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Abstract

In this paper, we consider a numerical method based on extended cubic B-spline basis functions for the determination of
an unknown boundary condition in the inverse second-order one-dimensional hyperbolic telegraph equation. Extended
cubic B-spline (ExCuBs) is an extension of cubic B-spline consisting of a parameter, we combined it with the Tikhonov
regularization method to obtain a numerically stable solution. The convergence and stability of the technique are
proved and shown that it is established under suitable assumptions and accurate order O(k + h2). The numerical
results have been compared with those obtained by the cubic B-spline method to verify the accurate nature of our
method.
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1 Introduction

The telegraph equation is one of the important equations of engineering and science with applications in many different
fields such as modeling of anomalous diffusive and wave propagation phenomenon, modeling of anomalous diffusion and
sub-diffusive systems, continuous-time random walks, transmission and propagation of electrical signals, digital image
processing, thermodynamics, hydrodynamics, elasticity, fluid dynamics, etc[5, 11, 9, 18, 10, 20, 3, 27, 2]. Recently,
author of [19] presented a mathematical model of oncolytic virus spread using a reaction-telegraph equation.

The inverse wave equation is known as one of the fundamental equations in mathematical physics is occur in
many excellent research projects done in this area[4, 12]. In [15], Kozhanov made investigations on the parabolic
and hyperbolic inverse problems of finding a solution together with an unknown right-hand side. Small perturbations
from observations of a scattered field generated by probing the medium with a known signal is discussed via [7]. The
wave-splitting, layer-stripping approach to the time-dependent inverse problem are arisen in the wave equation and
the telegraph equation [17, 25] In recent years, inverse problems for hyperbolic equations are studied to determine
unknown coefficient of the telegraph equation [16]. Mathematically, the problem of signal recovery is referred to as
solving an inverse problem. Inverse telegraph equation deals with the problem of state estimation for a hyperbolic
equation in the presence of unknown, but bounded disturbances. In this paper, we consider the inverse generalized
Telegraph equation to the following form

utt + 2αut − uss + β2u = f(s, t), (s, t) ∈ [0, 1]× [0, tf ], (1.1)
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with initial and boundary conditions

u(s, 0) = f1(s), s ∈ [0, 1], (1.2)

ut(s, 0) = f2(s), s ∈ [0, 1], (1.3)

u(0, t) = g1(t), t ∈ [0, tf ], (1.4)

u(1, t) = g2(t), t ∈ [0, tf ], (1.5)

where α, β are arbitrary positive constants and tf represents the final time, while the functions f1(s), f2(s), g1(t) and
f(s, t) are known functions, g2(t) and u(s, t) are unknown.

The rest of the paper is organized as follows: In Section 2, estened cubic B-spline collocation scheme is explained and
in Subsections 2.1 and 2.2 the method is applied to solve problem (1.1)-(1.5). we prove the stability and convergence
of the method in Subsections 2.3 and 2.4. In Section 3 numerical experiment is conducted to demonstrate the viability
and the efficiency of the proposed methods computationally. A summary is given at the end of the paper in Section 4.

2 Extended B-spline collocation method

In this part, we solve the inverse problem (1.1)-(1.5) with the over-specified condition

u(a, t) = h1(t), t ∈ [0, tf ], (2.1)

where 0 < a < 1 is a fixed point.

The solution domain s ∈ [0, 1] is partitioned into a mesh of uniform length h = si+1 − si by the knots si where
i = 0, 1, . . . , N − 1 such that 0 = s0 < s1 < · · · < sN = 1 be the partition in [0, 1]. The ExCuBs basis functions at the
nodal point si can be presented as[23]

Bi(s, η) =
1

24h4



4h(1− η)(s− si−2)
3 + 3η(s− si−2)

4, s ∈ [si−2, si−1),

(4− η)h4 + 12h3(s− si−1) + 6h2(2 + η)(s− si−1)
2

−12h(s− si−1)
3 − 3η(s− si−1)

4, s ∈ [si−1, si),

(4− η)h4 + 12h3(si+1 − s) + 6h2(2 + η)(si+1 − s)2

−12h(si+1 − s)3 − 3η(si+1 − s)4, s ∈ [si, si+1),

4h(1− η)(si+2 − s)3 + 3η(si+2 − s)4, s ∈ [si+1, si+2),

0, otherwise.

(2.2)

where η∈R is a free parameter and s∈R is a variable. For −8 ≤ η ≤ 1, the ExCuBs basis and cubic B-spline possess
the same properties. The basis function will be reduced to the basis function of cubic B-spline for η = 0. The set of
functions {B−1, B0, . . . , BN+1} forms a basis over the considered domain on [0, 1]. The approximated solution U(s, t)
to u(s, t) can be written in terms of the extended B-splines as[1]

U(s, t) =

N+1∑
i=−1

ci(t)Bi(s, η), (2.3)

where ci(t) are time-dependent quantities to be determined from the boundary and over-specified conditions and
collocation from of the differential equations. The values of Bi(s, η) and its derivatives may be tabulated as in Table 1.
Using approximate function (2.3) and ExCuBs (2.2), the approximate values at the knots of U(s) and its derivatives
up to third order are determined in terms of the time parameters cm as

Um =
4− η

24
cm−1 +

8 + η

12
cm +

4− η

24
cm+1, (2.4)

U ′
m =− 1

2h
cm−1 +

1

2h
cm+1, (2.5)

U ′′
m =

2 + η

2h2
cm−1 −

2 + η

h2
cm +

2 + η

2h2
cm+1. (2.6)
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Table 1: Coefficient of extended cubic B-splines and its derivatives at knots si.

s si−1 si si+1

Bi(s, η)
4−η
24

8+η
12

4−η
24

B′
i(s, η)

1
2h 0 − 1

2h

B′′
i (s, η)

2+η
2h2 − 2+η

h2
2+η
2h2

2.1 Temporal discretization

Let us consider a uniform mesh (si, tj) to discretize the region [0, 1] × [0, tf ] where si = ih, i = 0, 1, 2, . . . , N and
tj = jk, j = 0, 1, . . . , where h and k are mesh sizes in the space and time directions respectively.

At first we discretize the problem in time variable using the following finite difference approximation with uniform
step size k thus, we have

θ1u
j+1 = θ2u

j − uj−1 + k2uj
ss + k2f(s, tj), (2.7)

where
θ1 = 1 + 2αk, θ2 = 2 + 2αk − β2k2. (2.8)

Substituting the approximate solution U for u and putting the values of the nodal values U , its derivatives using
equations (2.4)-(2.6) at the knots in equation (2.7) yields the following difference equation with the variable c

A∗cj+1
i−1 +B∗cj+1

i−1 +A∗cj+1
i = C∗cji−1 +D∗cji + C∗cji+1 − δ1c

j−1
i−1 − δ2c

j−1
i − δ1c

j−1
i+1+k2f(si, tj+1) = ρij , (2.9)

0 ≤ i ≤ N,

where

A∗ = θ1δ1, B∗ = θ1δ2, C∗ = θ2δ1 + k2δ3, D∗ = θ2δ2 − 2k2δ3,

δ1 =
4− η

24
, δ2 =

8 + η

12
, δ3 =

2 + η

2h2
.

The system (2.9) consist of (N + 1) linear equations in (N + 3) unknowns

(c−1, c0, . . . , cN , cN+1)
T .

To obtain a unique solution to this system we need two additional equations which will come from boundary condition
(1.4) and the over-specified conditions (2.1) is required.
Let a = sz, 1 ≤ z ≤ N − 1, so we have

u(sz, t) = h1(t), t ∈ [0, tf ], (2.10)

expanding u in terms of approximate Extended B-spline formula from (2.4) at sz putting m = z we get

4− η

24
cjz−1 +

8 + η

12
cjz +

4− η

24
cjz+1 = h1(tj+1), (2.11)

4− η

24
cj−1 +

8 + η

12
cj0 +

4− η

24
cj1 = g1(tj+1), j = 0, 1, . . . , (2.12)

thus, the system (2.9) is changed to a system of (N + 3) linear equations in (N + 3) unknowns, given by

AC = D, (2.13)

where

A[1, 1] = A[1, 3] = δ1,A[1, 2] = δ2, A[N + 3, s+ 1] = A[N + 3, s+ 3] = δ1, A[N + 3, s+ 2] = δ2,



294 Torabi, Pourgholi

thus

A =



δ1 δ2 δ1 0 0 0 · · · 0

A∗ B∗ A∗ ...

A∗ B∗ A∗

· · · · · · · · ·

· · · · · · · · ·

A∗ B∗ A∗

... A∗ B∗ A∗

0 · · · · · · 0 δ1 δ2 δ1 · · · 0



, C =



c
(j+1)
−1

c
(j+1)
0

c
(j+1)
1

...

c
(j+1)
z

...

c
(j+1)
N−1

c
(j+1)
N

c
(j+1)
N+1



, D =



D
(j)
−1

D0
(j)

D
(j)
1

...

D
(j)
z

...

DN−1
(j)

DN
(j)

DN+1
(j)



,

D
(j)
−1 = g1(tj+1),

D
(j)
i = ρij , 0 ≤ i ≤ N,

D
(j)
N+1 = h1(tj+1).

A is ill-conditioned matrix, thus we solved this system (2.13) by the Tikhonov regularization method [21].

2.2 The initial state

The initial vector c0 and c1 can be obtained from the initial conditions (1.2), (1.3), boundary and over-specified
condition (1.4) and (2.1) as the following expressions:

u(si, t0) =
4− η

24
c0i−1 +

8 + η

12
c0i +

4− η

24
c0i+1 = f1(si) = u0, 0 ≤ i ≤ N,

u(sz, t0) =
4− η

24
c0z−1 +

8 + η

12
c0z +

4− η

24
c0z+1 = h1(t0),

u(0, t0) =
4− η

24
c0−1 +

8 + η

12
c00 +

4− η

24
c01 = g1(t0).

This yields a (N + 3)× (N + 3) system of equations, of the form

ΛC0 = ρ, (2.14)

where

Λ[1, 1] = Λ[1, 3] = δ1, Λ[1, 2] = δ2,

Λ[N + 3, s+ 1] = Λ[N + 3, s+ 3] = δ1, Λ[N + 3, s+ 2] = δ2,

thus

Λ =



δ1 δ2 δ1 0 0 0 · · · 0

δ1 δ2 δ1
...

δ1 δ2 δ1

· · · · · · · · ·

· · · · · · · · ·

δ1 δ2 δ1
... δ1 δ2 δ1

0 · · · · · · 0 δ1 δ2 δ1 · · · 0



, C0 =



c0−1

c0
0

c1
0

...

cz
0

...

cN−1
0

cN
0

cN+1
0



, ρ =



g1(t0)

f1(s0)

f1(s1)
...

f1(sz)
...

f1(sN−1)

f1(sN )

h1(t0)



.
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The solution of (2.14) can be found by the Tikhonov regularization method. Similarly from (1.3), the initial vector
c1 can be determined.

ut(s, 0) =
u1 − u0

k
= f2(s),

u1 = u0 + kf2(s),

we have

u(si, t1) =
4− η

24
c1i−1 +

8 + η

12
c1i +

4− η

24
c1i+1 = f1(si) + kf2(si), 0 ≤ i ≤ N,

u(sz, t1) =
4− η

24
c1z−1 +

8 + η

12
c1z +

4− η

24
c1z+1 = h1(t1), (2.15)

u(0, t1) =
4− η

24
c1−1 +

8 + η

12
c10 +

4− η

24
c11 = g1(t1).

We solve system (2.15) for vector c1, by using the Tikhonov regularization method.

2.3 Stability analysis

In this section, we use the Von Neumann method[14, 24]. Thus using cji = ξjexp(ιϕih) into the homogeneous part
of (2.9) where ϕ is the mode number, ι =

√
−1, h is the element size and ξ is the amplification factor of the scheme.

we get
Υ(ξ) = vξ2 − νξ + ϑ = 0, (2.16)

where

v = θ1(2δ1 cosχ+ δ2), ϑ = (2δ1 cosχ+ δ2),

ν = θ2δ2 − 2k2δ3 + 2(θ2δ1 + k2δ3) cosχ.

We apply Routh–Hurwitz criterion and transformation ξ =
1 + z

1− z
in (2.16). Thus, (1 − z)2Υ(

1 + z

1− z
) = (v + ν +

ϑ)z2 + 2(v − ϑ)z + (v − ν + ϑ). The necessary and sufficient condition for |ξ| ≤ 1 is that (v + ν + ϑ) > 0, (v − ϑ) > 0,
(v − ν + ϑ) > 0. The condition v − ϑ > 0 is always satisfied for all real variable angle χ.
But the conditions (v+ ν + ϑ) and (v− ν + ϑ) > 0 are always satisfied for (v+ ϑ) > ν, ν > 0. It can be easily verified
that (v + ϑ) > ν. But for ν > 0, it is satisfied when (δ3 cosχ − 2β2δ1 cosχ − 2δ3 − β2δ2)k2 + 2(αδ2 + αδ1 cosχ)k +
2δ2 + 4δ1 cosχ > 0. Since, for all k > k1, k < k2 where

k1, k2 = −b1 ±
√
(b21 − b2), b1 =

ε1
ε2

, b2 =
ε3
ε2

, ε1 = αδ2 + αδ1 cosχ,

ε2 = δ3 cosχ− 2β2δ1 cosχ− 2δ3 − β2δ2, ε3 = 2δ2 + 4δ1 cosχ,

we have (v+ ν+ϑ) and (v− ν+ϑ) > 0. Consequently, The ExCuBs technique for model problem is stable for k > k1,
k < k2. □

2.4 Convergence analysis

Let u(s) = u(s, tj+1) be the exact solution of the equation (1.1) in t = tj+1 with the over-specified condition (2.1)

and initial condition (1.2) and also U(s) =
∑N+1

i=−1 ciBi(s, η) be the extened cubic B-spline collocation approximation

to u(s). Due to round off errors in computations we assume that Û(x) be the computed spline for U(x) so that

Û(x) =
∑N+1

i=−2 ĉiBi(s, η) where Ĉ = (ĉ−1, ĉ0, ĉ1, . . . , ĉN , ĉN+1). To estimate the error ∥u(s) − U(s)∥∞ we must

estimate the errors ∥u(s)− Û(s)∥∞ and ∥Û(s)− U(s)∥∞ separately. Following (2.13) for Û we have

AĈ = D̂, (2.17)

where D̂ = (g1(tj+1), ω̂0, ω̂1, . . . , ω̂N , h1(tj+1)), and

ω̂i = C∗cji−1 +D∗cji + C∗cji+1 − δ1c
j−1
i−1 − δ2c

j−1
i − δ1c

j−1
i+1 + k2f(si, tj+1).

Subtracting (2.17) and (2.13) we have

A(C − Ĉ) = (D − D̂), (2.18)

first we need to recall a Theorem.
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Theorem 2.1. Suppose that u∗ ∈ C4[0, 1] and ∥(u∗)(4)(s)∥ ≤ L, ∀s ∈ [0, 1] and ∆ = {0 = s0 < s1 < · · · < sN = 1}
be the equality spaced partition of [0, 1] with step size h. If ˆU(s) be the unique spline function interpolate u∗(s) at
nodes s0, s1, . . . , sN ∈ ∆, then there exist a constant λi where it is independent of h, such that

∥(u∗)i(s)− (Û)i(s)∥ ≤ λiLh
4−i, i = 0, 1, 2, 3, (2.19)

where ∥.∥ represents the ∞-norm.

Proof . For the proof see [13, 8]. □ Now, we want to find a bound on ∥D − D̂∥∞ first. We have

|D(si)− D̂(si)| =
∣∣∣∣ω(si, U(si), U

′′(si)

)
−ω

(
xi, Û(si), Û

′′(si)

)∣∣∣∣,
by following theorem (2.1) we obtain

∥D − D̂∥∞ ≤ M

(
|U(s)− Û(s)|+ |U ′′(s)− Û ′′(s)|

)
≤ M(λ0h

4 + λ2h
2), (2.20)

where ∥ω′′(z)∥∞ ≤ M . Thus we can rewrite (2.20) as follows

∥D − D̂∥∞ ≤ M1h
2, (2.21)

where M1 = ML(λ0h
2 + λ2). The matrix A in (2.18) is an ill-conditioned matrix, thus by Tikhonov regularization

solution [21], we have

(C − Ĉ) = [ATA+ α(R(2))TR2]−1AT (D − D̂), (2.22)

taking the infinity norm and then by using (2.21) we find

∥C − Ĉ∥∞ ≤ ∥[ATA+ α(R(2))TR2]−1AT ∥∞∥D − D̂∥∞ ≤ M2h
2, (2.23)

where M2 = M1∥[ATA+α(R(2))TR2]−1AT ∥∞. Now, we will be able to prove the convergence of our present method.
Therefore, we recall a following lemma first

Lemma 2.2. The extended B-splines {B−1, B0, ..., BN+1} defined in relation (2.2), satisfy the following inequality∣∣∣∣N+1∑
i=−1

Bi(s, η)

∣∣∣∣≤ 1.75, (0 ≤ s ≤ 1). (2.24)

Proof . For proof see[22] □ Now, observe that we have

U(s)− Û(s) =

N+1∑
i=−1

(ci − ĉi)Bi(s),

thus taking the infinity norm and using (2.23) and (2.24) we get

∥U(s)− Û(s)∥∞ =

∥∥∥∥N+1∑
i=−1

(ci − ĉi)Bi(s, η)

∥∥∥∥
∞
≤ ∥(ci − ĉi)∥∞

∣∣∣∣N+1∑
i=−1

Bi(s, η)

∣∣∣∣≤ 7

4
M2h

2 (2.25)

Theorem 2.3. Let u(s) be the exact solution of the equation (1.1) with the over-specified condition (2.1) and initial
conditions (1.2)-(1.3) and also U(s) be the extended B-spline collocation approximation to u(s) then the method has
second order convergence

∥u(s)− U(s)∥ ≤ Ωh2,

where Ω = λ0Lh
2 +

7

4
M2 is some finite constant.
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Proof . From theorem (2.1) we have

∥u(s)− Û(s)∥ ≤ λ0Lh
4, (2.26)

thus substituting from (2.25) and (2.26) we have

∥u(s)− U(s)∥ ≤ ∥u(s)− Û(s)∥+ ∥Û(s)− U(s)∥ ≤ λ0Lh
4 +

7

4
M2h

2 = Ωh2, (2.27)

where Ω = λ0Lh
2 +

7

4
M2. □

Theorem 2.4. The time discretization process (2.7) that we use to discretize equation (1.1) in time variable is of the
first order convergence.

Proof . See [22]. □

We suppose that u(s, t) be the solution of equation (1.1) and U(s, t) be the approximate solution by our present
method then we have

∥u(s, tj)− U(s, tj)∥ ≤ ϱ(k + h2),

(ϱ is some finite constant), thus the order of convergence of our process is O(k + h2).

3 Numerical illustrations

In this Section, the extended cubic B-spline method is employed to obtain the numerical solutions for unknown
boundary conditions in the problem (1.1)-(1.5). Numerical example is discussed in this Section to demonstrate the
accuracy of the presented methods described in Sections 2 and these numerical results are compared with cubic B-spline
method[26].

In an inverse problem, there are two sources of error in the estimation. The first source is the unavoidable bias
deviation (deterministic error) and the second one is the variance due to the amplification of measurement errors
(stochastic error). The global effect of deterministic and stochastic errors is considered in the mean squared error or
the total error [6]. Therefore, we compare the exact and the approximate solutions by considering the total error S
defined by

Sg2 =

[
1

N − 1

N∑
s=1

(
g2(ts+1)− g∗2(ts+1)

)2
] 1

2

,

where N is the number of estimated values, g2 is the exact value, g∗2 is the estimated value.

In order to illustrate the performance of the methods and justify the accuracy and efficiency of the proposed
methods, we also offer the infinity-norm of absolute error for 0 ≤ s ≤ 1 and 0 ≤ t ≤ tf .

Lg2
∞ = ||g2(t)− g∗2(t)||∞ = max |g2(t)− g∗2(t)|,

also,

Lu
∞ = ||u(s, t)− u∗(s, t)||∞ = max |u(s, t)− u∗(s, t)|,

where, u∗(s, t) is the estimated value of u(s, t). We consider two examples of linear telegraph equation in [20], we take
a = 0.8, tf = 1, k = 0.001, α = β = 10, η = 7.5× 10−5 and the noisy data (input data+0.0001×rand(1)).

Example 3.1. In this example, we solve the Telegraph equation given in,

utt + 2αut − uss + β2u = (2− 2α+ β2) exp−t sin(s), (s, t) ∈ [0, 1]× [0, tf ],

with given data

u(s, 0) = sin(s),

u(0, t) = g1(t) = exp(−t), 0 ≤ t ≤ 1,

u(a, t) = h1(t) = exp(−t) sin(a), 0 ≤ t ≤ 1.
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The exact solutions of this problem are,

u(s, t) = exp(−t) sin(s), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1,

u(1, t) = g2(t) = exp(−t) sin(1), 0 ≤ t ≤ 1.

The numerical results of the unknown boundary condition u(1, t) and the obtained numerical solutions for u(s, t) at
point s = 0.2 is reported in Tables 2 and 3. In order to clarify the accuracy of the present method, the corresponding
graphical illustration are presented in Figure 1.

Table 2: The comparison between exact and numerical solutions for g2(t) by using the ExCuBs collocation and cubic B-spline collocation
method in Example 3.1, when h = 1/100 and k = 1/1000.

t Exact ExCuBs cubic B-spline

0.1 0.762156 0.764418 0.841064

0.2 0.689627 0.693961 0.750809

0.3 0.624000 0.629308 0.661028

0.4 0.564619 0.570130 0.585855

0.5 0.510888 0.516203 0.524208

0.6 0.462271 0.467225 0.472057

0.7 0.418280 0.422826 0.425221

0.8 0.378475 0.382615 0.384071

0.9 0.342458 0.346215 0.347276

1 0.309869 0.313273 0.314218

Sg2 - 0.0044 0.0356

Lg2∞ - 0.0055 0.0790

Execution time (second) - 367.324243 507.359855

Condition Number of Matrix A - 3.7719e+ 17 257201357416804960.0

Table 3: The comparison between exact and numerical solutions for u(0.2, t) by using the extended cubic B-spline collocation and cubic
B-spline method in Example 3.1, when h = 1/100 and k = 1/1000.

t Exact ExCuBs cubic B-spline

0.1 0.179943 0.180369 −0.227643

0.2 0.162819 0.163067 0.518497

0.3 0.147325 0.147329 0.224198

0.4 0.133305 0.133220 0.230347

0.5 0.120619 0.120509 0.206538

0.6 0.109141 0.109027 0.186207

0.7 0.098754 0.098646 0.168547

0.8 0.089357 0.089258 0.152532

0.9 0.080853 0.080764 0.138153

1 0.073159 0.073078 0.124933

Sg2 - 1.8023e− 04 0.1493

Lg2∞ - 1.8454e− 07 0.4086

Example 3.2. In this example, we solve the Telegraph equation given in,

utt + 2αut − uss + β2u = β2 cos(t) sin(s)− 2α sin(t) sin(s), (s, t) ∈ [0, 1]× [0, tf ],

with given data

u(s, 0) = sin(s),

u(0, t) = g1(t) = 0, 0 ≤ t ≤ 1,

u(a, t) = h1(t) = cos(t) sin(a), 0 ≤ t ≤ 1.

The exact solutions of this problem are,

u(s, t) = cos(t) sin(s), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1,

u(1, t) = g2(t) = cos(t) sin(1), 0 ≤ t ≤ 1.
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Figure 1: The comparison between the exact and numerical solutions (using extended cubic B-spline method) u(1, t) for Example 3.1.

The numerical results of the unknown boundary condition u(1, t) and the obtained numerical solutions for u(s, t) at
point s = 0.2 is reported in Tables 4 and 5. In order to clarify the accuracy of the present method, the corresponding
graphical illustration are presented in Figure 2.

Table 4: The comparison between exact and numerical solutions for g2(t) by using the ExCuBs collocation and cubic B-spline collocation
method in Example 3.2, when h = 1/100 and k = 1/1000.

t Exact ExCuBs cubic B-spline

0.1 0.837350 0.839880 0.883721

0.2 0.824864 0.829926 0.862334

0.3 0.804136 0.810640 0.828925

0.4 0.775373 0.782477 0.792018

0.5 0.738863 0.746060 0.751575

0.6 0.694970 0.701980 0.705613

0.7 0.644134 0.650790 0.653436

0.8 0.586861 0.593056 0.594852

0.9 0.523725 0.529378 0.530833

1 0.455356 0.460404 0.461726

Sg2 - 0.0060 0.0226

Lg2∞ - 0.0072 0.0465

Execution time (second) - 376.554380 603.750734

Condition Number of Matrix A - 2.4771e+ 17 257201357416804960.0
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Table 5: The comparison between exact and numerical solutions for u(0.2, t) by using the extended cubic B-spline collocation and cubic
B-spline method in Example 3.2, when h = 1/100 and k = 1/1000.

t Exact ExCuBs cubic B-spline

0.1 0.197696 0.198168 −0.218570

0.2 0.194748 0.195078 0.545804

0.3 0.189854 0.189947 0.275556

0.4 0.183063 0.183053 0.296238

0.5 0.174443 0.174384 0.283766

0.6 0.164080 0.163992 0.269843

0.7 0.152078 0.151968 0.253204

0.8 0.138556 0.138430 0.233710

0.9 0.123650 0.123509 0.212050

1 0.107508 0.107355 0.188062

Sg2 - 2.0628e− 04 0.1600

Lg2∞ - 2.2301e− 07 0.4172
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Figure 2: The comparison between the exact and numerical solutions (using extended cubic B-spline method) u(1, t) for Example 3.2.
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4 Conclusion and Future Work

The extended cubic B-spline method has been employed to estimate unknown boundary conditions were proposed
for the inverse generalized telegraph equation (1.1)-(1.5). Numerical comparisons have been made between the ex-
tended cubic B-spline and cubic B-spline method. The numerical results showed that the extended cubic B-spline
has the best performance. More precisely, it is the most accurate and fastest in comparison with cubic B-spline
method. These results are obtained in the MATLAB 7.10 (R2010a) and is tested on a personal computer with in-
tel(R) core(TM)2 Duo CPU and 4GB RAM. Our computational technique in particular is useful for a number of
interesting open problems. For instance, it can be employed for alternative variant of the inverse dynamical system.
These method should help to solve inverse analysis of coupled nonlinear thermo-elastic problem. We plan to pursue
these issue in our future research. Finally, it would be helpful for engineers and scientists to apply the ExCuBs basis
functions for solving a fractional telegraph equation in high dimensional and nonlinear telegraph equation.
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