leqslant k \leqslant m\right\}$ of the set $N_{n}^{2}=\{(i, j): 1 \leqslant i, j \leqslant n\}$ such that $t_{k}=\Delta\left(e_{i_{k} j_{k}}\right)$ for $1 \leqslant k \leqslant m$ and $\Delta\left(e_{i j}\right)=0$ for $(i, j) \notin N ;$
ii. $f_{k}=e_{j_{k} i_{k}}$ for $1 \leqslant k \leqslant m$;
iii. $t_{k} t_{\ell}=\alpha_{k \ell} t_{k}+\beta_{k \ell} t_{\ell}$ for $1 \leqslant k, \ell \leqslant m$, that at least one of the complex numbers $\alpha_{k \ell}$ or $\beta_{k \ell}$ is zero.

Proof . Let $\operatorname{dim}(\Delta(\mathscr{A}))=m$. We know that $U=\left\{\Delta\left(e_{i j}\right):(i, j) \in N_{n}^{2}\right\}$ generates $\Delta(\mathscr{A})$. Thus it contains a basis $\left\{\Delta\left(e_{i_{k} j_{k}}\right): 1 \leqslant k \leqslant m\right\}$. Put $t_{k}=\Delta\left(e_{i_{k} j_{k}}\right)$.

Applying the notations used in Lemma 3.2 we have $\Delta(a)=\sum_{k=1}^{m} \operatorname{tr}\left(a f_{k}\right) t_{k}$. Considering $t_{\ell}=\Delta\left(e_{i_{\ell} j_{\ell}}\right)=$ $\sum_{k=1}^{m} \operatorname{tr}\left(e_{i_{\ell} j_{\ell}} f_{k}\right) t_{k}$ and the fact that $\left\{t_{1}, \ldots, t_{m}\right\}$ is an independence set, we can deduce that $\left(f_{k}\right)_{j_{\ell} i_{\ell}}=\operatorname{tr}\left(e_{i_{\ell} j_{\ell}} f_{k}\right)=\delta_{k \ell}$. Thus $f_{k}=e_{j_{k} i_{k}}$.

Now we have

$$
\begin{aligned}
t_{k} t_{\ell} & =\Delta\left(e_{i_{k} j_{k}}\right) \Delta\left(e_{i_{\ell} j_{\ell}}\right) \\
& =\Delta\left(\Delta\left(e_{i_{k} j_{k}}\right) e_{i_{\ell} j_{\ell}}+e_{i_{k} j_{k}} \Delta\left(e_{i_{\ell} j_{\ell}}\right)\right) \\
& =\Delta\left(t_{k} e_{i_{\ell} j_{\ell}}+e_{i_{k} j_{k}} t_{\ell}\right) \\
& =\sum_{r=1}^{m} \operatorname{tr}\left(t_{k} e_{i_{\ell} j_{\ell}} f_{r}\right) t_{r}+\sum_{r=1}^{m} \operatorname{tr}\left(e_{i_{k} j_{k}} t_{\ell} f_{r}\right) t_{r} \\
& =\sum_{r=1}^{m} \operatorname{tr}\left(t_{k} e_{i_{\ell} j_{\ell}} e_{j_{r} i_{r}}\right) t_{r}+\sum_{r=1}^{m} \operatorname{tr}\left(e_{i_{k} j_{k}} t_{\ell} e_{j_{r} i_{r}}\right) t_{r} \\
& =\sum_{r=1}^{m} \delta_{j_{\ell} j_{r}} \operatorname{tr}\left(t_{k} e_{i_{\ell} i_{r}}\right) t_{r}+\sum_{r=1}^{m} \operatorname{tr}\left(e_{j_{r} i_{r}} e_{i_{k} j_{k}} t_{\ell}\right) t_{r} \\
& =\sum_{r=1}^{m} \delta_{j_{\ell} j_{r}} \operatorname{tr}\left(t_{k} e_{i_{\ell} i_{r}}\right) t_{r}+\sum_{r=1}^{m} \delta_{i_{r} i_{k}} \operatorname{tr}\left(e_{j_{r} j_{k}} t_{\ell}\right) t_{r} \\
& =\sum_{r=1}^{m} \delta_{j_{\ell} j_{r}} \delta_{i_{\ell} i_{r}}\left(t_{k}\right)_{i_{r} i_{r}} t_{r}+\sum_{r=1}^{m} \delta_{i_{r} i_{k}} \delta_{j_{r} j_{k}}\left(t_{\ell}\right)_{j_{r} j_{r}} t_{r} \\
& =\left(t_{k}\right)_{i_{\ell} i_{\ell}} t_{\ell}+\left(t_{\ell}\right)_{j_{k} j_{k}} t_{k} .
\end{aligned}
$$

We can therefore deduce that

$$
t_{k}^{2}=\alpha_{k} t_{k}, \quad t_{k} t_{\ell}=\alpha_{k \ell} t_{k}+\beta_{k \ell} t_{\ell} \quad(*)
$$

for some $\alpha_{k}, \alpha_{k \ell}, \beta_{k \ell} \in \mathbb{C}$. We have $\alpha_{k} t_{k} t_{\ell}=t_{k}^{2} t_{\ell}=\alpha_{k \ell} t_{k}^{2}+\beta_{k \ell} t_{k} t_{\ell}=\alpha_{k} \alpha_{k \ell} t_{k}+\beta_{k \ell} t_{k} t_{\ell}$.
Now there are two cases:
If $\alpha_{k}=0$, then $\beta_{k \ell}=0$ or $t_{k} t_{\ell}=0$. Regarding to $(*)$, in any case we have $\beta_{k \ell}=0$.
And if $\alpha_{k} \neq 0$ and $\beta_{k \ell} \neq 0$, then

$$
\left(\alpha_{k} \beta_{k \ell}-\beta_{k \ell}^{2}\right) t_{\ell}=\alpha_{k \ell} \beta_{k \ell} t_{k},
$$

and since $\left\{t_{k}, t_{\ell}\right\}$ is an independence set we have $\alpha_{k \ell}=0$. Anyhow, at least one of the complex numbers $\beta_{k \ell}$ or $\alpha_{k \ell}$ is zero, and thus we have the result.

Theorem 3.5. Let \mathscr{A} be a simple finite dimensional C^{*}-algebra, and let $\Delta: \mathscr{A} \rightarrow \mathscr{A}$ be a linear mapping. Then Δ is an integration if and only if it is an inner integration implemented by the trace functionals $\varphi_{k}: \mathscr{A} \rightarrow \mathbb{C}$ defined by $\varphi_{k}(a)=\operatorname{tr}\left(a e_{j_{k} i_{k}}\right)$ and the set $\left\{t_{k}=\Delta\left(e_{i_{k} j_{k}}\right): 1 \leqslant k \leqslant m\right\}$ with respect to $\alpha_{k \ell}=\Delta\left(e_{i_{\ell} j_{\ell}}\right)_{j_{k} j_{k}}$ or $\beta_{k \ell}=\Delta\left(e_{i_{k} j_{k}}\right)_{i_{\ell} i_{\ell}}$, that at least one of the complex numbers $\alpha_{k \ell}$ or $\beta_{k \ell}$ is zero. i.e.,

$$
\begin{aligned}
\Delta(a) & =\sum_{k=1}^{n} \operatorname{tr}\left(a e_{j_{k} i_{k}}\right) \Delta\left(e_{i_{k} j_{k}}\right), \quad a \in \mathscr{A} \\
\Delta\left(e_{i_{k} j_{k}}\right) \Delta\left(e_{i_{\ell} j_{\ell}}\right) & =\Delta\left(e_{i_{\ell} j_{\ell}}\right)_{j_{k} j_{k}} \Delta\left(e_{i_{k} j_{k}}\right)+\Delta\left(e_{i_{k} j_{k}}\right)_{i_{\ell} i_{\ell}} \Delta\left(e_{i_{\ell} j_{\ell}}\right) \quad 1 \leqslant k, \ell \leqslant m .
\end{aligned}
$$

Proof. Straightforward.

References

[1] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960), 731 - 742 .
[2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
[3] H. Hasse and F.K. Schmidt, Noch eine Begrüdung der theorie der höheren Differential quotienten in einem algebraischen Funtionenkörper einer Unbestimmeten, J. Reine Angew. Math. 177 (1937), 215-237.
[4] I.N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[5] N.P. Jewell, Continuity of module and higher derivations, Pacific J. Math. 68 (1977), 91—98.
[6] R.V. Kadison, Derivations of operator algebras, Ann. Math. 83 (1966), 280-293.
[7] R.V. Kadison, Local derivations, J. Algebra 130 (1990), 494-509.
[8] D.R. Larson and A.R. Sourour, Local derivations and local automorphisms of $B(X)$, Proc. Sympos. Pure Math. Part 251 (1990), 187-194.
[9] R.J. Loy, Continuity of higher derivations, Proc. Amer. Math. Soc. 5 (1973), 505-510.
[10] M. Mirzavaziri, Characterization of higher derivations on algebras, Commun. Alg. 38 (2010), no. 3, 981-987.
[11] M. Mirzavaziri and M.S. Moslehian, A Kadison-Sakai-type theorem, Bull. Aust. Math. Soc. 79 (2009), no. 2, 249-257.
[12] M. Mirzavaziri, K. Naranjani, and A. Niknam, Innerness of higher derivations, Banach J. Math. Anal. 4 (2010), no. 2, 121-128.
[13] A. Roy and R. Sridharan, Higher derivations and central simple algebras, Nagoya Math. J. 32 (1968), 21—30.
[14] S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer-Verlag, Berlin, 1971.
[15] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, Heidelberg, New York, 2003.

[^0]: *Corresponding author
 Email addresses: n.shahriyari@birjand.ac.ir (Nosrat Baloochshahriyari), ajanfada@birjand.ac.ir (Ali Reza Janfada), mirzavaziri@gmail.com (Madjid Mirzavaziri)

