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Abstract

This work elucidates the sufficient conditions for establishing some existence and uniqueness results for a Musca
Domestica model that is governed by a first-order nonlinear differential equation with iterative terms resulting from a
time and state-dependent delay. The existence of at least one positive periodic solution is proved by using Schauder’s
fixed point theorem with the help of some properties of an obtained Green’s function. Furthermore, under an additional
condition, the Banach contraction principle is applied to guarantee the existence, uniqueness and stability of solutions.
Finally, the validity of our main findings is demonstrated by two examples. Our findings are completely new and
generalize previous ones to some degree.
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1 Introduction

The common housefly, Musca Domestica is a cosmopolitan pest of both humans and animals that is recognized for
their ability to spoil food, to cause irritations and also to harbor and to transmit many diseases as amoebic dysentery,
cholera, yaws, Newcastle disease, typhoid fever, poliomyelitis and diarrhea, etc.

Among the first delay models that have been used to describe the growth of single-species insect populations,
we can cite the work of Maynard Smith [15] who has proposed the following first order differential equation with a
constant delay for modeling a single-species population with two stages: larva and adult:

M ′ (t) = −p M (t) + bM (t− τ) [1−M (t− τ)] ,

with M (t) is denoting the size of the population at time t, p > 0 is the adult mortality rate, b is the number of eggs
laid per adult and the time delay τ stands for the time elapsing between oviposition and adult eclosion.

In 1976, motivated by the above equation, and in order to describe the oscillations in the dynamics of laboratory
populations of houseflies, Musca Domestica, Taylor and Sokal [18] have set down the following delay differential
equation:

M ′ (t) = −pM (t) + bM (t− τ) [β − bαM (t− τ)] ,
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where β is the maximum egg-adult survival rate and α is the reduction in survival produced by each additional egg.

A growing number of experiments that have clearly manifested that the delays in many hereditary phenomena
are generally depending in both time and state, have fascinated us and attracted our interests to consider a housefly
model with iterative terms resulting from a time and state dependent delay. Indeed, several studies have revealed
that due many factors such as the competition for food during the three larval stages, the duration of the fly life cycle
depends in fact on the time and the population size. Simply said, adult females lay clusters of eggs in several batches
by stacking them on top of each other which affects the duration of their life cycles and hence, the life cycles of the
maggots at the bottom (near the moist and nutrient-rich place) are faster than those superimposed above them, which
in turn are faster than those at the top which means that the mean duration of the life cycles τ varies depending not
only on the time but also on the number of adult flies that lay eggs. By taking into account this information, we can
revisit Taylor and Sokal model to the following one:

M ′ (t) = −p (t)M (t) + bM (t− τ (t,M (t))) [β − bαM (t− τ (t,M (t)))] ,

and by assuming that τ (t,M (t)) = t−M (t) , we arrive at the following first order iterative differential equation that
involves implicitly the above time and state dependent delay:

M ′(t) + p (t)M(t) = bβM [2] (t)− b2α
(
M [2] (t)

)2

, (1.1)

where M [2] (t) = M (M (t)), p ∈ C (R, ]0,∞[) is a w−periodic function and the remainder parameters are positive.

Equation (1.1) is an iterative differential equation and equations of this kind have tremendous applications in an
extremely wide range of areas, including biology, medicine, classical electrodynamics, physics, epidemiology, hematol-
ogy, population dynamics and many other branches of science and technology. They have been of vital importance in
modeling various natural phenomena over the last three centuries- and have been even more so in the last ten years-
thanks to some papers (see [1]-[14], [16], [19] and references therein). Here, we would like to mention some recent works
on iterative problems that arise in life sciences.

In [4] , the authors have used Schauder’s fixed point theorem to study the following Nicholson’s blowflies equation
with an iterative harvesting effort:

N ′ (t) = −p (t)N (t) + a (t)N (t− τ) e−γ(t)N(t−τ) − qN (t− τ)E
(
t,N (t) , N [2] (t) , ..., N [n] (t)

)
,

where N (t) denotes the population density of the sheep blowfly, Lucilia Cuprina.

In [4], by virtue of the same aforementioned fixed point theorem, Bouakkaz has investigated the following class
of first-order iterative differential equations with application to three iterative hematopoiesis models for humans and
animals.

x′ (t) = −p (t)x (t) + a (t)xm (t− τ (t)) f
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
,

where x (t) is the density of mature cells in blood circulation at time t, p (t) and a (t) are, respectively the death and
the production rates of blood cells.

In [16], Mezghiche et al. have applied Banach and Krasnoselskii’s fixed point theorems together with the Green’s
functions method to establish the existence, uniqueness and stability results for the following class of first order neutral
delay differential equations with an iterative harvesting term:

d

dt
[x (t)− cx (t− τ (t))] = −p (t)x (t) + f (t, x (t− τ (t)))−H

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
.

Here x (t) can represent for example, a size of a population, a number of individuals or a blood cell density and H is
the harvesting function.

In [12], Khemis et al. have utilized the same approach adopted in [16] to discuss the existence, uniqueness and
stability of positive periodic solutions for the following Lasota–Wazewska model with an iterative production term
and a delayed harvesting one:

x′ (t) = −p (t)x (t) + a (t) e−γx[2](t) −H (t, x (t− τ)) ,

where x (t) is the density of mature erythrocytes in an animal at time t.



Existence results of a delay houseflies model 867

So, we draw our motivation first and foremost from these works and as we said before, from the fact that delays in
life sciences depend generally on the time and the state and also from our contribution in enriching and complementing
some earlier publications whether on insect population dynamics or iterative problems. It is worth noting here that
these latter are obviously burning topics and hence in many cases they are difficult to deal with. For this, the theory
of such kind of equations which can be considered as a special type of the so-called functional differential equations
with delays depending upon both the time and the state variables; has not yet been well established (see [1]-[14], [16],
[19] ). The chief problem lies in the iterative terms that generally impede the application of usual methods and could
make the study somewhat difficult.

The main purpose of this work is to establish some sufficient criteria for ensuring the existence, uniqueness and
stability of positive periodic solutions of the iterative differential equation (1.1). For achieving our goals, we use an
attractive technique based on converting the problem at hand into an equivalent integral equation before constructing
an integral operator with a Green’s function type kernel. Next, through the fixed point theory, some functional analysis
tools together with some properties of the obtained Green’s function, we success in establishing some new existence,
uniqueness and stability results for our problem.

The plan of the article is as follows. In Section 2, we introduce our notations, assumptions and some preliminaries.
In Section 3, we state and prove our main results concerning the existence, uniqueness and continuous dependence on
parameters of positive periodic solutions for the proposed model, whilst Section 4 is dedicated to give two examples
to corroborate the effectiveness of the obtained findings.

2 Preliminaries

For L ≥ 0 and w, λ1 > 0, let
X = {M ∈ C (R,R) , M (t+ w) = M (t)} ,

equipped with the supremum norm

∥M∥ = sup
t∈R

|M (t)| = sup
t∈[0,w]

|M (t)| ,

and
Ω = {M ∈ X : 0 < M (t) ≤ λ1, |M (t2)−M (t1)| ≤ L |t2 − t1| , ∀t1, t2 ∈ [0, w]} ,

then (X, ∥·∥) is a Banach space and Ω is a closed convex and bounded subset of X.

For convenience, we introduce the following notations:

p = sup
t∈[0,w]

p (t) , γ0 =
exp

(
−
∫ w

0
p (u) du

)
exp

(∫ w

0
p (u) du

)
− 1

, γ1 =
exp

(∫ w

0
p (u) du

)
exp

(∫ w

0
p (u) du

)
− 1

.

Furthermore, it will be assumed that
(H1) For all M ∈ Ω and s ∈ [0, w], we suppose that

min
s∈[0,w]

{
bβM [2] (s)− b2α

(
M [2] (s)

)2
}

> 0. (2.1)

(H2) The following estimates are satisfied:

γ1wbβ ≤ 1, (2.2)

(γ1pw + 2γ1)
(
bβλ1 + b2αλ2

1

)
≤ L. (2.3)

Definition 2.1. (Green’s function) [6] We will consider two – point nth– order linear boundary value problems of
the form {

Lny (t) = σ (t) , t ∈ I ≡ [c, d] ,
Ui (y) = ξi, i = 1,m,

(P1)

where
Lny (t) = a0 (t) y

(n) (t) + a1 (t) y
(n−1) (t) + ...+ an−1 (t) y

′ (t) + an (t) y (t) ,
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and

Ui (y) =

n−1∑
j=0

(
αi
jy

(j) (c) + βi
jy

(j) (d)
)
, i = 1,m, m ≤ n,

being αi
j , β

i
j and ξi real constants for all i = 1,m and j = 0, n− 1, σ and ak continuous real functions for all k = 0, n,

and a0 (t) ̸= 0 for all t ∈ I.
We say that G is a Green’s function for problem (P1) if it satisfies the following properties:
(G1) G is defined on the square I × I.

(G2) For k = 0, n− 2, the partial derivatives
∂kG

∂tk
exist and they are continuous on I × I.

(G3)
∂k−1G

∂tk−1
and

∂kG

∂tk
exist and are continuous on the triangles c ≤ s < t ≤ d and c ≤ t < s ≤ d.

(G4) For each t ∈ (c, d) there exist the lateral limits

∂n−1G

∂tn−1

(
t, t+

)
and

∂n−1G

∂tn−1

(
t, t−

)
,

(i.e., the limits when (t, s) → (t, t) with s > t or with s < t) and, moreover

∂n−1G

∂tn−1

(
t, t+

)
− ∂n−1G

∂tn−1

(
t, t−

)
= − 1

a0 (t)
.

(G5) For each s ∈ (c, d), the function t → G (t, s) is a solution of the differential equation Lny = 0 on t ∈ [c, s) and
t ∈ (s, d]. That is,

a0 (t)
∂nG

∂tn
(t, s) + a1 (t)

∂n−1G

∂tn−1
(t, s) + ...+ an−1 (t)

∂G

∂t
(t, s) + an (t)G (t, s) = 0,

on both intervals.
(G6) For each s ∈ (c, d), the function t → G (t, s) satisfies the boundary conditions

n−1∑
j=0

(
αi
j

∂jG

∂tj
(c, s) + βi

j

∂jG

∂tj
(d, s)

)
= 0, i = 1,m.

Theorem 2.2. [6] Let us suppose that the homogeneous problem{
Lny (t) = 0, t ∈ I ≡ [c, d] ,
Ui (y) = 0, i = 1, n,

(P2)

has only the trivial solution. Then there exists a unique Green’s function, G (t, s), related to (P2). Moreover, for each
continuous function σ, the unique solution of the problem{

Lny (t) = σ (t) , t ∈ I ≡ [c, d] ,
Ui (y) = 0, i = 1, n,

is given by the expression

y ((t)) =

∫ d

c

G (t, s)σ (s) ds.

Here, we state and prove a useful equivalence between equation (1.1) with the periodic properties and a certain
integral equation.

Lemma 2.3. M ∈ Ω ∩ C1 (R,R) is a solution of equation (1.1) if and only if M ∈ Ω is a solution of the following
integral equation:

M (t) =

∫ t+w

t

G (t, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds, (2.4)

where G is a Green’s function giving by

G (t, s) =
exp

(∫ s

t
p (u) du

)
exp

(∫ w

0
p (u) du

)
− 1

. (2.5)



Existence results of a delay houseflies model 869

Proof . Let M ∈ Ω be a solution of equation (1.1). Multiplying both sides of this equation by exp
(∫ t

0
p (u) du

)
we

obtain
d

ds

[
M (s) exp

(∫ s

0

p (u) du

)]
ds =

[
bβM [2] (t)− b2α

(
M [2] (t)

)2
]
exp

(∫ t

0

p (u) du

)
.

The integration from t to t+ w gives∫ t+w

t

d

ds

[
M (s) exp

(∫ s

0

p (u) du

)]
ds =

∫ t+w

t

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
exp

(∫ s

0

p (u) du

)
ds.

The fact that M (t) = M (t+ w) implies that∫ t+w

t

d

ds

[
M (s) exp

(∫ s

0

p (u) du

)]
ds = M (t)

[
exp

(∫ t+w

0

p (u) du

)
− exp

(∫ t

0

p (u) du

)]
= M (t)

[
exp

(∫ t

0

p (u) du

)(
exp

(∫ t+w

t

p (u) du

)
− 1

)]
.

Therefore

M (t) =

∫ t+w

t

exp
(∫ s

t
p (u) du

)
exp

(∫ t+w

t
p (u) du

)
− 1

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds

=

∫ t+w

t

G (t, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds,

which completes the first step of the proof.

Conversely, if we assume that M satisfies (2.4) and by the derivation of this integral equation, we infer that M
satisfies equation (1.1). □

Remark 2.4. The Green’s function G satisfies the following properties:

G (t+ w, s+ w) = G (t, s) , ∀t, s ∈ R,

and
γ0 ≤ G (t, s) ≤ γ1. (2.6)

Lemma 2.5. [19]If M,N ∈ Ω, then ∥∥∥M [2] −N [2]
∥∥∥ ≤ (1 + L) ∥M −N∥ . (2.7)

Remark 2.6. We can establish inequality (2.7) as follows. If M,N ∈ D, then∣∣∣M [2] (t)−N [2] (t)
∣∣∣ ≤ |M (M (t))−M (N (t))|+ |M (N (t))−N (N (t))|

≤ L |M (t)−N (t)|+ ∥M −N∥
≤ L2 ∥M −N∥+ ∥M −N∥ .

So ∥∥∥M [2] −N [2]
∥∥∥ = sup

t∈[0,w]

∣∣∣M [2] (t)−N [2] (t)
∣∣∣ ≤ (1 + L) ∥M −N∥ .

Theorem 2.7. (Schauder’s fixed point theorem) [17] Let Ω be a closed, bounded, convex, and nonempty subset of a
Banach space (X, ∥.∥). Then any continuous compact mapping A : Ω −→ Ω has at least one fixed point in Ω.

Theorem 2.8. (Arzelà-Ascoli theorem) [5] Let X be a compact metric space and let C (X) be the space of all bounded
and continuous real-valued functions on X. If Ω is an equicontinuous and bounded subset of C (X), then Ω is relatively
compact.
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3 Main results

3.1 Existence result

In the first part of this section, we will use the Schauder’s fixed point theorem combined with the obtained Green’s
function properties to prove the existence of at least one positive periodic solution for equation (1.1). For this and by
virtue of Lemma 2.3, we define an operator K : Ω → X as follows:

(KM) (t) =

∫ t+w

t

G (t, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds. (3.1)

So, fixed points of K are solutions of equation (1.1) and vice versa. This means that our main task is clearly to
show that the operator K has fixed points which are solutions to equation (1.1).

Let us begin by pointing out that by virtue of the periodic properties, the operator K is well-defined. Next, we
state and prove the following lemma which establishes the continuity and compactness of K.

Lemma 3.1. The operator K: Ω → X given by (3.1) is continuous and compact.

Proof . Thanks to Arzelà-Ascoli theorem, Ω is a compact subset of X. So, to show that K is a compact operator it
suffices to show that it is continuous. For M,N ∈ Ω, we have

|(KM) (t)− (KN) (t)| ≤ bβ

∫ t+w

t

G (t, s)
∣∣∣M [2] (s)−N [2] (s)

∣∣∣ ds
+ b2α

∫ t+w

t

G (t, s)
∣∣∣M [2] (s) +N [2] (s)

∣∣∣ ∣∣∣M [2] (s)−N [2] (s)
∣∣∣ ds.

Taking into account (2.6) and (2.7), we obtain

|(KM) (t)− (KN) (t)| ≤
(
γ1wbβ (1 + L) + 2γ1wb

2αλ1 (1 + L)
)
∥M −N∥

= µ ∥M −N∥ ,

where,
µ = γ1wb (β + 2bαλ1) (1 + L) ,

which shows that the operator K is Lipschitz continuous and hence continuous. Therefore, K is compact. □

Lemma 3.2. If conditions (2.1) and (2.2) hold, then

0 < (KM) (t) ≤ λ1,

for all M ∈ Ω.

Proof . Let M ∈ Ω. In view of (2.1) we have

(KM) (t) =

∫ t+w

t

G (t, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds

> γ0w min
s∈[0,w]

{
bβM [2] (s)− b2α

(
M [2] (s)

)2
}

> 0,

and by using (2.2) we have

(KM) (t) =

∫ t+w

t

G (t, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds

≤ bβ

∫ t+w

t

G (t, s)M [2] (s) ds

≤ γ1wbβλ1

≤ λ1.

Consequently, 0 < (KM) (t) ≤ λ1. □
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Remark 3.3. Let p ∈ X. For t1, t2 ∈ [0, w] and t1 < t2 we have∫ t1+w

t1

∣∣∣∣exp(∫ s

t2

p (u) du

)
− exp

(∫ s

t1

p (u) du

)∣∣∣∣ ds ≤ wp exp

(∫ w

0

p (u) du

)
|t2 − t1| . (3.2)

Lemma 3.4. If condition (2.3) holds, then

|(KM) (t2)− (KM) (t1)| ≤ L |t2 − t1| ,

for all t1, t2 ∈ R.

Proof . Let t1, t2 ∈ [0, w] with t1 < t2. For M ∈ Ω, we have

|(KM) (t2)− (KM) (t1)| =
∣∣∣∣∫ t2+w

t2

G (t2, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds

−
∫ t1+w

t1

G (t1, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds

∣∣∣∣ .
Thereby

|(KM) (t2)− (KM) (t1)| =
∣∣∣∣∫ t1

t2

G (t2, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds

+

∫ t1+w

t1

G (t2, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds

+

∫ t2+w

t1+w

G (t2, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds

−
∫ t1+w

t1

G (t1, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds

∣∣∣∣ ,
from which we infer that

|(KM) (t2)− (KM) (t1)| ≤
∫ t1

t2

G (t2, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds

+

∫ t2+w

t1+w

G (t2, s)

[
bβM [2] (s)− b2α

(
M [2] (s)

)2
]
ds

+

∫ t1+w

t1

|G (t2, s)−G (t1, s)|
∣∣∣∣bβM [2] (s)− b2α

(
M [2] (s)

)2
∣∣∣∣ ds.

It follows from (2.3), (2.6) and (3.2) that

|(KM) (t2)− (KM) (t1)| ≤ 2γ1
(
bβλ1 + b2αλ2

1

)
|t2 − t1|

+ γ1pw
(
bβλ1 + b2αλ2

1

)
|t2 − t1|

= (γ1pw + 2γ1)
(
bβλ1 + b2αλ2

1

)
|t2 − t1|

≤ L |t2 − t1| .

So, |(KM) (t2)− (KM) (t1)| ≤ L |t2 − t1| for all t1, t2 ∈ R. □
Our first main result is the following theorem:

Theorem 3.5. Suppose that conditions (2.1) − (2.3) hold, then equation (1.1) has at least one positive periodic
solution M ∈ Ω.

Proof . As a result of Lemmas 3.2 and 3.4, K maps Ω into itself, i.e. K (Ω) ⊂ Ω and from Lemma 3.1, K is a compact
and continuous operator, so all requirements of the Schauder’s fixed point theorem are satisfied. This shows that K
has at least one fixed point in Ω, which means that equation (1.1) admits at least one positive periodic solution. □
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3.2 Uniqueness result

The second part of this section will be devoted to establishing the existence and uniqueness of solutions by using
the Banach contraction principle.

Theorem 3.6. Besides of the assumptions (2.1)− (2.3) if we further assume that µ < 1, then equation (1.1) has one
and only one solution M ∈ Ω.

Proof . From Lemma 3.1, for all M,N ∈ Ω we arrived at

|(KM) (t)− (KN) (t)| ≤ µ ∥M −N∥ .

Thanks to condition µ < 1 and the Banach fixed point theorem, operator K has a unique fixed point in Ω. From
Lemma 2.3, this unique fixed point is the unique positive periodic solution of equation (1.1). □

3.3 Continuous dependence on parameters

Now, we establish the continuous dependence of the solution upon the adult mortality rate.

Theorem 3.7. The solution obtained in Theorem 3.6 depends continuously on the function p.

Proof . Let

M1 (t) =

∫ t+w

t

G1 (t, s)

[
bβM

[2]
1 (s)− b2α

(
M

[2]
1 (s)

)2
]
ds,

be the unique solution of equation (1.1) and let

M2 (t) =

∫ t+w

t

G2 (t, s)

[
bβM

[2]
2 (s)− b2α

(
M

[2]
2 (s)

)2
]
ds,

be a solution of the perturbed equation with a small perturbation in the adult mortality rate p1 (t) where

G1 (t, s) =
exp

(∫ s

t
p1 (u) du

)
exp

(∫ w

0
p1 (u) du

)
− 1

, G2 (t, s) =
exp

(∫ s

t
p2 (u) du

)
exp

(∫ w

0
p2 (u) du

)
− 1

.

Estimating the difference between M1 (t) and M2 (t), we get

|M1 (t)−M2 (t)| ≤
∫ t+w

t

|G1 (t, s)−G2 (t, s)|
∣∣∣∣bβM [2]

1 (s)− b2α
(
M

[2]
1 (s)

)2
∣∣∣∣ ds

+

∫ t+w

t

G2 (t, s)
[∣∣∣bβM [2]

1 (s)− bβM
[2]
2 (s)

∣∣∣
+

∣∣∣∣b2α(
M

[2]
1 (s)

)2

− b2α
(
M

[2]
2 (s)

)2
∣∣∣∣] ds.

Thanks to the mean value theorem, we obtain∫ t+w

t

|G1 (t, s)−G2 (t, s)| ds ≤ η ∥p1 − p2∥ , (3.3)

where

η =
w2ew(∥p2∥+max(∥p1∥,∥p2∥))(

exp
(∫ w

0
p1 (u) du

)
− 1

) (
exp

(∫ w

0
p2 (u) du

)
− 1

) +
w2ewmax(∥p1∥,∥p2∥)

exp
(∫ w

0
p1 (u) du

)
− 1

.

It follows from (2.6), (3.3) and Lemma 2.5 that

|M1 (t)−M2 (t)| ≤ wbλ1 (β − bαλ1) η ∥p1 − p2∥
+ γ1wb (1 + L) (β + 2bαλ1) |M1 (t)−M2 (t)| .

So

∥M1 −M2∥ ≤ wbλ1η (β − bαλ1)

1− µ
∥p1 − p2∥ .

This completes the proof. □
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4 Examples

Here are two concrete examples illustrating Theorems 3.5, 3.6 and 3.7.

Example 4.1. Consider the following iterative houseflies model:

M ′(t) +

(
0.025 + 0.024 sin2

2πt

35

)
M(t) = (0.05) (0.4)M [2] (t)− (0.05)

2
(0.000226)

(
M [2] (t)

)2

, (4.1)

where

p (t) = 0.025 + 0.024 sin2
2πt

35
, b = 0.05, β = 0.4 and α = 0.000226.

Let
Ω1 = {M ∈ X : 0 < λ0 ≤ M (t) ≤ λ1, |M (t2)−M (t1)| ≤ L |t2 − t1| , ∀t1, t2 ∈ [0, w]} ,

where w = 35, λ0 = 0.1, λ1 = 0.8 and L = 0.2.
We define an integral operator K1 : Ω1 → X as follows:

(K1M) (t) =

∫ t+35

t

G (t, s)

[
(0.02)M [2] (s)−

(
565× 10−9

) (
M [2] (s)

)2
]
ds,

where its kernel is the following Green’s function:

G (t, s) =
exp

(∫ t+35

t

(
0.025 + 0.024 sin2 2πu

35

)
du

)
exp

(∫ t+35

t

(
0.025 + 0.024 sin2 2πu

35

)
du

)
− 1

.

Thanks to the periodic properties, the operator K1 is well-defined.

We have
p = 0.049, γ1≈1.3772 and µ = γ1wb (β + 2bαλ1) (1 + L)≈1.1569 > 1.

Moreover, we have

min
s∈[0,35]

{
bβM [2] (s)− b2α

(
M [2] (s)

)2
}
≈1.9996× 10−3 > 0,

which means that condition (2.1) is satisfied. And

γ1wbβ = 0.96404 < 1,

which implies that condition (2.2) is fulfilled. We have also

(γ1pw + 2γ1)
(
bβλ1 + b2αλ2

1

)
≈8.1863× 10−2 ≤ L = 0.2.

Then condition (2.1) is also satisfied.

Finally, we conclude that all conditions of Theorem 3.5 hold and hence equation (4.1) has at least one positive
periodic solution in Ω1. Indeed since conditions (2.1) − (2.3) are satisfied, then Lemmas 3.2 and 3.4 show that K1

maps Ω1 into itself. Furthermore, we get

|(K1M) (t)− (K1N) (t)| ≤ 1.1569 ∥M −N∥ ,

and therefore the continuity of the operator K1 results immediately afterwards. In addition, Arzelà-Ascoli theorem
ensures the compactness of the departure set Ω1 which, in turn, proves the compactness of the continuous operator
K1. Therefore, we conclude by the Schauder’s fixed point theorem that the operator K1 has at least one fixed point
in Ω1 which is a positive periodic solution of equation (4.1).
But

µ = γ1wb (β + 2bαλ1) (1 + L)≈1.1569 > 1.

Therefore, Theorems 3.6 and 3.7 cannot be applied here. Indeed, the additional criterion (3.3) is not fulfilled and
hence the solution of equation (4.1) is not necessarily unique and we cannot get any information about the stability
of solutions.
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Example 4.2. We consider the same previous iterative houseflies model (4.1) with

Ω2 = {M ∈ X : 0 < λ0 ≤ M (t) ≤ λ1, |M (t2)−M (t1)| ≤ L |t2 − t1| , ∀t1, t2 ∈ [0, w]} ,

where λ0 = 0.01, λ1 = 0.02 and L = 0.003.
We define an integral operator K2 : Ω2 → X where K1 and K2 have the same expression and the same Green’s kernel.
We have

min
s∈[0,35]

{
bβM [2] (s)− b2α

(
M [2] (s)

)2
}
≈2× 10−4 > 0,

γ1wbβ = 0.96404 < 1,

(γ1pw + 2γ1)
(
bβλ1 + b2αλ2

1

)
≈2.0465× 10−3 ≤ L = 0.003,

and
µ = γ1wb (β + 2bαλ1) (1 + L) = 0.96693 < 1.

Here conditions (2.1) − (2.3) and (3.3) are satisfied. Therefore, all requirements of Theorem 3.6 are fulfilled which
means that equation (4.1) has a unique positive periodic solution in Ω. Indeed, this is due to the application of the
Banach contraction principle which guarantees the existence of a unique fixed point of operator K2.Moreover, Theorem
3.7 ensures the continuous dependence on the adult mortality rate p of this unique solution. Indeed, if M is the unique
solution of equation (4.1) and if M2 is a solution of the following perturbed equation:

M ′
2(t) + p2 (t)M2(t) = bβM

[2]
2 (t)− b2α

(
M

[2]
2 (t)

)2

,

with the perturbed parameter p2. Then we get

∥M −M2∥ ≤ 195.62e(35)max(0.049,∥p2∥)
(
e∥p2∥ + 1

)
∥p− p2∥ ,

which implies that the unique solution depends on the function p.

5 Conclusion and remarks

This article has considered a first order iterative differential equation describing the dynamics of a houseflies
population where the iterative terms have resulted from a varying delay depending on the time and the population
size of adult houseflies. By virtue of a powerful approach that combines the fixed point theory and the Green’s functions
method, some sufficient conditions ensuring the existence, uniqueness and stability of positive periodic solutions of a
Musca Domestica model have been set up. One of our fundamental goals has been first and foremost to construct
a Banach space and a subset of it for paving the way to the application of the chosen fixed point theorems in the
one hand and for guaranteeing some mathematical and biological requirements in the other. Indeed, this choice has
ensured the continuity, positivity, boundedness and periodicity of the solutions and also has allowed us to control
the iterative terms and hence to avoid any expected hitches in our study. Next, we have converted our problem
into an equivalent integral equation with a Green’s kernel for applying the Schauder’s fixed point theorem that has
guaranteed the existence of at least one positive periodic solution. Then, by the help of Banach’s fixed point theorem,
an additional criterion has been found under which the solution has became unique and depended continuously on
the adult mortality rate. In the end we have given two examples justifying the validity of the acquired theoretical
findings.

The highlights of this paper are listed as follows:

(i) Some sufficient conditions have been derived to establish the existence, uniqueness and stability of positive
periodic solutions. These findings are completely new and have extremely vital significance in studying the dynamics
of insect populations.

(ii) Although there are some authors that have dealt with such problems (see for example [4] and [16]), as far as
we know, houseflies model with iterative terms has not been studied till now. Thus, it was worthwhile to investigate
in this direction.

(iii) The technique adopted here can also be used to study numerous delay models in plentiful fields and especially it
is of considerable significance in handling many iterative models that appear frequently in life sciences such as disease
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transmission models, models for blood cell production, model for two-body problems of classical electrodynamics,
population models, and so on and so forth.

The topic is vast and important, since such equations appear in different scientific disciplines (population dynam-
ics, biology, medicine, classical electrodynamics, physics, epidemiology, hematology) and although the proofs of the
existence, uniqueness and stability of solutions have been achieved, there are still some interesting problems relating
to the following points:

(i) Generalize the findings of this article which could be generalized to an iterative houseflies model involving
multiple delays, harvesting strategy, dispersal or competition.

(ii) Obtain existence, uniqueness and stability results for a neutral houseflies model with iterative terms.

(iii) Consider problem (1.1) with a nonlinear density-dependent adult mortality rate.

(iv) Extend the study to other insect populations.
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