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Abstract

In this paper, we study the concept of L-normal fuzzy filters of distributive lattices in terms of annulates. We also
study the special class of fuzzy filters called L-normal fuzzy filters. Further, a set of equivalent conditions are derived
for an L-fuzzy filter to be an L-normal fuzzy filter, which leads to a characterization of disjunctive lattices. We observe
that every L-normal fuzzy filter is the intersection of all L-prime normal fuzzy filters containing it. Finally, we study
the space of L-prime normal fuzzy filters and investigate some of their properties.
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1 Introduction

In 1970, M. Mandelker [14] introduced the concept of annihilators as a natural generalization of relative pseudo-
complement. He also characterized distributive lattices with the help of these annihilators. Latter, properties of
annihilators extensively studied by many authors, particularly T.P Speed in the papers [21] and [22]. In 1973, W.
Cornish [7], studied the concept of annulets and α-ideals in a distributive lattice with least element ”0” and he
characterized α-ideals in terms of annulates. In [19], M. S. Rao studied the concept of normal filters of distributive
lattices with the help of annihilators. He characterized disjunctive lattice in terms of normal filters.

Fuzzy set theory was guided by the assumption that classical sets were not natural, appropriate or useful notions
in describing the real life problems, because every object encountered in this real physical world carries some degree of
fuzziness. A lot of work on fuzzy sets has come into being with many applications to various fields such as computer
science, artificial intelligence, expert systems, control systems, decision making, medical diagnosis, management sci-
ence, operations research, pattern recognition, neural network and others (see [9, 15, 24, 26]). Many papers on fuzzy
algebra have been published since Rosenfeld [20] introduced the concept of fuzzy subgroup. In particular, Rajesh
Kumar, Kumbhojkar and Hadji-Abadi studied the space of prime fuzzy ideals of a ring (see [10, 12, 13]). C. S. S. Raj
and K. E. Belleza studied prime fuzzy filter and dual B-filters of a semilattice and B-algebras respectively (see [4, 18]).
In [1], B. A. Alaba and W. Z. Norahun introduced the concept of α-fuzzy ideals and the space of prime α-fuzzy ideals
in distributive lattices. Latter, B. A. Alaba and T. G. Alemayehu studied e-fuzzy filters and the space of prime e-fuzzy
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filters in MS-algebras [2]. In 2020, W. Z. Norahun introduced the concept of µ-fuzzy filters and the space of prime
µ-fuzzy filters in distributive lattices [16].

In this paper, we introduced the concept of L-normal fuzzy filters in a distributive lattice in terms of annihilators
and investigate some of its properties. We provide a set of equivalent conditions for an L-fuzzy filter to be an L-normal
fuzzy filter, which leads to a characterization of disjunctive lattices. Furthermore, for any L-fuzzy filter of Q, we
observe that there exists the smallest L-normal fuzzy filter containing it. We also study the special class of L-fuzzy
filters called L-normal fuzzy filters. It is proved that the class of all L-normal fuzzy filters forms a distributive lattice.
The concept of an L-prime normal fuzzy filters also studied and we proved that every maximal L-fuzzy filter is an
L-normal fuzzy filter. An equivalent condition is derived for the class of L-prime normal fuzzy filters coincides over the
class of L-prime fuzzy filters. Moreover, we observe that every L-normal fuzzy filter is the intersection of all L-prime
normal fuzzy filters containing it. Finally, we study the space of L-prime normal fuzzy filters in distributive lattice
and investigate some of its properties. We prove that the space of L-prime normal fuzzy filters is a T0 space.

2 Preliminaries

We refer to G. Birkhoff [5] for the elementary properties of lattices.

Definition 2.1. [22] Let Q be a distributive lattice with 0 and B ⊆ Q. The annihilator of B is defined as:

B∗ = {y ∈ Q : b ∧ y = 0 for all b ∈ B}.

is an ideal of Q.

If B = {b}, then B∗ = (b]∗. An element a ∈ Q is said to be dense if (a]∗ = {0} and the set of all dense elements
denoted by D.

Definition 2.2. [19] Let Q be a distributive lattice with 0 and F be a filter of Q. The set F+ defined as:

F+ = {y ∈ Q : (y]∗ ⊆ (b]∗ for some b ∈ F}

is a filter containing F . Let a ∈ Q. Then [a)+ = {y ∈ Q : (y]∗ ⊆ (a]∗}.

Definition 2.3. [19] A filter F of Q is said to be a normal filter if [a)+ ⊆ F for all a ∈ F .

Lemma 2.4. [19] Let Q be a distributive lattice with 0 and x, y ∈ Q. Then

1. x ≤ y ⇒ [y)+ ⊆ [x)+.

2. x ∈ [y)+ ⇒ [x)+ ⊆ [y)+.

3. [x)+ ∩ [y)+ = [x ∨ y)+.

4. (x]∗ = (x]∗ ⇔ [x)+ = [y)+.

For any x ∈ Q, [x)+ is called a normulate and the set of normulates is denoted by N (Q). For any two normulates
[x)+ and [y)+ there supremum and infimum in N are

[x)+∨[y)+ = [x ∧ y)+ and [x)+ ∩ [y)+ = [x ∨ y)+

respectively. A lattice (Q,∧,∨) is said to be a complete lattice satisfying the infinite meet distributive law if for any
a ∈ Q and A ⊆ Q,

a ∧
∨
x∈A

x =
∧
x∈A

(a ∧ x).

Definition 2.5. [8] Let X be a non-empty set and let L be a complete lattice satisfying the infinite meet distributive
law. An L-fuzzy subset λ of X is a mapping from X into L.

Note that if L is a unit interval of real numbers, then λ is the usual fuzzy subset of X originally introduced by L.
Zadeh [25].
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Definition 2.6. [23] An L-fuzzy subset λ of a lattice Q is called an L-fuzzy filter of Q if, for all x, y ∈ L the following
condition satisfies:

1. λ(1) = 1,

2. λ(x ∨ y) ≥ λ(x) ∨ λ(y),

3. λ(x ∧ y) ≥ λ(x) ∧ λ(y).

The binary operation ”+” on the set of all L-fuzzy subsets of a distributive lattice Q as:

(λ+ η)(x) = Sup{λ(y) ∧ η(z) : y, z ∈ Q, y ∨ z = x}

If λ and η are L-fuzzy filters of Q, then λ+ η = λ ∧ η.

Lemma 2.7. [17] For any two L-fuzzy subsets λ and η of a distributive lattice Q, we have

[λ+ η) = [λ) ∧ [η).

Throughout the rest of this paperQ stands for a distributive lattice with least element 0 unless otherwise mentioned.
The set of all fuzzy filters of Q is denoted by FF (Q).

3 L-Normal fuzzy filters

In this section, we introduce the concept of L-normal fuzzy filter in distributive lattice in terms of annihilators and
investigate some of its properties. We provide a set of equivalent conditions for an L-fuzzy filter to be an L-normal
fuzzy filter and disjunctive lattices characterized in terms of L-normal fuzzy filters. We also prove that the class of
L-normal fuzzy filters forms a distributive lattice. Finally, we prove that an L-normal fuzzy filter is the intersection
of all L-prime normal fuzzy filters containing it.

Definition 3.1. An L-fuzzy filter λ of Q is called an L-normal fuzzy filter, if:∧
a∈(x)+

λ(a) ≥ λ(x) for all x ∈ Q.

Theorem 3.2. An L-fuzzy subset λ of Q is an L-normal fuzzy filter if and only λα is a normal filter of Q for all
α ∈ L.

Proof . Suppose λ is an L-normal fuzzy filter of Q. Let α ∈ L. Then λα is a filter of Q. Let x ∈ λα. Then∧
a∈(x)+ λ(a) ≥ λ(x) ≥ α. Which implies that λ(a) ≥ α for all a ∈ (x)+. Thus (x)+ ⊆ λα and hence λα is a normal

filter for all α ∈ L. Conversely, suppose that λα is a normal filter of Q for all α ∈ L and λ(x) = α. Then (x)+ ⊆ λα.
Which implies a ∈ λα for all a ∈ (x)+. Thus

∧
a∈(x)+ λ(a) ≥ α = λ(x) and hence λ is an L-normal fuzzy filter of Q. □

Corollary 3.3. A filter F of Q is a normal filter if and only if χF is an L-normal fuzzy filter.

Theorem 3.4. For any L-fuzzy filter λ of Q, the L-fuzzy subset λ⊥ of Q defined by:

λ⊥(x) = Sup{λ(a) : (x]∗ = (a]∗, a ∈ Q}

is an L-fuzzy filter.

Proof . Clearly λ⊥(1) = 1. Let x, y ∈ Q. Then

λ⊥(x) ∧ λ⊥(y) = Sup{λ(a) : (x]∗ = (a]∗} ∧ Sup{λ(b) : (y]∗ = (b]∗}
= Sup{λ(a) ∧ λ(b) : (x]∗ = (a]∗, (y]∗ = (b]∗}
= Sup{λ(a ∧ b) : (x]∗ = (a]∗, (y]∗ = (b]∗}.
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If (x]∗ = (a]∗ and (y]∗ = (b]∗, then (x ∧ y]∗ = (a ∧ b]∗. Using this fact we have

λ⊥(x) ∧ λ⊥(y) ≤ Sup{λ(a ∧ b) : (x ∧ y]∗ = (a ∧ b]∗}
≤ Sup{λ(c) : (x ∧ y]∗ = (c]∗, c ∈ L}
= λ⊥(x ∧ y).

On the other hand, λ⊥(x) = Sup{λ(a) : (x]∗ = (a]∗} ≤ Sup{λ(a ∨ y) : (x ∨ y]∗ = (a ∨ y]∗} = λ⊥(x ∨ y). Similarly,
λ⊥(y) ≤ λ⊥(x ∨ y). Thus λ⊥(x ∨ y) ≥ λ⊥(x) ∨ λ⊥(y) and hence λ⊥ is an L-fuzzy filter of Q. □

Theorem 3.5. For any L-fuzzy filter λ of Q, λ⊥ is the smallest L-normal fuzzy filter containing λ.

Proof . Clearly λ ⊆ λ⊥. Let x ∈ Q. Then∧
a∈(x)+

λ⊥(a) =
∧

a∈(x)+

(
∨

{λ(b) : (a]∗ = (b]∗})

=
∧

a∈(x)+

(
∨

{λ(b) : (a)+ = (b)+ ⊆ (x)+})

≥
∧

a∈(x)+

(
∨

{λ(b) : (b)+ = (x)+})

=
∧

a∈(x)+

λ⊥(x)

= λ⊥(x)

Thus
∧

a∈(x)+ λ⊥(a) ≥ λ⊥(x) and hence λ⊥ is an L-normal fuzzy filter.

To show λ⊥ is the smallest L-normal fuzzy filter, let θ be any L-normal fuzzy filter containing λ. Then

λ⊥(x) = Sup{λ(a) : (x]∗ = (a]∗}
= Sup{λ(a) : (x)+ = (a)+}
≤ Sup{θ(a) : (x)+ = (a)+}

Let (x)+ = (a)+. Then x ∈ (a)+ and a ∈ (x)+. Since θ is an L-normal fuzzy filter, we get θ(a) = θ(x). Which
implies that λ⊥(x) ≤ θ(x). Therefore, λ⊥ is the smallest L-normal fuzzy filter containing λ. □

Theorem 3.6. An L-fuzzy filter λ of Q is an L-normal fuzzy filter if and only if λ = λ⊥.

Proof . Suppose λ is an L-normal fuzzy filter. Clearly, λ ⊆ λ⊥. Since λ⊥ is a normal fuzzy filter, by Theorem 3.5,
λ⊥ ⊆ λ. Thus λ⊥ = λ. The converse is trivial. □

Example 3.7. Consider the distributive lattice Q = {0, a, b, c, 1} whose Hasse diagram is given below.
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Define a fuzzy subsets λ of Q as:

λ(c) = λ(1) = 1, λ(a) = 0.6, λ(b) = λ(0) = 0.3.

Then it can be easily verified that λ is an L-normal fuzzy filter of Q.

Theorem 3.8. Let λ be an L-fuzzy filter of Q. Then

[λ⊥]α =
⋃

{
⋂

γ∈M

[λγ ]
⊥ : α ≤

∨
M,M ⊆ L}

.

Proof . Let A =
⋃
{
⋂

γ∈M [λγ ]
⊥ : α ≤

∨
M,M ⊆ L} and B = [λ⊥]α. To show B ⊆ A, let x ∈ B. Then

α ≤ Sup{λ(a) : (a]∗ = (x]∗}. Let us put M = {λ(a) : (a]∗ = (x]∗}. Then M ⊆ L and α ≤
∨

M . If β ∈ M , then
β = λ(b) for some b ∈ Q such that (b]∗ = (x]∗. Which implies that b ∈ λβ and (b]∗ = (x]∗. Thus x ∈ (λβ)

⊥ for
all β ∈ M . Which implies x ∈

⋂
β∈M (λβ)

⊥. Hence B ⊆ A. Conversely, let x ∈ A. Then there is M ⊆ L with

α ≤
∨
M and x ∈

⋂
β∈M (λβ)

⊥. Which implies for each β ∈ M there is b ∈ λβ such that (x]∗ = (b]∗. We know that

Sup{λ(a) : (x]∗ = (a]∗} ≥ λ(a). Thus λ⊥(x) ≥ λ(b) for all b ∈ λβ , β ∈ M . So λ⊥(x) ≥
∨

M ≥ α and x ∈ B. Hence
A ⊆ B and therefore A = B. □

For any L-fuzzy filter λ of Q, the map λ −→ λ⊥ is a closure operator on FF (L) and the closed elements are
L-normal fuzzy filters.

Lemma 3.9. For any L-fuzzy filter λ and γ of Q, we have the following:

1. λ ⊆ γ ⇒ λ⊥ ⊆ γ⊥.
2. λ⊥⊥ = λ⊥.
3. (λ ∩ γ)⊥ = λ⊥ ∩ γ⊥.
4. (λ ∨ γ)⊥ = (λ⊥ ∨ γ⊥)⊥.
5. λ⊥ ∨ γ⊥ ⊆ (λ ∨ γ)⊥.

Proposition 3.10. Every maximal L-fuzzy filter is an L-normal fuzzy filter.

Proof . Let λ be a maximal L-fuzzy filter. Then λ is two valued. Which implies λ⊥ also two valued and λ ⊆ λ⊥. By
the maximality of λ, we get λ = λ⊥. Hence λ is an L-normal fuzzy filter. □

The class of L-normal fuzzy filters is denoted by FFN (Q).

Lemma 3.11. If λ, γ ∈ FFN (Q), then the supremum of λ and γ is given by:

λ∨γ = (λ ∨ γ)⊥.

Proof . Clearly λ∨γ is an L-normal fuzzy filter of Q. We need to show (λ ∨ γ)⊥ is the least upper bound of {λ, γ}.
Since λ, γ ⊆ λ∨ γ, we have λ∨ γ ⊆ (λ∨ γ)⊥. Thus (λ∨ γ)⊥ is an upper bound of {λ, γ}. Let η be any upper bound
for λ, γ in FFN (L). Then (λ ∨ γ)⊥ ⊆ η. Thus (λ ∨ γ)⊥ is the supremum of {λ, γ}. □

Theorem 3.12. The set FFN (Q) of Q forms a distributive lattice with respect to inclusion ordering of fuzzy sets.

Proof . Clearly (FFN (Q),⊆) is a partially ordered set. For λ, γ ∈ FFN (Q), define

λ ∧ γ = λ ∩ γ and λ∨γ = (λ ∨ γ)⊥.

Then clearly λ ∧ γ, (λ ∨ γ)⊥ ∈ FFN (Q). Hence (FFN (Q),∧,∨) is a lattice. We now prove the distributivity. Let
γ, ν, λ ∈ FFN (Q). Then

γ∨(ν ∩ λ) = (γ ∨ (ν ∩ λ))⊥

= ((γ ∨ ν) ∩ (γ ∨ λ))⊥

= (γ ∨ ν)⊥ ∩ (γ ∨ λ)⊥

= (γ∨ν) ∩ (γ∨λ)

Therefore, (FFN (Q),∧,∨) is a distributive lattice. □
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Theorem 3.13. There is an epimorphism from FF (Q) onto FFN (Q).

Proof . Let λ, γ ∈ FFN (Q). Define a map f : FF (Q) −→ FFN (Q) by f(λ) = λ⊥. Then f(λ ∩ γ) = λ⊥ ∩ γ⊥ =
f(λ) ∩ f(γ) and f(λ ∨ γ) = (λ ∨ γ)⊥ = (λ⊥ ∨ γ⊥)⊥ = λ⊥∨γ⊥ = f(λ)∨f(γ). Hence f is a homomorphism. Since
FFN (Q) ⊆ FF (Q), f is an onto homomorphism. □

Theorem 3.14. Let λ be an L-fuzzy filter of Q. Then λ is an L-normal fuzzy filter if and only if for each x, y ∈
Q, (x]∗ = (y]∗ imply λ(x) = λ(y).

Corollary 3.15. Let λ be an L-fuzzy filter of Q. Then λ is an L-normal fuzzy filter if and only if for each x, y ∈
Q, (x)+ = (y)+ imply λ(x) = λ(y).

Theorem 3.16. Let λ be an L-fuzzy filter of Q and for any chain of L-fuzzy filters η1 ⊆ η2 ⊆ η3 ⊆ η4, ... of Q such
that λ ⊆ η1 ⊆ η2 ⊆ η3 ⊆ η4, ... ⊆ λ⊥. Then η⊥1 = η⊥2 = η⊥3 = η⊥4 = ... = λ⊥.

Proof . Suppose λ is an L-fuzzy filter of Q and for any chain of L-fuzzy filters η1 ⊆ η2 ⊆ η3 ⊆ η4, ... of Q such
that λ ⊆ η1 ⊆ η2 ⊆ η3 ⊆ η4, ... ⊆ λ⊥. Then λ⊥ ⊆ η⊥1 ⊆ η⊥2 ⊆ η⊥3 = η⊥4 ⊆ ... ⊆ λ⊥⊥ = λ⊥. Therefore,
η⊥1 = η⊥2 = η⊥3 = η⊥4 = ... = λ⊥. □

Theorem 3.17. The following are equivalent for each non-constant L-normal fuzzy filter λ of Q.

1. For all µ, η ∈ FF (Q),

µ ∩ η ⊆ λ ⇒ µ ⊆ λ or η ⊆ λ.

2. For any fuzzy points aα and bβ of Q,

aα + bβ ⊆ λ ⇒ aα ⊆ λ or bβ ⊆ λ.

3. For all µ, η ∈ FFN (Q),

µ ∩ η ⊆ λ ⇒ µ ⊆ λ or η ⊆ λ.

Proof . 1 ⇒ 2: Let a, b ∈ Q such that aα + bβ ⊆ λ. Then [aα + bβ) ⊆ λ and by Lemma 2.7 [aα) ∩ [bβ) ⊆ λ. By the
assumption, [aα) ⊆ λ or [bβ) ⊆ λ. Which implies aα ⊆ λ or bβ ⊆ λ.

2 ⇒ 3: Let µ, η ∈ FFN (Q) such that µ ∩ η ⊆ λ. Suppose µ ⊈ λ or η ⊈ λ. Then there exist a, b ∈ Q such that
µ(a) > λ(a) and η(b) > λ(b). Put µ(a) = α and η(b) = β. Then aα ⊈ λ and bβ ⊈ λ. Since aα + bβ ⊆ µ ∩ η ⊆ λ, by
the assumption, we get that aα ⊆ λ or bβ ⊆ λ. Which is a contradiction. Thus µ ⊆ λ or η ⊆ λ.

3 ⇒ 1: Suppose that µ, η ∈ FF (Q) such that µ∩ η ⊆ λ. Then by Lemma 3.9 we have µ⊥ ∩ η⊥ ⊆ λ. Since µ⊥ and
η⊥ are L-normal fuzzy filters, by the assumption, µ⊥ ⊆ λ or η⊥ ⊆ λ. Thus µ ⊆ λ or η ⊆ λ. □

Definition 3.18. A non-constant L-normal fuzzy filter is called L-prime normal fuzzy filter, if any one of the equiv-
alent in Theorem 3.17 holds.

A lattice Q is disjunctive if and only if (a]∗ = (b]∗ implies a = b for any a, b ∈ Q [6]. In the following theorem, we
establish set of equivalent conditions for an L-fuzzy filter to be an L-normal fuzzy ideal

Theorem 3.19. The following are equivalent.

1. Each L-fuzzy filter is an L-normal fuzzy filter,

2. Each L-prime fuzzy filter is an L-normal fuzzy filter,

3. Q is disjunctive.

Proof . The proof of 1 ⇒ 2 and 3 ⇒ 1 are Straightforward. Now we proceed to prove 2 ⇒ 3. Suppose condition
(3) holds and (a]∗ = (b]∗, a, b ∈ Q. Assume that a ̸= b. Without loss of generality, we can assume that (a] ∩ [b) = ϕ.
Which implies χ(a]∩χ[b) = 0 and there exists an L-prime fuzzy filter θ of Q such that χ[b) ⊆ θ and θ∩χ(a] = 0. Which
implies that θ(b) = 1 and θ(a) ∧ χ(a](a) = 0. Thus θ(a) = 0. This is a contradiction. Hence Q is disjunctive. □

The above theorem shows that, the class of L-prime normal fuzzy filters of Q coincides with the class of L-prime
fuzzy filters of Q if and only if Q is disjunctive. Otherwise, they are different.
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Theorem 3.20. Let µ be an L-normal fuzzy filter of Q and η be an L-fuzzy ideal of Q such that µ∩η ≤ α, 1 ̸= α ∈ L.
Then there exists an L-prime normal fuzzy filter λ of Q such that µ ⊆ λ and λ ∩ η ≤ α.

Proof . Consider Γ = { γ ∈ FFN (Q) : µ ⊆ γ and η ∩ γ ≤ α}. Since µ ∈ Γ, Γ is nonempty and it forms a poset
together with the inclusion ordering of fuzzy sets. Let P = {µi}i∈I be any chain in Γ. Clearly

⋃
i∈I µi is an L-normal

fuzzy filter and (
⋃

i∈I µi) ∩ η ≤ α. Which implies
⋃

i∈I µi ∈ Γ. By applying Zorn’s lemma we get a maximal element,
let say γ ∈ Γ; that is γ is an L-normal fuzzy filter of L such that µ ⊆ γ and γ ∩ η ≤ α.

Now we proceed to show γ is an L-prime fuzzy filter. Assume that γ is not L-prime fuzzy filter. Let γ1 ∩ γ2 ⊆ γ
such that γ1 ⊈ γ and γ2 ⊈ γ, γ1, γ2 ∈ FF (Q). If we put ν1 = (γ1 ∨ γ)⊥ and ν2 = (γ2 ∨ γ)⊥, then both ν1 and ν2
are L-normal fuzzy filters of L properly containing γ. Since γ is maximal in Γ, we get ν1, ν2 /∈ Γ. Thus γ1 ∩ η ≰ α
and γ2 ∩ η ≰ α. This implies there exist x, y ∈ L such that (γ1 ∩ η)(x) > α and (γ2 ∩ η)(y) > α. Which implies
((γ1 ∩ γ2) ∩ η)(x ∧ y) > α ⇒ ((γ ∨ (γ1 ∧ γ2))(x ∧ y) ∧ η(x ∧ y) > α. This shows that (µ ∩ η)(x ∧ y) > α. This is a
contradiction. Thus γ is L-prime normal fuzzy filter of Q. □

Corollary 3.21. Let λ be an L-normal fuzzy filter of Q, a ∈ Q and 1 ̸= α ∈ L. If λ(a) ≤ α, then there exists an
L-prime normal fuzzy filter η of Q such that λ ⊆ η and η(a) ≤ α.

Corollary 3.22. Any L-normal fuzzy filter of Q is the intersection of all L-prime normal fuzzy filters containing it.

Corollary 3.23. The intersection of all L-prime normal fuzzy filters is equal to χD.

Proof . Since χD = χ[1)+ ⊆ λ, we have χD ⊆ λ for all L-normal fuzzy filter. By Corollary 3.22, χD is the intersection
of all L-prime normal fuzzy filters. □

4 The space of L-prime normal fuzzy filters

In this section, we study the space of L-prime normal fuzzy filters in distributive lattice and investigate some of
its properties. We prove that the space of L-prime normal fuzzy filters is a T0 space.

Let us denote SpecQ the set of L-prime normal fuzzy filters of Q. For any L-fuzzy subset η of Q, ξ(η) = {λ ∈
SpecQ : η ⊈ λ} and ζ(η) = {λ ∈ SpecQ : η ⊆ λ} = SpecQ− ξ(η). We let λ∗ = λ1, i.e., λ∗ = {x ∈ Q : λ(x) = 1}.

We refer to L. Kelley [11] for topological concepts.

Lemma 4.1. Let λ and γ be L-fuzzy filters of Q. Then

1. λ ⊆ γ ⇒ ξ(η) ⊆ ξ(ν),
2. ξ(λ ∨ γ) = ξ(λ) ∪ ξ(γ),
3. ξ(λ ∩ γ) = ξ(λ) ∩ ξ(γ).

Lemma 4.2. For any L-fuzzy subset λ of Q, ξ(λ) = ξ([λ)).

Proof . Clearly ξ(λ) ⊆ ξ([λ)). To show the other inclusion, let ν ∈ ξ([λ)). Then [λ) ⊈ ν. We need to show λ ⊈ ν.
Suppose that λ ⊆ ν. Then [λ) ⊆ ν. Which is a contradiction. Thus λ ⊈ ν and hence ξ(λ) = ξ([λ)). □

Theorem 4.3. Let a, b ∈ Q and 0 ̸= β ∈ L. Then

1. ξ((a ∧ b)β) = ξ(aβ) ∪ ξ(bβ),
2. ξ((a ∨ b)β) = ξ(aβ) ∩ ξ(bβ),
3.

⋃
a∈Q, β∈L ξ(aβ) = SpecQ.

Proof . (1) Let λ ∈ ξ((a ∧ b)β). Then β > λ(a ∧ b) = λ(a) ∧ λ(b). Since λ is prime, β > λ(a) or β > λ(b). Which
implies that aβ ⊈ λ or bβ ⊈ λ. Hence λ ∈ ξ(aβ) ∪ ξ(bβ). Conversely, suppose λ ∈ ξ(aβ) ∪ ξ(bβ). Then β > λ(a) or
β > λ(b). Which implies β > λ(a ∧ b). Thus (a ∧ b)β ⊈ λ and hence λ ∈ ξ((a ∧ b)β).

(2) If λ ∈ ξ(aβ)∩ ξ(bβ), then aβ ⊈ λ and bβ ⊈ λ. Which implies β > λ(a) and β > λ(b). This shows that a, b /∈ λ∗.
Since λ is prime, λ∗ is prime. Which implies a ∨ b /∈ λ∗. Thus (a ∨ b)β ⊈ λ and hence λ ∈ ξ((a ∨ b)β). Conversely, let
λ ∈ ξ((a ∨ b)β). Then (a ∨ b)β ⊈ λ. Which implies β > λ(a) ∨ λ(b). Thus β > λ(a) and β > λ(b). This shows that
aβ ⊈ λ and bβ ⊈ λ. Thus λ ∈ ξ(aβ) ∩ ξ(bβ).

(3) Let λ ∈ SpecQ. Then Imλ = {1, β}, 0 ̸= β ∈ L. This implies there is a ∈ Q such that λ(a) = β. Let γ ∈ L
such that γ > β. Then aγ ⊈ λ. Thus SpecQ ⊆

⋃
a∈Q, β∈L ξ(aβ) and hence SpecQ =

⋃
a∈Q, β∈L ξ(aβ). □
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Lemma 4.4. Let 0 ̸= β1, β2 ∈ L; β = β1 ∧ β2 and a, b ∈ Q. Then

ξ(aβ1
) ∩ ξ(bβ2

) = ξ((a ∨ b)β).

Lemma 4.5. Let {ηj : j ∈ ∆} be any family of L-fuzzy filters of Q. Then⋂
j∈∆

ζ(ηj) = ζ([
⋃
j∈∆

ηj)).

Proof . Clearly ζ([
⋃

j∈∆ ηj)) ⊆
⋂

j∈∆ ζ(ηj). To show the other inclusion, let γ ∈
⋂

j∈∆ ζ(ηj). Then ηj ⊆ γ for
all j ∈ ∆ and γ(a) is an upper bound of {ηj(a) : j ∈ ∆} for all a ∈ Q. Which implies that [

⋃
j∈∆ ηj) ⊆ γ. Thus

γ ∈ ζ([
⋃

j∈∆ ηj)) and hence
⋂

j∈∆ ζ(ηj) ⊆ ζ([
⋃

j∈∆ ηj)). □

Theorem 4.6. The collection T = {ξ(λ) : λ is an L-fuzzy filter of Q} is a topology on SpecQ.

Proof . Let λ1, λ2 be fuzzy subsets of Q such that λ1(a) = 0 and λ2(a) = 1 for all a ∈ Q. Then [λ1), λ2 are fuzzy filters
and [λ1) ⊆ γ for all γ ∈ SpecQ. Thus ζ([λ1)) = SpecQ and hence ξ(λ1) = ϕ. Since each γ ∈ SpecQ is non-constant,
λ2 ⊈ γ for all γ ∈ SpecQ. Which implies ξ(λ2) = SpecQ. Hence ϕ, SpecQ ∈ T . Since ξ(λ1)∩ ξ(λ2) = ξ(λ1 ∩ λ2), T is
closed under finite intersection.

Next, Let {λj : j ∈ ∆} be subfamily of SpecQ. Then by Lemma 4.5, we have
⋂

j∈∆ ζ(λj) = ζ([
⋃

j∈∆ λj)). Thus⋃
j∈∆ ξ(λj) = ξ([

⋃
j∈∆ λj)) and hence T is closed under arbitrary union. Consequently, T is a topology on SpecQ.

The space (SpecQ, T ) will be called the space of L-prime normal fuzzy filters in Q. □

Theorem 4.7. The collection B = {ξ(aα) : a ∈ Q, 0 ̸= α ∈ L} forms base for some topology SpecQ.

Proof . To show our claim it is enough to show that, for each open set ξ(λ) in SpecQ there is an element in B
contained in ξ(λ). Let γ ∈ ξ(λ). Then λ ⊈ γ and there exists a ∈ Q such that λ(a) > γ(a). Put λ(a) = β. To show
ξ(aβ) ⊆ ξ(λ), let θ ∈ ξ(aβ). Then aβ ⊈ θ and λ(a) > θ(a). Thus θ ∈ ξ(λ) and ξ(aβ) ⊆ ξ(λ). □

Theorem 4.8. The space SpecQ is a T0-space.

Proof . Let λ, γ ∈ SpecQ such that λ ̸= γ. Then γ ⊈ λ or λ ⊈ γ. Assume that λ ⊈ γ. Then γ ∈ ξ(λ) and γ /∈ ξ(γ).
Therefore, SpecQ is a T0-space. □

Theorem 4.9. For any L-fuzzy filter λ of L, ξ(λ) = ξ(λ⊥).

Proof . Let λ be a fuzzy filter of Q. Clearly ξ(λ) ⊆ ξ(λ⊥). To show the other inclusion, let γ ∈ ξ(λ⊥). Then λ⊥ ⊈ γ.
Assume that γ /∈ ξ(λ). Then λ⊥ ⊆ γ⊥ = γ. Which is a contradiction. Therefore, ξ(λ) = ξ(λ⊥). □

Theorem 4.10. For any family C ⊆ SpecQ, closure of C is given by:

C = ζ(
⋂
λ∈C

λ).

Proof . Now we proceed to show that ζ(
⋂

λ∈C λ) is the smallest closed set containing C. Let η ∈ C. Then
⋂

λ∈C λ ⊆ η
and η ∈ ζ(

⋂
λ∈C λ). Thus C ⊆ ζ(

⋂
λ∈C λ). Let ζ(γ) be any closed set in SpecQ containing C. Then γ ⊆ λ for each

λ ∈ C. which implies γ ⊆
⋂

λ∈C λ and ζ(
⋂

λ∈C λ) ⊆ ζ(γ). Thus ζ(
⋂

λ∈C λ) is the smallest closed set containing C and

hence C = ζ(
⋂

λ∈C λ). □

Conclusion

In this paper, we introduced the concept of L-normal fuzzy filter in distributive lattice in terms of annulates and
investigate some of its properties. We established a set of equivalent conditions for an L-fuzzy filter to be an L-normal
fuzzy filter. Disjunctive lattice characterized in terms of L-normal fuzzy filters. We also studied the special class
of fuzzy filters called L-normal fuzzy filters and proved that the class of L-normal fuzzy filters forms a distributive
lattice. Furthermore, we observed that every L-normal fuzzy filter is the intersection of all L-prime normal fuzzy
filters containing it. Finally, we studied the space of L-prime normal fuzzy filters in distributive lattice. Our future
work will focus on fuzzy semiprime ideals in (0, 1) distributive lattices.
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