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Abstract

The problem of determining the zeros of regular polynomials of a quaternionic variable with quaternionic coefficients is
addressed in this study. We derive new bounds of the Eneström-Kakeya type for the zeros of these polynomials by virtue
of a maximum modulus theorem and the structure of the zero sets in the newly developed theory of regular functions
and polynomials of a quaternionic variable. Our findings generalise several newly proven conclusions concerning the
distribution of zeros of a quaternionic polynomial.
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1 Introduction

Polynomial zeros have a long and storied history in mathematics. This study has been the inspiration for many
theoretical research (including being the original reason for contemporary algebra) and has a wide range of applications.
Limiting polynomials is a good concept since reaching the zeros of a polynomial can be difficult using algebraic and
analytic approaches. The fields first contributors were Gauss and Cauchy, and the subject dates back to approximately
the time when the geometric representation of complex numbers was introduced into mathematics. Cauchy’s [3] classic
result on the distribution of zeros of a polynomial can be phrased as follows:

Theorem 1.1. If p(z) =
∑n

v=0 avz
v is a polynomial of degree n, then all the zeros of p lie in

|z| < 1 + max
1≤v≤n−1

∣∣∣av
an

∣∣∣.
Although there are other results in the literature about the bounds for polynomial zeros (see [12], [13]), the striking
property of the bound in Theorem 1.1 that distinguishes it from other such bounds is its ease of computation. This
simplicity, however, comes at the expense of precision. The following elegant result on the location of zeros of a
polynomial with restricted coefficients is known as Eneström-Kakeya Theorem (see [5], [12], [13]) which states that:

Theorem 1.2. If p(z) =
∑n

v=0 avz
v is a polynomial of degree n such that 0 < a0 ≤ a1 ≤ ... ≤ an, then all the zeros

of p lie in |z| ≤ 1.
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G. Eneström appears to have been the first to obtain a finding of this sort while researching a problem in pension fund
theory. S. Kakeya [11] presented a paper in the Tôhoku Mathematical Journal in 1912 that featured the following
more comprehensive result:

Theorem 1.3. If p(z) =
∑n

v=0 avz
v is a polynomial of degree n with real and positive coefficients, then all the zeros

of p lie in the annulus R1 ≤ |z| ≤ R2, where R1 = min0≤v≤n−1 av/av+1 and R2 = max0≤v≤n−1 av/av+1.

The Eneström-Kakeya Theorem gives an upper bound on the modulus of the zeros of polynomials in a certain class
(namely, those polynomials with real, non-negative, monotone increasing coefficients). We can easily obtain a zero
free region for a related class of polynomials in the sense that we can get a lower bound on the modulus of the zeros.
In the literature, for example see ([1], [9], [10], [12], [13]), there exist various extensions and generalizations of En-
eström-Kakeya Theorem. In 1967, Joyal, Labelle, and Rahman [10] published a result which might be considered the
foundation of the studies which we are currently studying. The Eneström-Kakeya Theorem, as stated in Theorem B,
deals with polynomials with non-negative coefficients which form a monotone sequence. Joyal, Labelle, and Rahman
generalized Theorem 1.2 by dropping the condition of non-negativity and maintaining the condition of monotonicity.
Namely, they proved:

Theorem 1.4. If p(z) =
∑n

v=0 avz
v is a polynomial of degree n such that a0 ≤ a1 ≤ ... ≤ an, then all the zeros of p

lie in |z| ≤ 1
|an| (|a0|+ an − a0).

Of course, when a0 ≥ 0, then Theorem 1.4 reduces to Theorem 1.2.
In this paper, we will prove some extensions and generalizations of above results for the class of polynomials with
quaternionic variable and quaternionic coefficients.

2 Background

This section contains some preliminaries on regular functions of a quaternionic variable which will be useful in the
sequel. In the recent study (for example, see [2], [6]-[8]), a new theory of regularity for functions, particularly for
polynomials of a quaternionic variable was developed, and is extremely useful in replicating many important properties
of holomorphic functions. One of the basic properties of holomorphic functions of a complex variable is the discreteness
of their zero sets (except when the function vanishes identically). Given a regular function of a quaternionic variable,
all its restrictions to complex lines are holomorphic and hence either have a discrete zero set or vanishes identically. In
the preliminary steps, the structure of the zero sets of a quaternionic regular function and the factorization property of
zeros was described. In this regard, Gentili and Stoppato [6] gave a necessary and sufficient condition for a quaternionic
regular function to have a zero at a point in terms of the coefficients of the power series expansion of the function.
Before we state our results, we need to introduce some preliminaries on quaternions and quaternionic polynomials.
Quaternions are the extension of complex numbers to four dimensions, introduced by William Rowan Hamilton in
1843. The set of all quaternions are denoted by H in honour of Sir Hamilton and are generally represented in the
form q = α + iβ + jγ + kδ ∈ H, where α, β, γ, δ ∈ R and i, j, k are the fundamental quaternion units, such that
i2 = j2 = k2 = ijk = −1. Each quaternion q has a conjugate. The conjuate of a quaternion q = α + iβ + jγ + kδ is
denoted by q∗ and is defined as q∗ = α− iβ − jγ − kδ. Morever, the norm (or length) of a quaternion q is given by

||q|| =
√
qq∗ =

√
α2 + β2 + γ2 + δ2.

The quaternions are the standard example of a noncommutative division ring and also forms a four dimensional vector
space over R with

{
1, i, j, k

}
as a basis.

In 2020, Carney et al. [2] proved the following extension of Theorem 1.2 for the quaternionic polynomial p(q). More
prescisely they proved the following result:

Theorem 2.1. If p(q) =
∑n

v=0 q
vav is a quaternionic polynomial of degree n with real coefficients satisfying 0 < a0 ≤

a1 ≤ ... ≤ an, then all the zeros of p lie in |q| ≤ 1.

They also proved by using Lemma 4.2 the following result:

Theorem 2.2. If p(q) =
n∑

v=0
qvav is a polynomial of degree n with quaternionic coefficients and quaternionic variable.

Let b be a non-zero quaternion and suppose ∠(av, b) ≤ θ ≤ π/2 for some θ and v = 0, 1, 2, ..., n. Assume

|an| ≥ |an−1| ≥ ... ≥ |a0|,
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then all the zeros of p lie in

|q| ≤ cos θ + sin θ +
2 sin θ

|an|

n−1∑
v=0

|av|.

We state our main results about quaternionic polynomials with restricted coefficients and the location of their zeros.
We start with the following generalization of Theorem 2.2.

3 Main Results

Theorem 3.1. If p(q) =
n∑

v=0
qvav is a polynomial of degree n with quaternionic coefficients and quaternionic variable.

Let b be a non-zero quaternion and suppose ∠(av, b) ≤ θ ≤ π/2 for some θ, v = 0, 1, 2, ..., n. Assume

|an| ≤ |an−1| ≤ ... ≤ |ar+1| ≤ λ|ar| ≥ |ar−1| ≥ ... ≥ |a1| ≥ |a0|,

where 0 ≤ r ≤ n and λ ≥ 1, then all the zeros of p lie in

|q| ≤ 1

|an|

{
|an|(sin θ − cos θ) + 2λ|ar| cos θ + 2(λ− 1)|ar| sin θ + 2 sin θ

n−1∑
v=0

|av|+ 2|1− λ||ar|
}
.

If we take r = n in Theorem 3.1, we get the following result:

Corollary 3.2. If p(q) =
n∑

v=0
qvav is a polynomial of degree n with quaternionic coefficients and quaternionic variable.

Let b be a non-zero quaternion and suppose ∠(av, b) ≤ θ ≤ π/2 for some θ, v = 0, 1, 2, ..., n. Assume

λ|an| ≥ |an−1| ≥ ... ≥ |a1| ≥ |a0|,

where λ ≥ 1, then all the zeros of p lie in

|q| ≤ (sin θ − cos θ) + 2λ cos θ + 2(λ− 1) sin θ +
2 sin θ

|an|

n−1∑
v=0

|av|+ 2|1− λ|.

By taking λ = 1 in above corollary, we get Theorem 2.2. Similarly by taking r = 0 and λ = 1 in Theorem 3.1, we
get the following result:

Corollary 3.3. If p(q) =
n∑

v=0
qvav is a polynomial of degree n with quaternionic coefficients and quaternionic variable.

Let b be a non-zero quaternion and suppose ∠(av, b) ≤ θ ≤ π/2 for some θ, v = 0, 1, 2, ..., n. Assume

|an| ≤ |an−1| ≤ ... ≤ |a1| ≤ |a0|,

then all the zeros of p lie in

|q| ≤ (sin θ − cos θ) + 2

∣∣∣∣ a0an
∣∣∣∣ cos θ + 2 sin θ

|an|

n−1∑
v=0

|av|.

Theorem 3.4. If p(q) =
n∑

v=0
qvav is a quaternionic polynomial of degree n with quaternionic coefficients av =

αv + iβv + jγv + kδv, v = 0, 1, 2, ..., n and for some k1, k2, k3, k4 ≥ 1, 0 < ρ ≤ 1, 0 ≤ λ ≤ n, 0 ≤ µ ≤ n, 0 ≤ ζ ≤ n and
0 ≤ l ≤ n satisfying

k1αn ≥ αn−1 ≥ ... ≥ ραλ ≤ αλ−1 ≤ ... ≤ α1 ≤ α0,

k2βn ≥ βn−1 ≥ ... ≥ ρβµ ≤ βµ−1 ≤ ... ≤ β1 ≤ β0,

k3γn ≥ γn−1 ≥ ... ≥ ργζ ≤ γζ−1 ≤ ... ≤ γ1 ≤ γ0,
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k4δn ≥ δn−1 ≥ ... ≥ ρδl ≤ δl−1 ≤ ... ≤ δ1 ≤ δ0,

then all the zeros of p lie in

|q| ≤ 1

|an|

{
(|α0|+ α0 − |αn|) + (|β0|+ β0 − |βn|) + (|γ0|+ γ0 − |γn|) + (|δ0|+ δ0 − |δn|)

+ k1(αn + |αn|) + k2(βn + |βn|) + k3(γn + |γn|) + k4(δn + |δn|)− ρ(αλ + βµ + γζ + δl)

+ (1− ρ)(|αλ|+ |βµ|+ |γζ |+ |δl|)
}
.

Applying Theorem 3.4 to the polynomial p(q) having real coefficients, i.e., β = γ = δ = 0, we have the following result:

Corollary 3.5. If p(q) =
n∑

v=0
qvav is a quaternionic polynomial of degree n with real coefficients av, v = 0, 1, 2, ..., n

and for some k1 ≥ 1, 0 < ρ ≤ 1 and 0 ≤ λ ≤ n satisfying

k1an ≥ an−1 ≥ ... ≥ ρaλ ≤ aλ−1 ≤ ... ≤ a1 ≤ a0,

then all the zeros of p lie in

|q| ≤ 1

|an|

{
(|a0|+ a0 − |an|) + k1(an + |an|)− ρaλ + (1− ρ)|aλ|

}
.

4 Lemmas

We need the following lemmas for the proofs of the main results. The first lemma is due to Gentili and Stoppato
[6].

Lemma 4.1. If f(q) =
∞∑
v=0

qvav and g(q) =
∞∑
v=0

qvbv be two given quaternionic power series with radii of convergence

greater than R. The regular product of f(q) and g(q) is defined as (f ⋆ g)(q) =
∞∑
v=0

qvcv, where cv =
v∑

k=0

akbv−k. Let

|q0| < R, then (f ⋆ g)(q0) = 0 if and only if either f(q0) = 0 or f(q0) ̸= 0 implies g(f(q0)
−1q0f(q0)) = 0.

The following lemma is due to Carney et al. [2].

Lemma 4.2. Let q1, q2 ∈ H, where q1 = α1 + iβ1 + jγ1 + kδ1 and q2 = α2 + iβ2 + jγ2 + kδ2, ∠(q1, q2) = 2θ′ ≤ 2θ,
and |q1| ≤ |q2|, then

|q2 − q1| ≤ (|q2| − |q1|) cos θ + (|q2|+ |q1|) sin θ.

5 Proofs of the Theorems

Proof of Theorem 3.1. Consider the polynomial

f(q) =

n∑
v=1

qv(av − av−1) + a0.

Let p(q) ⋆ (1− q) = f(q)− qn+1an, therefore by Lemma 4.1, p(q) ⋆ (1− q) = 0 if and only if either p(q) = 0 or p(q) ̸= 0
implies p(q)−1qp(q)− 1 = 0, that is, p(q)−1qp(q) = 1. If p(q) ̸= 0, then q = 1. Therefore, the only zeros of p(q) ⋆ (1− q)
are q = 1 and the zeros of p(q). For |q| = 1, we have

|f(q)| = |a0 +
n∑

v=1

(av − av−1)|

≤ |a0|+
n∑

v=1

|av − av−1|

= |a0|+ |an − an−1|+ ...+ |ar+1 − ar|+ |ar − ar−1|+ ...+ |a1 − a0|
= |a0|+ |an − an−1|+ ...+ |ar+1 − λar + λar − ar|+ |ar − λar + λar − ar−1|+ ...+ |a1 − a0|
≤ |a0|+ |an − an−1|+ ...+ |ar+1 − λar|+ |λar − ar−1|+ 2|1− λ||ar|+ ...+ |a1 − a0|.
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Now using Lemma 4.2, it follows that

|f(q)| ≤ 2|1− λ||ar|+ (|an−1| − |an|) cos θ + (|an−1|+ |an|) sin θ
+ (|an−2| − |an−1|) cos θ + ...+ (|an−2|+ |an−1|) sin θ + (λ|ar| − |ar+1|) cos θ
+ (λ|ar|+ |ar+1|) sin θ + (λ|ar| − |ar−1|) cos θ + (λ|ar|+ |ar−1|) sin θ
+ ...+ (|a2| − |a1|) cos θ + (|a2|+ |a1|) sin θ + (|a1| − |a0|) cos θ + (|a1|+ |a0|) sin θ + |a0|
= |an|(sin θ − cos θ) + 2λ|ar| cos θ + 2(λ− 1)|ar| sin θ

+ 2 sin θ

n−1∑
v=0

|av| − |a0|(cos θ + sin θ − 1) + 2|1− λ||ar|

≤ |an|(sin θ − cos θ) + 2λ|ar| cos θ + 2(λ− 1)|ar| sin θ + 2 sin θ

n−1∑
v=0

|av|+ 2|1− λ||ar|.

Since

max
|q|=1

∣∣∣qn ⋆ f
(1
q

)∣∣∣ = max
|q|=1

∣∣∣f(1
q

)∣∣∣ = max
|q|=1

|f(q)|,

therefore, qn ⋆ f
(

1
q

)
has the same bound on |q| = 1 as f(q), that is∣∣∣qn ⋆ f

(1
q

)∣∣∣ ≤ |an|(sin θ − cos θ) + 2λ|ar| cos θ + 2(λ− 1)|ar| sin θ

+ 2 sin θ

n−1∑
v=0

|av|+ 2|1− λ||ar| for |q| = 1.

Applying maximum modulus theorem ([7], Theorem 3.4), it follows that∣∣∣qn ⋆ f
(1
q

)∣∣∣ ≤ |an|(sin θ − cos θ) + 2λ|ar| cos θ + 2(λ− 1)|ar| sin θ

+ 2 sin θ

n−1∑
v=0

|av|+ 2|1− λ||ar| for |q| ≤ 1.

Replacing q by 1
q , we get for |q| ≥ 1

|f(q)|

≤
{
|an|(sin θ − cos θ) + 2λ|ar| cos θ + 2(λ− 1)|ar| sin θ + 2 sin θ

n−1∑
v=0

|av|+ 2|1− λ||ar|
}
|q|n. (5.1)

But |p(q) ⋆ (1− q)| = |f(q)− qn+1an| ≥ |an||q|n+1 − |f(q)|.
Using (5.1), we have for |q| ≥ 1

|p(q) ⋆ (1− q)| ≥ |an||q|n+1

−
{
|an|(sin θ − cos θ) + 2λ|ar| cos θ + 2(λ− 1)|ar| sin θ + 2 sin θ

n−1∑
v=0

|av|+ 2|1− λ||ar|
}
|q|n.

This implies that |p(q) ⋆ (1− q)| > 0, i.e., p(q) ⋆ (1− q) ̸= 0 if

|q| > 1

|an|

{
|an|(sin θ − cos θ) + 2λ|ar| cos θ + 2(λ− 1)|ar| sin θ + 2 sin θ

n−1∑
v=0

|av|+ 2|1− λ||ar|
}
.

Since the only zeros of p(q) ⋆ (1− q) are q = 1 and the zeros of p(q). Therefore, p(q) ̸= 0 for

|q| > 1

|an|

{
|an|(sin θ − cos θ) + 2λ|ar| cos θ + 2(λ− 1)|ar| sin θ + 2 sin θ

n−1∑
v=0

|av|+ 2|1− λ||ar|
}
.
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Hence all the zeros of p(q) lie in

|q| ≤ 1

|an|

{
|an|(sin θ − cos θ) + 2λ|ar| cos θ + 2(λ− 1)|ar| sin θ + 2 sin θ

n−1∑
v=0

|av|+ 2|1− λ||ar|
}
.

This completes the proof of Theorem 3.1.

Proof of Theorem 3.4. Consider the polynomial

f(q) =

n∑
v=1

qv(av − av−1) + a0.

Let p(q) ⋆ (1− q) = f(q)− qn+1an, therefore by Lemma 4.1, p(q) ⋆ (1− q) = 0 if and only if either p(q) = 0 or p(q) ̸= 0
implies p(q)−1qp(q)− 1 = 0, that is, p(q)−1qp(q) = 1. If p(q) ̸= 0, then q = 1. Therefore the only zeros of p(q) ⋆ (1− q)
are q = 1 and the zeros of p(q). For |q| = 1, we have

|f(q)| ≤ |a0|+
n∑

v=1

|av − av−1|

≤ |α0|+ |β0|+ |γ0|+ |δ0|+
n∑

v=1

{
|αv − αv−1|+ |βv − βv−1|+ |γv − γv−1|+ |δv − δv−1|

}
= |α0|+ |β0|+ |γ0|+ |δ0|+ |αn − αn−1|+ |αλ+1 − αλ|

+

λ∑
v=1

|αv − αv−1|+
n−1∑

v=λ+2

|αv − αv−1|+ |βn − βn−1|+ |βµ+1 − βµ|

+

µ∑
v=1

|βv − βv−1|+
n−1∑

v=µ+2

|βv − βv−1|+ |γn − γn−1|+ |γζ+1 − γζ |

+

ζ∑
v=1

|γv − γv−1|+
n−1∑

v=ζ+2

|γv − γv−1|+ |δn − δn−1|+ |δl+1 − δl|

+

l∑
v=1

|δv − δv−1|+
n−1∑

v=l+2

|δv − δv−1|

= |α0|+ |β0|+ |γ0|+ |δ0|+ |k1αn + αn − k1αn − αn−1|+ |ραλ + αλ+1 − ραλ − αλ|

+

λ∑
v=1

|αv − αv−1|+
n−1∑

v=λ+2

|αv − αv−1|+ |k2βn + βn − k2βn − βn−1|+ |ρβµ + βµ+1 − ρβµ − βµ|

+

µ∑
v=1

|βv − βv−1|+
n−1∑

v=µ+2

|βv − βv−1|+ |k3γn + γn − k3γn − γn−1|+ |ργζ + γζ+1 − ργζ − γζ |

+

ζ∑
v=1

|γv − γv−1|+
n−1∑

v=ζ+2

|γv − γv−1|+ |k4δn + δn − k4δn − δn−1|+ |ρδl + δl+1 − ρδl − δl|

+

l∑
v=1

|δv − δv−1|+
n−1∑

v=l+2

|δv − δv−1|
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≤ |α0|+ |β0|+ |γ0|+ |δ0|+ |k1αn − αn−1|+ (k1 − 1)|αn|+ |αλ+1 − ραλ|+ (1− ρ)|αλ|

+

λ∑
v=1

|αv−1 − αv|+
n−1∑

v=λ+2

|αv − αv−1|+ |k2βn − βn−1|+ (k2 − 1)|βn|+ |βµ+1 − ρβµ|+ (1− ρ)|βµ|

+

µ∑
v=1

|βv−1 − βv|+
n−1∑

v=µ+2

|βv − βv−1|+ |k3γn − γn−1|+ (k3 − 1)|γn|+ |γζ+1 − ργζ |+ (1− ρ)|γζ |

+

ζ∑
v=1

|γv−1 − γv|+
n−1∑

v=ζ+2

|γv − γv−1|+ |k4δn − δn−1|+ (k4 − 1)|δn|+ |δl+1 − ρδl|+ (1− ρ)|δl|

+

l∑
v=1

|δv−1 − δv|+
n−1∑

v=l+2

|δv − δv−1|

= |α0|+ |β0|+ |γ0|+ |δ0|+ |k1αn − αn−1|+ (k1 − 1)|αn|+ |αλ+1 − ραλ|+ (1− ρ)|αλ|

+ |k2βn − βn−1|+ (k2 − 1)|βn|+ |βµ+1 − ρβµ|+ (1− ρ)|βµ|+ |k3γn − γn−1|+ (k3 − 1)|γn|

+ |γζ+1 − ργζ |+ (1− ρ)|γζ |+ |k4δn − δn−1|+ (k4 − 1)|δn|+ |δl+1 − ρδl|+ (1− ρ)|δl|

+ α0 − α1 + α1 − α2 + ...+ αλ−2 − αλ−1 + αλ−1 − αλ + αλ+2 − αλ+1 + αλ+3 − αλ+2

+ ...+ αn−1 − αn−2 + β0 − β1 + β1 − β2 + ...+ βµ−2 − βµ−1 + βµ−1 − βµ + βµ+2

− βµ+1 + βµ+3 − βµ+2 + ...+ βn−1 − βn−2 + γ0 − γ1 + γ1 − γ2 + ...+ γζ−2 − γζ−1

+ γζ−1 − γζ + γζ+2 − γζ+1 − γζ+3 − γζ+2 + ...+ γn−1 − γn−2 + δ0 − δ1 + δ1 − δ2

+ ...+ δl−2 − δl−1 + δl−1 − δl + δl+2 − δl+1 − δl+3 − δl+2 + ...+ δn−1 − δn−2

= (|α0|+ α0 − |αn|) + (|β0|+ β0 − |βn|) + (|γ0|+ γ0 − |γn|) + (|δ0|+ δ0 − |δn|)

+ k1(αn + |αn|) + k2(βn + |βn|) + k3(γn + |γn|) + k4(δn + |δn|)− ρ(αλ + βµ + γζ + δl)

+ (1− ρ)(|αλ|+ |βµ|+ |γζ |+ |δl|).

Since

max
|q|=1

∣∣∣qn ⋆ f
(1
q

)∣∣∣ = max
|q|=1

∣∣∣f(1
q

)∣∣∣ = max
|q|=1

|f(q)|,

therefore, qn ⋆ f
(

1
q

)
has the same bound on |q| = 1 as f(q), that is∣∣∣qn ⋆ f

(1
q

)∣∣∣ ≤ (|α0|+ α0 − |αn|) + (|β0|+ β0 − |βn|) + (|γ0|+ γ0 − |γn|) + (|δ0|+ δ0 − |δn|)

+ k1(αn + |αn|) + k2(βn + |βn|) + k3(γn + |γn|) + k4(δn + |δn|)− ρ(αλ + βµ + γζ + δl)

+ (1− ρ)(|αλ|+ |βµ|+ |γζ |+ |δl|) for |q| = 1.
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After few steps as in the proof of Theorem 3.1, we conclude that all the zeros of p(q) lie in

|q| ≤ 1

|an|

{
(|α0|+ α0 − |αn|) + (|β0|+ β0 − |βn|) + (|γ0|+ γ0 − |γn|) + (|δ0|+ δ0 − |δn|)

+ k1(αn + |αn|) + k2(βn + |βn|) + k3(γn + |γn|) + k4(δn + |δn|)− ρ(αλ + βµ + γζ + δl)

+ (1− ρ)(|αλ|+ |βµ|+ |γζ |+ |δl|)
}
.

This completes the proof of Theorem 3.4.

6 Conclusions

Some fresh findings on Eneström-Kakeya Theorem for quaternionic polynomials has been discovered that are useful
in determining the regions containing all the zeros of a polynomial.
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