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Abstract

The primary motivation of the paper is to give necessary and sufficient condition for the power series distribution
(Pascal model) to be in the subclasses VSp (ϑ, γ, κ) and VCp(ϑ, γ, κ) of analytic functions. Further, to obtain certain
connections between the Pascal distribution series and subclasses of normalized analytic functions whose coefficients
are probabilities of the Pascal distribution.
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1 Introduction

Let A denote the class of functions of the form:

f(z) = z +

∞∑
j=2

ajz
j , (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Also, let V be the subclasses of A consisting of
functions which are univalent in U, and with positive coefficients given by (see [11])

f(z) = z +

∞∑
j=2

ajz
j , aj > 0 (1.2)

respectively. We denote by SV(γ) (1 ≤ γ < 4
3 ) a subset of V consisting of all functions starlike of order γ, i.e. such

that ℜ (zf ′(z)/f(z)) < γ (z ∈ U), subclasses studied in [11]. By Sp(γ, κ) we denote the class of κ− starlike functions
of order γ, 0 ≤ γ < 1, that is a class of function f , which satisfy the condition

ℜ
(
zf ′(z)

f(z)
− γ

)
> κ

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (κ ≥ 0),
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for details see [5]. Motivated by the above definitions and earlier work of Murugusundaramoorthy [6] we define the
following new subclasses of A.

Definition 1.1. For 1 ≤ γ < 4+κ
3 , 0 ≤ ϑ < 1, κ ≥ 0 we let

1. Sp (ϑ, γ, κ) =

{
f ∈ A : ℜ

(
(1 + κeiθ)

zf ′ (z)

(1− ϑ) f (z) + ϑzf ′ (z)
− κeiθ

)
< γ, z ∈ U

}
and

2. Cp (ϑ, γ, κ) =
{
f ∈ A : ℜ

(
(1 + κeiθ)

f ′ (z) + zf ′′ (z)

f ′ (z) + ϑzf ′′ (z)
− κeiθ

)
< γ, z ∈ U

}
.

Also let VSp (ϑ, γ, κ) = Sp (ϑ, γ, κ) ∩ V and VCp(ϑ, γ, κ) = Cp (ϑ, γ, κ) ∩ V.
By fixing ϑ = 0 we get the following subclasses studied in [9]

Example 1.2. For 1 ≤ γ < 4+κ
3 , κ ≥ 0, we let

(i) Sp (γ, κ) =

{
f ∈ A : ℜ

(
(1 + κeiθ)

zf ′ (z)

f (z)
− κeiθ

)
< γ, z ∈ U

}
and

(ii) Cp (γ, κ) =
{
f ∈ A : ℜ

(
1 + (1 + κeiθ)

zf ′′(z)

f ′(z)

)
< γ, z ∈ U

}
.

Also by fixing κ = 0 we get the subclasses studied in [11].

Further from Definition 1.1, by assuming κ = 0 we get the subclasses studied by Murugusundaramoorthy [6].

Example 1.3. Let 1 ≤ γ < 4
3 , 0 ≤ ϑ < 1 we let

VMp (ϑ, γ) =

{
f ∈ V : ℜ

(
zf ′ (z)

(1− ϑ) f (z) + ϑzf ′ (z)

)
< γ, z ∈ U

}
VGp(ϑ, γ) =

{
f ∈ V : ℜ

(
f ′ (z) + zf ′′ (z)

f ′ (z) + ϑzf ′′ (z)

)
< γ, z ∈ U

}
.

Now, we determine the following necessary and sufficient conditions for f ∈ VSp(ϑ, γ, κ) and f ∈ VCp(ϑ, γ, κ).

Theorem 1.4. A function f ∈ V given by (1.2) is in the class VSp (ϑ, γ, κ) if and only if

∞∑
j=2

[j (1 + κ)− (γ + κ) (1 + jϑ− ϑ)] aj ≤ γ − 1. (1.3)

Proof . Let f be of the form (1.2). To show that f ∈ VSp(ϑ, γ, κ), it suffices to prove that∣∣∣∣∣∣
(1 + κeiθ)

[
zf ′(z)

(1−ϑ)f(z)+ϑzf ′(z) − 1
]

2(γ − 1)− (1 + κeiθ)
[

zf ′(z)
(1−ϑ)f(z)+ϑzf ′(z) − 1

]
∣∣∣∣∣∣ ≤ 1.

We have

f ′(z) = 1 +

∞∑
j=2

jajz
j−1

and

(1− ϑ)f(z) + ϑzf ′(z) = z +

∞∑
j=2

(1 + jϑ− ϑ)ajz
j .

Substituting these values we get∣∣∣∣∣∣∣∣
(1 + κeiθ)

∞∑
j=2

[j − (1 + jϑ− ϑ)]ajz
j−1

2(γ − 1)[1 +
∞∑
j=2

(1 + jϑ− ϑ)ajzj−1]− (1 + κeiθ)
∞∑
j=2

[j − (1 + jϑ− ϑ)]ajzj−1

∣∣∣∣∣∣∣∣ ≤ 1
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and simple computation yields the desired result.
Conversely, we need only to prove the if f ∈ VSp(ϑ, γ, κ) and z is real then

ℜ
((

1 + κeiθ
) zf ′(z)

(1− ϑ)f(z) + ϑzf ′(z)
− κeiθ

)
< γ

that is,

ℜ
(
(1 + κeiθ)

[
zf ′(z)

(1− ϑ)f(z) + ϑzf ′(z)
− 1

])
< γ − 1.

Thus, for proper θ ∈ R, z = r < 1 and aj > 0, j ∈ N, we get

∞∑
j=2

(1 + κ){j − (jϑ− ϑ+ 1)}aj

1 +
∞∑
j=2

(jϑ− ϑ+ 1)aj

< γ − 1.

This completes the proof of case(i). □

Theorem 1.5. Let f ∈ V be of the form (1.2), then f ∈ VCp(ϑ, γ, κ) if and only if

∞∑
j=2

j [j (1 + κ)− (γ + κ) (1 + jϑ− ϑ)] aj ≤ γ − 1. (1.4)

Let f ∈ VCp(ϑ, γ, κ) be of the form (1.2). Then by definition we have

f ∈ VCp(ϑ, γ, κ) ⇐⇒ zf ′ ∈ VSp(ϑ, γ, κ)

thus we have f(z) =

(
z +

∞∑
j=2

(jaj)z
j

)
∈ VSp(ϑ, γ, κ). Hence by proceeding on lines similar to Theorem 1.4, we

easily get (1.4). The main purpose of this paper is to survey the power series distribution for the analytic function

classes VSp (ϑ, γ, κ) and VCp(ϑ, γ, κ). We note that VSp (ϑ, γ, κ) ≡ M
(
ϑ, γ+κ

1+κ

)
[6] and VCp(ϑ, γ, κ) ≡ N

(
ϑ, γ+κ

1+κ

)
[6].

In the following sections, we obtain certain connections between the Pascal distribution series and subclasses of
normalized analytic functions whose coefficients are probabilities of the Pascal distribution.

2 Necessary and sufficient conditions

The power series distribution is very useful in multivariate data research fields. This family of distributions,
particularly is used in survival and reliability studies. However, nowadays, the elementary distributions such as the
Poisson, the Pascal, the Logarithmic, the Binomial, the Burr-Weibull have been partially studied in the Geometric
Function Theory from a theoretical point of view (see [1], [2], [3], [4], [7], [8]). In this paper, we focus on the Pascal
power series distribution.

In this study we consider a non-negative discrete random variable X with a Pascal probability generating function

P (X = j) =

(
j + t− 1

t− 1

)
pj (1− p)

t
, j ∈ {0, 1, 2, 3, ...} ,

where p, t are called the parameters.

Now, based upon the Pascal distribution, consider the following power series:

P(t, p, z) = z +

∞∑
j=2

(
j + t− 2

t− 1

)
pj−1 (1− p)

t
zj . (2.1)

where t ≥ 1, 0 ≤ p ≤ 1, z ∈ U. Note that, by using ratio test we conclude that the radius of convergence of the above
power series is infinity.
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We considered the linear operator
It
p : A → A

defined by Hadamard product

It
pf(z) = P(t, p, z) ∗ f(z) = z +

∞∑
j=2

(
j + t− 2

t− 1

)
pj−1 (1− p)

t
aj z

j , z ∈ U.

By considering above definitions and lemmas, we have the following necessary and sufficient conditions for the function
P.

Theorem 2.1. For p ̸= 1, a necessary and sufficient condition for the function P given by (2.1) to be in the class
VSp (ϑ, γ, κ) is

(1− ϑγ + κ (1− ϑ)) tp

1− p
− (1− γ) (1− p)

t ≤ 2(γ − 1). (2.2)

Proof . According to Theorem 1.4, we must show that

∞∑
j=2

(
j + t− 2

t− 1

)
[j (1 + κ)− (γ + κ) (1 + jϑ− ϑ)] pj−1 (1− p)

t ≤ γ − 1.

Therefore, by combining the relation (1.3) and the implication (2.1) , we let the equality

Θ1(j, ϑ, γ, κ) =

∞∑
j=2

(
j + t− 2

t− 1

)
[j (1 + κ)− (γ + κ) (1 + jϑ− ϑ)] pj−1 (1− p)

t

=

∞∑
j=2

(
j + t− 2

t− 1

)
[(1− ϑγ + κ (1− ϑ)) (j − 1) + 1− γ] pj−1 (1− p)

t
,

Θ1(j, ϑ, γ, κ) = (1− ϑγ + κ (1− ϑ))

∞∑
j=2

(
j + t− 2

t− 1

)
(j − 1) pj−1 (1− p)

t

+ (1− γ)

∞∑
j=2

(
j + t− 2

t− 1

)
pj−1 (1− p)

t

= (1− ϑγ + κ (1− ϑ)) tp (1− p)
t

∞∑
j=2

(
j + t− 2

t

)
pj−2

+ (1− γ) (1− p)
t

∞∑
j=2

(
j + t− 2

t− 1

)
pj−1

= (1− ϑγ + κ (1− ϑ)) tp (1− p)
t

∞∑
j=0

(
j + t

t

)
pj

+ (1− γ) (1− p)
t

∞∑
j=0

(
j + t−1

t− 1

)
pj − (1− γ) (1− p)

t

=
(1− ϑγ + κ (1− ϑ)) tp

1− p
+ (1− γ)− (1− γ) (1− p)

t
.

But Θ1(j, ϑ, γ, κ) is bounded above by γ−1 if and only if (2.2) holds. Thus the proof of Theorem 2.1 is now completed.
□
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Theorem 2.2. For p ̸= 1, a necessary and sufficient condition for the function P given by (2.1) to be in the class
VCp(ϑ, γ, κ) is

[1− γϑ+ κ (1− ϑ)] t (t+ 1) p2

(1− p)
2 +

[3− γ + 2κ− 2ϑ (γ + κ)] tp

1− p

− (1− γ) (1− p)
t ≤ 2(γ − 1). (2.3)

Proof . To prove that P ∈ VCp(ϑ, γ, κ), we must show that

∞∑
j=2

(
j + t− 2

t− 1

)
j [j (1 + κ)− (γ + κ) (1 + jϑ− ϑ)] pj−1 (1− p)

t ≤ γ − 1

From the relation (1.4) and the implication (2.1) , we let

Θ2(j, ϑ, γ, κ) =

∞∑
j=2

(
j + t− 2

t− 1

)
j [j (1 + κ)− (γ + κ) (1 + jϑ− ϑ)] pj−1 (1− p)

t

= [1− γϑ+ κ (1− ϑ)] (1− p)
t

∞∑
j=2

(
j + t− 2

t− 1

)
(j − 1) (j − 2) pj−1

+ [3− γ + 2κ− 2ϑ (γ + κ)] (1− p)
t

∞∑
j=2

(
j + t− 2

t− 1

)
(j − 1) pj−1

+ (1− γ) (1− p)
t

∞∑
j=2

(
j + t− 2

t− 1

)
pj−1

= [1− γϑ+ κ (1− ϑ)] (1− p)
t

∞∑
j=3

(
j + t− 2

t+ 1

)
t (t+ 1) pj−3p2

+ [3− γ + 2κ− 2ϑ (γ + κ)] (1− p)
t

∞∑
j=2

(
j + t− 2

t

)
tpj−2p

+ (1− γ) (1− p)
t

∞∑
j=2

(
j + t− 2

t− 1

)
pj−1

= [1− γϑ+ κ (1− ϑ)] t (t+ 1) p2 (1− p)
t

∞∑
j=0

(
j + t+ 1

t+ 1

)
pj

+ [3− γ + 2κ− 2ϑ (γ + κ)] tp (1− p)
t

∞∑
j=0

(
j + t

t

)
pj

+ (1− γ) (1− p)
t

∞∑
j=0

(
j + t− 1

t− 1

)
pj − (1− γ) (1− p)

t

=
[1− γϑ+ κ (1− ϑ)] t (t+ 1) p2

(1− p)
2 +

[3− γ + 2κ− 2ϑ (γ + κ)] tp

1− p

+ (1− γ)− (1− γ) (1− p)
t ≤ γ − 1

Thus, according to Theorem 1.5, we conclude that P ∈ VCp(ϑ, γ, κ). □

3 Inclusion Properties

A function f ∈ A is said to be in the class Rτ (µ, ϱ), (τ ∈ C\{0}, 0 < µ ≤ 1; ϱ < 1), if it satisfies the inequality∣∣∣∣∣ (1− µ) f(z)z + µf ′(z)− 1

2τ(1− ϱ) + (1− µ) f(z)z + µf ′(z)− 1

∣∣∣∣∣ < 1, (z ∈ U).
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The class Rτ (µ, ϱ) was introduced earlier by Swaminathan [10](for special cases see the references cited there in)
and obtained the following estimate.

Lemma 3.1. [10] If f ∈ Rτ (µ, ϱ) is of form (1.2), then

|aj | ≤
2 |τ | (1− ϱ)

1 + µ(j − 1)
, j ∈ N \ {1}. (3.1)

The bounds given in (3.1) is sharp.

Making use of the Lemma 3.1, we will study the action of the Pascal distribution series on the class VCp(ϑ, γ, κ)
in the following theorem.

Theorem 3.2. If p ̸= 1 and f ∈ Rτ (µ, ϱ), if the inequality

[
(1− ϑγ + κ (1− ϑ)) tp

1− p
+ (1− γ)− (1− γ) (1− p)

t

]
≤ µ(γ − 1)

2 |τ | (1− ϱ)
(3.2)

is satisfied, then It
pf(z) ∈ VCp(ϑ, γ, κ).

Proof . Let f be of the form (1.2) belong to the class Rτ (µ, ϱ). By virtue of Theorem 1.5 it suffices to show that

∞∑
j=2

j [j (1 + κ)− (γ + κ) (1 + jϑ− ϑ)] pj−1 (1− p)
t

(
j + t− 2

t− 1

)
aj ≤ γ − 1

Since f ∈ Rτ (µ, ϱ) then by Lemma 3.1 we have

|aj | ≤
2 |τ | (1− ϱ)

1 + µ(j − 1)
, j ∈ N \ {1}.

Let Θ3(ϑ, γ, κ) =

∞∑
j=2

j [j (1 + κ)− (γ + κ) (1 + jϑ− ϑ)]

(
j + t− 2

t− 1

)
pj−1 (1− p)

t
aj

Θ3(ϑ, γ, κ) ≤ 2 |τ | (1− ϱ)

∞∑
j=2

j [j (1 + κ)− (γ + κ) (1 + jϑ− ϑ)]

1 + µ(j − 1)

(
j + t− 2

t− 1

)
pj−1 (1− p)

t
.

Since 1 + µ(j − 1) ≥ jµ, we get

Θ3(ϑ, γ, κ) ≤ 2 |τ | (1− ϱ)

µ

∞∑
j=2

[j (1 + κ)− (γ + κ) (1 + jϑ− ϑ)]

(
j + t− 2

t− 1

)
pj−1 (1− p)

t
.

Proceeding as in Theorem 1.5, we get

Θ3(ϑ, γ, κ) ≤
2 |τ | (1− ϱ)

µ

[
(1− ϑγ + κ (1− ϑ)) tp

1− p
+ (1− γ)− (1− γ) (1− p)

t

]
.

But Θ3(ϑ, γ, κ) bounded above by γ − 1 if and only if (3.2) holds. Thus the proof is complete. □

Theorem 3.3. Let p ̸= 1, then L(t, z) =
∫ z

0

It
p(ξ)

ξ dξ is belong to the class VCp(ϑ, γ, κ) if and only if

(1− ϑγ + κ (1− ϑ)) tp

1− p
− (1− γ) (1− p)

t ≤ 2(γ − 1). (3.3)
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Proof . Since

L(t, z) = z +

∞∑
j=2

(
j + t− 2

t− 1

)
pj−1(1− p)t

zj

j

then by Theorem 1.5 we need only to show that

∞∑
j=2

j [j (1 + κ)− (γ + κ) (1 + jϑ− ϑ)]
1

j

(
j + t− 2

t− 1

)
pj−1(1− p)t ≤ γ − 1.

That is, let

Θ4(ϑ, γ, κ) =

∞∑
j=2

[j (1 + κ)− (γ + κ) (1 + jϑ− ϑ)]

(
j + t− 2

t− 1

)
pj−1(1− p)t

≤ γ − 1.

Now by writing j = (j − 1) + 1 and Proceeding as in Theorem 1.5, we get

Θ4(ϑ, γ, κ) =

[
(1− ϑγ + κ (1− ϑ)) tp

1− p
+ (1− γ)− (1− γ) (1− p)

t

]
which is bounded above by γ − 1 if and only if (3.3) holds. □

Concluding Remark: By taking κ = 0 and specializing ϑ = 0 one can deduce above analogues results for various
subclasses given in Examples 1.2 and 1.3 and studied in [6, 9, 11] with positive coefficients.
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