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Abstract

In this work, we have considered a discrete-time discrete prey-predator. The discrete-time model is formulated in
terms of difference equations and is obtained by applying a nonstandard finite difference scheme of Mickens type. We
have discussed the existence and the local dynamics of the fixed points. Analytically, we demonstrated that the system
undergoes a Neimark-Sacker bifurcation. Under a parametric condition, all chaotic features are justified numerically.
Finally, we use two chaos control strategies to control the Neimark-Sacker bifurcation.
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1 Introduction

Since Lotka and Volterra’s [1, 2] formulation of the mathematical model of predator-prey interactions, many
researchers have devoted themselves to modeling and investigating the relationship between predators and prey. In
comparison to the continuous dynamical system represented by differential equations, discrete dynamical systems may
provide a more efficient computational model for numerical simulations and more complex dynamics. Furthermore,
these models seem to be more realistic than continuous ones when populations have non-overlapping generations [3, 4,
5]. Therefore, in recent time, more attention has been given to a discrete dynamical system. Din [6] provided a discrete-
time prey-predator model through Euler method. Neimark-Sacker bifurcation and periodic doubling bifurcation are
studied and three chaos control methods are implemented to avoid chaotic orbits. In [7], a discrete-time system
derived from the continuous-time Rosenzweig–MacArthur model using the forward Euler scheme with unit integral
step size is investigated. The derived discrete model reveals multi-stability and rich dynamics compared to its related
continuous model. Ackleh et al.[8] developed a continuous-time model for Alzheimer’s disease with two corresponding
discrete-time approximations. They show numerically that the continuous-time model produces sigmoidal growth,
while the discrete-time approximations may exhibit oscillatory dynamics. The reader interested in other discrete time
models is addressed to, among many others, [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].
Motivated by the previously cited works, we discretize the following prey-predator model, subject to the effect of
predator population harvesting:

x′ = ax(1− x)− cx y, y′ = bx y − ey −Hy. (1.1)
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In the model (1.1), the prey grows logistically, where a is the growth rate in the absence of the predator. On the
contrary, the predator decays exponentially in the absence of the prey, where e > 0 stands for the decay rate of
the predator. The nonnegative coefficients c and b stand for the consumption rate and consumption-energy rate,
respectively. The coefficient H corresponds to the harvesting effect. The initial conditions are x0 > 0 and y0 > 0.
Different strategies for discretizing differential equation systems have been mentioned above. To do this, standard
difference schemes (e.g., Euler approximations, Runge-Kutta techniques) are often utilized. In [23], the forward Euler
technique is used to conduct a discrete version of the system (1.1). In this paper, we apply a nonstandard difference
scheme proposed by Liu and Elaydi in [24].The discretization is based on modified Mickens discretization scheme
[25]. The Mickens framework aims at constructing finite-difference schemes that are dynamically consistent with the
underlying continuous models.
The system’s discretization (1.1) yields

xt+1 − xt
ϕ1(h)

= axt − axtxt+1 − c xtyt, (1.2)

yt+1 − yt
ϕ2(h)

= bxtyt − eyt −Hyt, (1.3)

where

ϕ1(h) =
exp(ah)− 1

a
, ϕ2(h) =

1− exp(−(e+H)h)

e+H
.

Thus, from system (1.2)-(1.3) one obtains the following nonlinear discrete model:

xt+1 =
exp(ah)xt − cϕ1(h)xtyt
1 + (exp(ah)− 1)xt

, (1.4)

yt+1 = (exp(−(e+H)h) + bϕ2(h)xt)yt. (1.5)

The goal of this research is to find the system’s fixed points (1.4)-(1.5) and analyze their asymptotic stability. We
use bifurcation theory along with numerical simulation to show the existence of Neimark–Sacker bifurcation in the
system. Furthermore, we employ two methods to completely eliminate or delay the chaotic behaviors.
To sum up, the paper is organized as follows: In Section 2, the existence and the asymptotic stability of the fixed
points are investigated. The existence of the Neimark-Sacker bifurcation is proved analytically in Section 3. The chaos
control system is developed in Section 4. Detailed numerical simulations and computation analysis are developed to
support the analytical findings in Section 5. Finally, Section 6 draws the conclusion to this paper.

2 Local dynamics

The system (1.4)-(1.5) has the following fixed points, the trivial fixed prey-predator point O = (0, 0), the boundary
fixed point A=(1,0) and the coexistence fixed point C = (x∗, y∗) where

x∗ =
e+H

b
, y∗ =

a(b− (e+H))

bc
.

For all parametric values, the fixed points O and A exist, and the coexistence fixed point C exists if b > (e+H).
The Jacobian matrix J(x,y) of (1.4)-(1.5) evaluated at any fixed point (x, y) is given by

J(x,y) =


exp(ah)− cϕ1(h)y

(1 + (exp(ah)− 1)x)
2

−cϕ1(h)x
1 + (exp(ah)− 1)x

bϕ2(h)y exp(−(e+H)h) + bϕ2(h)x

 .

The characteristic equation of J is
ρ2 − trJ(x, y)ρ+ det J(x, y) = 0, (2.1)

where

T := trJ(x, y) =
exp(ah)− cϕ1(h)y

(1 + (exp(ah)− 1)x)
2 + exp(−(e+H)h) + bϕ2(h)x,
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and

D := det J(x, y) =
exp(ah)− cϕ1(h)y

(1 + (exp(ah)− 1)x)
2 [exp(−(e+H)h) + bϕ2(h)x]+

−cbϕ1(h)ϕ2(h)x y
1 + (exp(ah)− 1)x

.

The following lemma describes the various conditions associated to local stability analysis of feasible fixed points

Lemma 2.1. [26] Let ψ(ρ) = ρ2 − Tρ+D. Suppose that ψ(1) > 0, ρ1, ρ2 are two roots of ψ(ρ) = 0. Then

� | ρ1 |< 1 and | ρ2 |< 1 if and only if ψ(−1) > 0 and D < 1;

� (| ρ1 |> 1 and | ρ2 |< 1 ) or (| ρ1 |< 1 and | ρ2 |> 1 ) if and only if ψ(−1) < 0;

� | ρ1 |> 1 and | ρ2 |> 1 if and only if ψ(−1) > 0 and D > 1;

� ρ1 = −1 and | ρ2 |̸= 1 if and only if ψ(−1) = 0 and D ̸= 1;

� ρ1 and ρ2 are complex and | ρ1 |= 1 and | ρ2 |= 1 if and only if T 2 − 4D < 0 and D = 1.

Let ρ1 and ρ2 be two roots of (2.1), which called eigenvalues of the fixed point (x, y). The following typological
classifications are considered:

1. (x, y) is locally asymptotic stable if | ρ1 |< 1 and | ρ2 |< 1 .

2. (x, y) is called a source if | ρ1 |> 1 and | ρ2 |> 1. A source is locally unstable.

3. (x, y) is called a saddle if | ρ1 |< 1 and | ρ2 |> 1 or (| ρ1 |> 1 and | ρ2 |< 1).

4. (x, y) is called non-hyperbolic if either | ρ1 |= 1 or | ρ2 |= 1.

• For the fixed point O(0, 0) we have

J(O) =

exp(ah) 0

0 exp(−(e+H)h)

 .

The eigenvalues of J(O) are
λ1 = exp(ah) and λ2 = exp(−(e+H)h). (2.2)

From (2.2), it is easy to see that O(0, 0) is saddle because λ1 > 1 and λ2 < 1 .
• For the fixed point A(1, 0) we have

J(A) =

exp(ah) 0

0 exp(−(e+H)h) + b(1−exp(−(e+H)h))
e+H

 .

The eigenvalues of J(A) are

λ1 = exp(−ah) and λ2 = exp(−(e+H)h) +
b(1− exp(−(e+H)h))

e+H
. (2.3)

From (2.3), if b < e+H. Then A(1, 0) is locally asymptotically stable. Otherwise A(1, 0) is saddle.

• The Jacobian matrix about the coexistence fixed point C is given by:

JC =


1

1 + (exp(ah)− 1) e+H
b

− c(exp(ah)− 1)(e+H)

a(b+ (exp(ah)− 1))(e+H)
a(b− (e+H))(1− exp(−(e+H)h))

c(e+H)
1

 . (2.4)
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The characteristic equation of Jacobian matrix (2.4) can be written as

ω2 − tr

(
JC

)
ω + det

(
JC

)
= 0, (2.5)

where

tr

(
JC

)
= 1 +

1

1 + (exp(ah)− 1) e+H
b

, (2.6)

and

det

(
JC

)
=

1

1 + (exp(ah)− 1) e+H
b

+
(exp(ah)− 1)(b− (e+H))(1− exp(−(e+H)h))

(e+H)(b+ (exp(ah)− 1))
. (2.7)

The discriminant of (2.5) is

∆ = tr

(
JC

)2

− 4 det

(
JC

)
. (2.8)

Lemma 2.2. � The coexistence fixed point C is locally asymptotically stable if

e+H < b < (e+H)

(
1 +

1

1− exp(−(e+H)h)

)
.

� The coexistence fixed point C is source if

b > max

{
e+H, (e+H)

(
1 +

1

1− exp(−(e+H)h)

)}
.

� The coexistence fixed point C is non-hyperbolic if

b = (e+H)

(
1 +

1

1− exp(−(e+H)h)

)
.

Proof. The characteristic equation of the fixed point can be represented as

F (ω) = ω2 − tr

(
JC

)
ω + det

(
JC

)
= 0. (2.9)

By using Jury criteria [26], clearly F (1) > 0 implies

(exp(ah)− 1)(b− (e+H))(1− exp(−(e+H)h))

(e+H)(b+ (exp(ah)− 1))
> 0,

Moreover, we have

F (−1) = 2 +
2

1 + (exp(ah)− 1) e+H
b

+
(exp(ah)− 1)(b− (e+H))(1− exp(−(e+H)h))

(e+H)(b+ (exp(ah)− 1))
> 0.

Now

det

(
JC

)
< 1

implies that
(exp(ah)− 1)(b− (e+H))(1− exp(−(e+H)h))

(e+H)(b+ (exp(ah)− 1))
< 1. (2.10)

Simplifying the inequality (2.10), one gets

b < (e+H)

(
1 +

1

1− exp(−(e+H)h)

)
.

If the discriminant ∆ defined in (2.8) is negative and b = (e+H)

(
1 +

1

1− exp(−(e+H)h)

)
holds, then the Jacobian

matrix (2.4) has two complex conjugate eigenvalues with modulus 1. Thus, this conditions can be written as

NB =

{
(a, c, e, h,H) > 0, ∆ < 0, b = (e+H)

(
1 +

1

1− exp(−(e+H)h)

)}
. (2.11)
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3 Neimark-Sacker bifurcation

The roots of the characteristic equation (2.9) at C(x∗, y∗) are a pair of complex conjugate numbers ω1, ω2 given
by

ω1,2 =

tr

(
JC

)
± i

√
4 det

(
JC

)
−
(
tr

(
JC

))2

2
, (3.1)

with trJC and det JC are given in (2.6) and (2.7) respectively. Let Neimark-Sacker bifurcation occur in the neighbor-
hood of b = b, we construct then the following set

NB =
{
(a, c, e, h,H) > 0, ∆ < 0, b = b

}
. (3.2)

Setting the values of all parameters in (3.2), and if we vary b in a small neighborhood of b = b, then the coexistence
fixed point C will experiences Neimark-Sacker bifurcation.
Taking a small perturbation b∗ where (b∗ ≪ 1) of the parameter b in the neighborhood of b = b in the system
(1.4)-(1.5), we obtain

xt+1 =
exp(ah)xt − cϕ1(h)xtyt
1 + (exp(ah)− 1)xt

= f(xt, ut, b
∗), (3.3a)

yt+1 =

(
exp(−(e+H)h) + (b+ b∗)ϕ2(h)xt

)
yt = g(xt, ut, b

∗). (3.3b)

Let vt = xt − x∗ , wt = yt − y∗. Then from (3.3) we set

vt+1 =
exp(ah)(vt + x∗)− c ϕ1(h)(vt + x∗)(wt + y∗)

1 + (exp(ah)− 1)(vt + x∗)
− x∗, (3.4a)

wt+1 =

(
exp(−(e+H)h) + (b+ b∗)ϕ2(h)(vt + x∗)

)
(wt + y∗)− y∗. (3.4b)

Expanding (3.4) in Taylor series at (vt, wt) = (0, 0) up to second order, we obtain

vt+1 = α1vt + α2wt + α12vtwt + α11v
2
t +O

(
(| vt | + | wt |)2

)
, (3.5a)

wt+1 = β1vt + β2wt + β12vtwt +O

(
(| vt | + | wt |)2

)
, (3.5b)

where

α1 = fx(x
∗, y∗, 0) =

1

1 + (exp(ah)− 1)x∗
, α2 = fy(x

∗, y∗, 0) = − cϕ1(h)x
∗

1 + (exp(ah)− 1)x∗
,

α12 = fxy(x
∗, y∗, 0) = − cϕ1(h)

(1 + (exp(ah)− 1)x∗)2
, α11 = fxx(x

∗, y∗, 0) =
(exp(ah)− 1)(exp(ah)− cϕ1(h)y

∗)

(1 + (exp(ah)− 1)x∗)2(
x∗(exp(ah)− 1)

1 + (exp(ah)− 1)x∗
− 1

)
, β1 = gx(x

∗, y∗, 0) = bϕ2(h)y
∗, β2 = gy(x

∗, y∗, 0) = 1, β12 = gxy(x
∗, y∗, 0) = bϕ2(h).

The linearized system (3.5) at (v(t), w(t)) = (0, 0) admits the characteristic equation with the roots

ω1,2(b
∗) =

trJ(b∗)± i
√

4 detJ(b∗)− (tr(b∗))2

2
, (3.6)

and
|ω1,2(b

∗)| =
√

det J(b∗).

Moreover, when b∗ tends to zero, yields

det(J(0)) = 1 and
d|ω1,2|
db∗

|b∗=0 ̸= 0. (3.7)

Additionally, we required that when b∗ = 0 , ωm
1,2 ̸= 1, m = 1, 2, 3, 4. This is equivalent to trJ(0) ̸= −2,−1, 1, 2.
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Let η = Re(ω1,2), and ξ = Im(ω1,2). The model (3.5) is written as(
vt+1

wt+1

)
=

(
α1 α2

β1 β2

)(
vt
wt

)
+

(
α12vtwt + α11v

2
t

β12vtwt

)
. (3.8)

Let us consider the invertible matrix P associated to the eigenvalue λ1,2 = η ± iξ

P =

(
α2 0

η − α1 −ξ

)
.

Using the following translation (
vt
wt

)
=

(
α2 0

η − α1 −ξ

)(
Xt

Yt

)
.

The system (3.8) can be written as

P

(
Xt+1

Yt+1

)
=

(
α1 α2

β1 β2

)
P

(
Xt

Yt

)
+


(
α12α2(η − α1) + α11α

2
2

)
X2

t −
(
ξα12α2

)
XtYt(

β12α2(η − α1)

)
X2

t −
(
ξβ12α2

)
XtYt

 .

Therefore

(
Xt+1

Yt+1

)
=

(
η −ξ
−ξ η

)(
Xt

Yt

)
+ P−1


(
α12α2(η − α1) + α11α

2
2

)
X2

t −
(
ξα12α2

)
XtYt(

β12α2(η − α1)

)
X2

t −
(
ξβ12α2

)
XtYt

 ,

where

P−1 =

( 1
α2

0
η−α1

ξα2

1
ξ

)
.

Thus (
Xt+1

Yt+1

)
=

(
η −ξ
−ξ η

)(
Xt

Yt

)
+

(
F (Xt, Yt)
G(Xt, Yt)

)
, (3.9)

where

F (Xt, Yt) =
1

α2

(
α12α2(η − α1) + α11α

2
2

)
X2

t − 1

α2
(ξα12α2)XtYt,

and

G(Xt, Yt) =

(
(α12α2(η − α1) + α11α

2
2)
η − α1

ξα2
+
β12α2(η − α1)

ξ

)
X2

t −
(
(ξα12α2)

η − α1

ξα2
+
ξβ12α2

ξ

)
XtYt.

In order for (5.5) to undergo a Neimark-Sacker bifurcation, it is required that the following Lyapunov coefficient is
nonzero [27]:

χ = −ℜ
[
(1− 2ω)ω2

1− ω
τ11τ20

]
− 1

2
| τ11 |2 − | τ02 |2 +ℜ(ωτ21), (3.10)

τ02 =
1

8
[FXtXt

− FYtYt
− 2GXtYt

+ i(GXtXt
−GYtYt

+ 2FXtYt
)](0,0),

=
1

4

[
1

α2

(
α12α2(η − α1) + α11α

2
2

)
+

(
(ξα12α2)

η − α1

ξα2
+
ξβ12α2

ξ

)
+

i

((
(α12α2(η − α1) + α11α

2
2)
η − α1

ξα2
+
β12α2(η − α1)

ξ

)
− 1

α2
(ξα12α2)

)]
,

τ11 =
1

4
[FXtX(t) + FYtYt

+ i(GXtXt
+GYtYt

)](0,0),

=
1

4

[
1

α2

(
α12α2(η − α1) + α11α

2
2

)
+ i

(
((α12α2(η − α1) + α11α

2
2)
η − α1

ξα2
+
β12α2(η − α1)

ξ

)]
,
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τ20 =
1

8
[FXtXt − FYtYt + 2GXtYt + i(GXtXt −GYtYt − 2FXtYt)](0,0),

=
1

4

[(
1

α2

(
α12α2(η − α1) + α11α

2
2

)
−
(
(ξα12α2)

η − α1

ξα2
+
ξβ12α2

ξ

)
+

i

((
(α12α2(η − α1) + α11α

2
2)
η − α1

ξα2
+
β12α2(η − α1)

ξ

)
+

1

α2
(ξα12α2)

)]
,

and

τ21 = 1
16 [FXtXtXt

+ FXtYtYt
+GXtXtYt

+GYtYtYt
+ i(GXtXtXt

+GXtYtYt
− FXtXtYt

− FYtYtYt
)](0,0) = 0.

Based on the above analysis, we state the following result on Neimark-Sacker bifurcation.

Theorem 3.1. ([27]). If the condition (3.7) holds and the Lyapunov coefficient χ defined in (3.10) is nonzero. Then,
the system (1.4)-(1.5) experiences a Neimark-Sacker bifurcation at its coexistence fixed point C(x∗, y∗), whenever b

deviates in the neighborhood of b = (e+H)

(
1 +

1

1− exp(−(e+H)h)

)
. Moreover, if χ < 0 (χ > 0) then an attracting

(respectively repelling) invariant closed curve bifurcates from the fixed point C(x∗, y∗) for b > b∗ (respectively, b < b∗

).

4 Chaos Control

Controlling chaos attempts to stabilize an unstable orbit in a given system. To do this, we apply small perturbations
to the values of certain parameters known as bifurcation parameters. In this paper, we employ two methods to stabilize
the chaos produced by Neimark-Sacker bifurcation: The state feedback method [6] developed in Subsection (4.1) and
the hybrid method [28] developed in Subsection (4.2).

4.1 Feedback Control method

We write the system (1.4)-(1.5) in the following form to apply the state feedback method

xt+1 =
exp(ah)xt − cϕ1(h)xtyt
1 + (exp(ah)− 1)xt

, (4.1)

yt+1 =

(
exp(−(e+H)h) + bϕ2(h)xt

)
yt − St. (4.2)

Here, St = α(xt−x∗)+β(yt−y∗) is the feedback control force applied to the fixed point C(x∗, y∗) = ( e+H
b , ab−a(e+H)

bc ),
where α, β are the feedback gains.
The Jacobian matrix at (x∗, y∗) is

J(x∗, y∗) =

(
1

1+(exp(ah)−1)x∗ − cϕ1(h)x
∗

1+(exp(ah)−1)x∗

bϕ2(h)y
∗ − α exp(−(e+H)h) + bϕ2(h)x

∗ − β

)
. (4.3)

The corresponding characteristic equation is

λ2 −
[

1

1 + (exp(ah)− 1)x∗
+ e−(e+H)h + bϕ2(h)x

∗ − β

]
λ+

exp(−(e+H)h) + bϕ2(h)x
∗ − β

1 + (exp(ah)− 1)x∗
+ (4.4)

cϕ1(h)x
∗

1 + (exp(ah)− 1)x∗

(
bϕ2(h)y

∗ − α

)
= 0.

Let λ1 , λ2 are the eigenvalues of the characteristic (4.4) then sum and product of the roots is given by

λ1 + λ2 =
1

1 + (exp(ah)− 1)x∗
+ exp(−(e+H)h) + bϕ2(h)x

∗ − β, (4.5)

λ1λ2 =
1

1 + (exp(ah)− 1)x∗

(
exp(−(e+H)h) + bϕ2(h)x

∗ − β

)
+

cϕ1(h)x
∗

1 + (exp(ah)− 1)x∗

(
bϕ2(h)y

∗ − α

)
. (4.6)
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Lemma 4.1. The system (4.1)-(4.2) is asymptotically stable if the eigenvalues of (4.4) have absolute value less than
1.

Proof. The marginal stability lines can be obtained from the conditions:
λ1 = ±1 , λ1λ2 = 1.
For the condition λ1λ2 = 1, the equation 4.6 gives

L1 :
cϕ1(h)x

∗

1 + (exp(ah)− 1)x∗
α+

1

1 + (exp(ah)− 1)x∗
β = −1 +

exp(−(e+H)h) + bϕ2(h)x
∗ + cϕ1(h)x

∗bϕ2(h)y
∗

1 + (exp(ah)− 1)x∗
, (4.7)

Eq. (4.7) expresses the first condition for marginal stability.
For λ1 = 1 , the equation (4.5) yields

L2 :
cϕ1(h)x

∗

1 + (exp(ah)− 1)x∗
α− (exp(ah)− 1)x∗

1 + (exp(ah)− 1)x∗
β = 1− 1 + bcϕ1(h)ϕ2(h)x

∗y∗ − (exp(−(e+H)h) + bϕ2(h)x
∗)

1 + (exp(ah)− 1)x∗
−

(4.8)
(exp(−(e+H)h) + bϕ2(h)x

∗).

Similarly for λ1 = −1 , one obtains

L3 :
cϕ1(h)x

∗

1 + (exp(ah)− 1)x∗
α+

2 + (exp(ah)− 1)x∗

1 + (exp(ah)− 1)x∗
β = 1 +

1 + bcϕ1(h)ϕ2(h)x
∗y∗ + exp(−(e+H)h) + bϕ2(h)x

∗

1 + (exp(ah)− 1)x∗
+

(4.9)
(exp(−(e+H)h) + bϕ2(h)x

∗).

The lines L1 , L2 , L3 give the conditions for the eigenvalues to have absolute value less than 1. The triangular region
bounded by these lines accommodates stable eigenvalues.

4.2 Hybrid control

The modified controlled system can be written for the hybrid method’s implementation as follows:

xt+1 = µ

(
exp(ah)xt − cϕ1(h)xtyt
1 + (exp(ah)− 1)xt

)
+ (1− µ)xt, (4.10)

yt+1 = µ

((
exp(−(e+H)h) + bϕ2(h)xt

)
yt

)
+ (1− µ)yt, (4.11)

where µ ∈ (0, 1), is the controlled parameter. The Jacobian of system (4.10)-(4.11) evaluated at C(x∗, y∗) is

Jµ(C) =

 1 + µ

(
exp(ah)−cϕ1(h)y

∗

(1+(exp(ah)−1)x∗)2 − 1

)
−µ cϕ1(h)x

∗

1+(exp(ah)−1)x∗

µbϕ2(h)y
∗ 1 + µ

(
exp(−(e+H)h) + bϕ2(h)x

∗ − 1

)
 , (4.12)

and the associated characteristic equation takes the form

ζ2 − Tζ +D = 0, (4.13)

where

T =

(
1 + µ

(
exp(ah)− cϕ1(h)y

∗

(1 + (exp(ah)− 1)x∗)2
− 1

)
+ 1 + µ

(
exp(−(e+H)h) + bϕ2(h)x

∗ − 1

))
, (4.14)

and

D =

(
1+µ

(
exp(ah)− cϕ1(h)y

∗

(1 + (exp(ah)− 1)x∗)2
−1

))(
1+µ

(
exp(−(e+H)h)+bϕ2(h)x

∗−1

))
+µ2 bcϕ1(h)ϕ2(h)x

∗y∗

1 + (exp(ah)− 1)x∗
. (4.15)

Lemma 4.2. The coexistence fixed point C(x∗, y∗) of controlled system (4.10)-(4.11) is locally asymptotically stable,
whenever the following condition is satisfied:

| T |< 1 +D < 2,

where T and D are defined in (4.14) and (4.15) respectively.
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5 Numerical simulations

In this section, we give some numerical simulations to confirm our theoretical analysis and to show more complex
dynamical behaviors for the system (1.4)-(1.5). We set (h, a,H, c, e) = (0.9, 2.5, 1, 1, 0.2). The coexistence fixed point
C(0.41, 1.47) is locally asymptotically stable, which means that all orbits are eventually attracted to it, as shown in
Fig. (1). However, the system (1.4)-(1.5) starts to lose its stability and a closed curve related to Neimark-Sacker
bifurcation is appeared. To see this, if b > 2.95 the model (1.4)-(1.5) becomes

xt+1 =
e2.5∗0.9xt − e2.5∗0.9−1

2.5 xtyt

1 + (e2.5∗0.9 − 1)xt
= f(xt, yt, b

∗), (5.1)

yt+1 =

(
e−(0.2+1)∗0.9 + (2.95 + b∗)

1− e−(0.2+1)∗0.9

1.2
xt

)
yt = g(xt, yt, b

∗). (5.2)

We transform (0.41, 1.47) into (0, 0) by vt = xt − 0.41 and wt = yt − 1.47. Therefore, the system (5.1)-(5.2) becomes

vt+1 = 0.2232156961vt − 0.3107137215wt − 0.1691614138vtwt − 0.424505997v2t , (5.3a)

w(t+ 1) = 2.3865366694vt + wt + 1.6234943329vtwt. (5.3b)

The eigenvalues of the linear part of (5.3) is

ω1,2 = 0.6116078481± 0.7685578874 i. (5.4)

Now, (5.3) takes the following form(
Xt+1

Yt+1

)
=

(
0.6116078481 −0.7685578874
−0.7685578874 0.6116078481

)(
Xt

Yt

)
+

(
F (Xt, Yt)
G(Xt, Yt)

)
, (5.5)

where
F (Xt, Yt) = 0.0661988724X2

t + 0.1300103388XtYt,

and
G(Xt, Yt) = −0.221466959X2

t + 0.5701429315XtYt.

Computation yields
τ02 = −0.125986015 − 0.022864155 i, (5.6)

τ11 = 0.0330994362 − 0.1107334795 i, (5.7)

τ20 = 0.159085451 − 0.087869325 i, (5.8)

τ21 = 0. (5.9)

Using (5.4)-(5.6)-(5.7)-(5.8) and (5.9) in (3.10), one gets χ = 0.049457454 > 0. Hence, the model (1.4)-(1.5) undergoes
a repelling Neimark-Sacker bifurcation if b > 2.95, and meanwhile, a stable curve appears, which is depicted in Fig.
(2)
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(b): b = 2.95

Figure 1: Phase portraits of model for discrete model (1.4)-(1.5) for different value of b.
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(d): b = 3.2

Figure 2: The appearance of the Neimark-Sacker bifurcation to full chaos in the discrete model(1.4)-(1.5).

Now, in order to stabilize the chaos in the system (1.4)-(1.5) about the fixed point C(x∗, y∗) = (0.41, 1.47). For the
first method state feedback control, we chose b = 3.05. The corresponding chaotic behavior is produced in Fig(2)(b).
For these parameters, Lemma (4.1) gives the following lines of marginal stability for the system (4.1)-(4.2):

L1 : −0.3107137215α− 0.2232156961β = 0.0039143987, (5.10)

L2 : 0.3107137215α+ 0.776784304β = −0.7450778836, (5.11)

L3 : 0.3107137215α− 1.2232156961β = −3.247093319. (5.12)

The system (4.1)-(4.2) is stable for the triangular region bounded by the marginal lines L1 , L2 and L3. Now, in order
to make the fixed point locally asymptotically stable, consider the feedback controlling force St = α(xt−x∗)+β(yt−y∗)
with feedback gains α = 0.45 , β = 0.55 , chosen, from the triangular region from Fig.(3). For these values, a time series
is drawn in Fig. (refD), which demonstrates that the system (4.1)-(4.2) converges to the fixed point C(0.41, 1.47), and
the stability is finally rebuilt.
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Figure 3: Stability Region for the controlled system (4.1)-(4.2).
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(b) The chaos is controlled at time t = 300.

Figure 4: Stable time series for x and y for the controlled system (4.1)-(4.2) for b = 3.05 with initial conditions (x0, y0) = (0.3, 0.4).

Now, in order to use the hybrid control method, the controlled system (4.10)-(4.11) related to (1.4)-(1.5) can be
written as

xt+1 = µ

(
e2.5∗0.9xt − e2.5∗0.9−1

2.5 xtyt

1 + (e2.5∗0.9 − 1)xt

)
+ (1− µ)xt, (5.13)

yt+1 = µ

((
e−(1.2)∗0.9 + 1.6 ∗ 3.05 ∗ 1− e−1.2

1.2
xt

)
yt

)
+ (1− µ)yt. (5.14)

For the value µ = 0.98, time series and phase portraits are plotted in Fig. (5) which reproduce the instability for
the system.
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Figure 5: Phase portrait and time series of discrete model (4.10)-(4.11) respectively for b = 3.05 and for ρ = 0.98

Now, for the value µ = 0.96, time series and phase portrait are plotted in Fig. (6) which show the stability for the
system.
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Figure 6: Phase portrait and time series of discrete model (4.10)-(4.11) respectively for b = 3.05 and for ρ = 0.96.

6 Conclusion

In this work, we investigated the dynamical properties of a discrete-time prey-predator system. The model is
developed by discretizing a differential Lotka-Voltera model and using a nonstandard finite difference scheme, which
preserves the essential properties of the continuous system. The existence and local asymptotic stability of the fixed
points are investigated. To support the complexity of (1.4)-(1.5), the presence of Neimark-Sacker bifurcation for the

coexistence fixed point (
e+H

b
,
a(b− (e+H))

bc
) is proved analytically using bifurcation theory. Detailed numerical

simulations have been performed with the purpose of validating our theoretical findings and exhibiting more complex
features. Two control strategies, the state feedbach method and the hybrid method, are employed to control the choas
produced by the Neimark-Sacker bifurcation. Numerical simulations give evidence of the successful implementation
of these methods to stabilize the chaotic behavior produced by Neimark-Sacker bifurcation. In our perspective,
introducing the evolution of phenotypic traits in a discrete prey-predator model utilizing evolutionary game theory is
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a fascinating topic [10, 22, 29]. Another challenging open question is the establishment of the global stability for the
current developed system. As a result, new methods for determining the global stability of fixed points, such as the
method of Lyapunov functions, as discussed in [17].
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