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Abstract

In this note, we study bounded linear operators associated with unitary representations which commute with certain
module actions.
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1 Introduction and preliminaries

Throughout G is a locally compact group with the unit e, a fixed left Haar-measure. The left Haar-integral of
a complex-valued Haar-measurable function f on G will be denoted by

∫
G
f(x) dx. The convolution product of two

complex-valued functions f and g on G is defined as follows.

f ∗ g(x) =
∫
G

f(y)g(y−1x) dx,

when the integral makes sense. As usual, L1(G) denotes the group algebra of G as defined in [3]. The notation lx is
the left translation operator by x ∈ G; i.e., lxf(y) = f(xy) for all complex-valued function f on G. Note that L1(G)
is a left G-module with the action x · ϕ = lx−1ϕ for all x ∈ G and ϕ ∈ L1(G). Let L∞(G) is usual Lebesgue space as
defined in [3] equipped with the essential supremum ∥ · ∥∞. Then L∞(G) can be identified by the first dual space of
L1(G) under the pairing

⟨f, ϕ⟩ =
∫
G

f(x)ϕ(x) dx (f ∈ L∞(G), ϕ ∈ L1(G)).

Moreover, the dualization of the left G-module action on L1(G) makes L∞(G) as a right G-module as follows

⟨f · x, ϕ⟩ = ⟨f, x · ϕ⟩ (f ∈ L∞(G), x ∈ G).

We can also consider L∞(G) as a right Banach L1(G)-module by the following action.

f · ϕ =

∫
G

f(x)ϕ(x) dx (f ∈ L∞(G), ϕ ∈ L1(G)).
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Let also, LUC(G) denote the C∗-algebra of left uniformly continuous functions; i.e., f ∈ LUC(G) when the
map x 7→ lxf from G into L∞(G) is norm continuous. In recent years, many authors have extensively studied the
behavior and relations of G-module and L1(G)-module maps, in the sense of the map commute with the translations,
convolutions and conjugations; see for example [5, 7, 8, 9]. Special attention has focused on such operators on L∞(G).
As known, any bounded linear operator on L∞(G) that commutes with convolution from the left also commutes with
left translations; see [8]. Here, we study such notions with an emphasis on unitary representations.

All over this paper, (π, Hπ) is a unitary representation of a locally compact group G. As mentioned in [1], Tr(Hπ),
all of the trace-class operators on Hπ with norm ∥T∥1 = tr|T |, takes the role played by L1(G) in the theory of amenable
groups and the left action of G on L1(G) being replaced by the following left action of G on Tr(Hπ).

x ·π S = π(x)Sπ(x)−1
(
x ∈ G, S ∈ Tr(Hπ)

)
.

Moreover, Tr(Hπ) is an isometric Banach G-module by Lemma 2.1 of [1]. Also, B(Hπ) is known as the dual space
of Tr(Hπ) by the duality T (S) = tr(ST ) for all T ∈ B(Hπ) and S ∈ Tr(Hπ). Clearly, T ·π x = π(x)−1Tπ(x) for each
T ∈ B(Hπ) and x ∈ G. These facts imply that B(Hπ) is a right Banach L1(G)-module as follows.

T ·π ϕ =

∫
G

T ·π xϕ(x) dx (T ∈ B(Hπ), ϕ ∈ L1(G)).

Since the map x 7→ T ·π x from G into B(Hπ) is not necessarily norm-continuous, B(Hπ) is not Banach as a
G-module, in general. So, one has considered the set of all T ∈ B(Hπ) for which G −→ B(Hπ), x 7−→ T ·π x is
norm-continuous, UCB(π). Elements in UCB(π) are called G-continuous operators. Moreover, Cohen’s factorization
theorem implies that

B(Hπ) ·π L1(G) = UCB(π) ·π L1(G) = UCB(π).

See [1] for more details and the survey article. For any M ∈ B(Hπ)
∗ and T ∈ B(Hπ), we can define a complex-

valued function MT on G by
MT (x) = ⟨M, T ·π x⟩ (x ∈ G).

Obviously, MT is bounded by ∥M∥∥T∥. Besides,

lxMT = (M)(T ·π x) (x ∈ G).

Suppose that M ∈ B(Hπ)
∗. Then the linear operator ρM : UCB(π) −→ LUC(G) given by T 7−→ MT is well-

defined due to [2, Lemma 2.2]. Furthermore, let T ∈ UCB(π) and ϕ ∈ L1(G). Then ⟨MT, ϕ⟩ = ⟨M, T ·πϕ⟩ by directly
calculation. Therefore, ρM (T ·π ϕ) = ρM (T ) · ϕ. Also, ρM (T ·π x) = ρM (T ) · x for all x ∈ G. These simple properties
of ρM are a motivating force for this research. We extend them by the following definition that is the starting point
of our path to express the main results in this note.

Definition 1.1. Let (π, Hπ) be a unitary representation of a locally compact group G, and let γ : B(Hπ) −→ L∞(G)
be a bounded linear operator.

(a) γ is said to commute with the action as L1(G)-module if

γ(T ·π ϕ) = γ(T ) · ϕ (T ∈ B(Hπ), ϕ ∈ L1(G)). (1.1)

(b) γ is said to commute with the action as G-module if

γ(T ·π x) = γ(T ) · x (T ∈ B(Hπ), x ∈ G), (1.2)

Suppose that M ∈ B(Hπ)
∗. We do not yet whether MT ∈ L∞(G) for all T ∈ B(Hπ) or not. Therefore, we can

not define safely the operator ρM from B(Hπ) into L∞(G) by ρM (T ) = MT . But as will be seen, there exist such
operators. For instance, the map γM defined by ⟨γM (T ), ϕ⟩ = ⟨M, T ·π ϕ⟩ for all T ∈ B(Hπ) and ϕ ∈ L1(G) satisfies
in the both of 1.1 and 1.2.
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2 The results

We commence the note by the following result that shows 1.1 and 1.2 coincide when the operator γ restricts to
UCB(π). Before starting, note that for all M ∈ UCB(π)∗ and T ∈ UCB(π), we can also define the complex-valued
function MT by MT on G, where M is any Hahn-Banach extension of M . Since the Hahn-Banach extension is not
unique, in general, we use again the notation ρM instead of ρM for unification.

Theorem 2.1. Let (π, Hπ) be a unitary representation of a locally compact group G, and let γ : UCB(π) −→ L∞(G)
be a bounded linear operator. Then each of the following statements implies that the range of γ lies in LUC(G). Also,
they are equivalent.

(a) γ commutes with the action as L1(G)-module,

(b) γ = ρM for some M ∈ UCB(π)∗,

(c) γ commutes with action as G-module.

Proof . Let T ∈ UCB(π). If (a) holds, then γ(T ) = γ(S ·π ϕ) = γ(S) · ϕ for some S ∈ UCB(π) and ϕ ∈ L1(G) that
yields γ(T ) ∈ LUC(G). If (b) holds, then γ(T ) = ρM (T ) = MT ∈ LUC(G). Finally, if (c) holds and xα −→ x in G,
then

∥lxα
γ(T )− lxγ(T )∥∞ = ∥γ(T ) · xα − γ(T ) · x∥∞

= ∥γ(T ·π xα)− γ(T ·π x)∥∞
≤ ∥γ∥ ∥T ·π xα − T ·π x∥
−→ 0.

It follows that γ(T ) ∈ LUC(G). Now, for equivalency of them, we can confirm (a) and (c) if (b) holds, as noted
earlier. Suppose that (a) holds and (ϕi) is a bounded approximate identity of L1(G). Then (γ∗(ϕi)) is bounded in
UCB(π)∗, where γ∗ is the usual adjoint of γ. Let now M ∈ UCB(π)∗ be a weak∗-cluster point of (γ∗(ϕi)). So, we
may assume that γ∗(ϕi) −→ M in the weak∗-topology of UCB(π)∗. Let T ∈ UCB(π). Then for each ϕ ∈ L1(G), we
have

⟨ρM (T ), ϕ⟩ = ⟨MT, ϕ⟩ = ⟨M, T ·π ϕ⟩
= lim

i
⟨γ∗(ϕi), T ·π ϕ⟩ = lim

i
⟨ϕi, γ(T ·π ϕ)⟩

= lim
i
⟨ϕi, γ(T ) · ϕ⟩ = lim

i
⟨γ(T ) · ϕ, ϕi⟩

= lim
i
⟨γ(T ), ϕ ∗ ϕi⟩ = ⟨γ(T ), ϕ⟩.

Therefore, part (b) holds. Now, assume that γ is commuting with the action as G-module. Take M = γ∗(δe) ∈
UCB(π)∗, where δe(f) = f(e) for all f ∈ LUC(G). Then for each T ∈ UCB(π) and x ∈ G, we have

γ(T )(x) =
(
γ(T ) · x

)
(e) = ⟨δe, γ(T ) · x⟩

= ⟨δe, γ(T ·π x)⟩ = ⟨γ∗(δe), T ·π x⟩
= ⟨M, T ·π x⟩ = MT (x).

It follows that γ(T ) = MT = ρM (T ) for all T ∈ UCB(π) and so, γ = ρM . One shows the implication (c) into (b).
□

As mentioned earlier, every bounded linear operator on L∞(G) commuting with the action as L1(G)-module
commute also, with the action as G-module. Here, we have the following result.

Proposition 2.2. Let (π, Hπ) be a unitary representation of a locally compact group G, and let γ be a bounded
linear operator from B(Hπ) into L∞(G) that is commuting with the action as L1(G)-module. Then γ commutes with
the action as G-module.
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Proof . Suppose that T ∈ B(Hπ), x ∈ G and ϕ ∈ L1(G). One can easily check that (T ·π x) ·π ϕ = T ·π (x · ϕ).
Furthermore, let (ϕi) be an approximate identity for L1(G). Then

⟨γ(T ·π x), ϕ⟩ = lim
i
⟨γ(T ·π x), ϕi ∗ ϕ⟩

= lim
i
⟨γ(T ·π x) · ϕi, ϕ⟩

= lim
i
⟨γ
(
(T ·π x) ·π ϕi

)
, ϕ⟩

= lim
i
⟨γ
(
T ·π (x · ϕi)

)
, ϕ⟩

= lim
i
⟨γ(T ) · (x · ϕi), ϕ⟩

= lim
i
⟨γ(T ), (x · ϕi) ∗ ϕ⟩

= lim
i
⟨γ(T ), x · (ϕi ∗ ϕ)⟩

= lim
i
⟨γ(T ) · x, ϕi ∗ ϕ⟩

= ⟨γ(T ) · x, ϕ⟩.

Therefore, γ commutes with the action as G-module. □

It is tempting to know whether the converse of Proposition 2.2 is valid or not. It is known that the converse
fails in the same style of operators on L∞(G). So, it turns out that the converse fails here, too. It is clear that
B(Hπ) = UCB(π) when G is discrete, and so the converse is true by Theorem 2.1. Note that sometimes there are
some unitary representations of non-discrete groups such that B(Hπ) = UCB(π). For instance, we have the following
example.

Example 2.3. Let G = (R, +), and let π : G −→ B
(
L2(R)

)
be the unitary representation given by(

π(x)g
)
(t) = exp(−ix)g(t)χ(−∞, 0)(t) + exp(ix)g(t)χ(0,+∞)(t)

for all x, t ∈ G and g ∈ L2(R). Let now T ∈ B(L2(G)), and xα −→ x in G. Then

∥T · xα − T · x∥ ≤ ∥T∥(| exp(−ixα)− exp(−ix)|+ | exp(ixα)− exp(ix)|) −→ 0.

It follows that B(L2(G)) = UCB(π), whereas G is non-discrete.

Suppose that (λ, L2(G)) is the left unitary representation of G. We have the following lemma.

Lemma 2.4. Let G be a locally compact group. Then G is discrete if and only if either of the following statements
holds.

(a) L∞(G) = LUC(G),

(b) B(Hπ) = UCB(π) for all unitary representations (π, Hπ) of G,

(c) B(L2(G)) = UCB(λ).

Proof . It is well known that a locally compact group G is discrete if and only if L∞(G) = LUC(G). According to [4,
Remark 3.11 (i)], an element f ∈ L∞(G) lies in LUC(G) if and only if Tf ∈ UCB(λ), where Tf is the multiplication
operator on L2(G) by f . So, part (c) implies that part (a). The other implications are evident. □

The next example shows that the converse of Proposition 2.2 has been unable to confirm in general. Due to
Theorem 2.1 and Lemma 2.4, one can consider a non-discrete group G and the left unitary representation (λ, L2(G)).

Example 2.5. Let G be either (R, +) or any infinite compact abelian group. We show that there exists a bounded
linear operator γ from B

(
L2(G)

)
into L∞(G) such that γ commutes the action as G-module; whereas, γ(T ·λ ϕ) ̸=

γ(T ) · ϕ, for some T ∈ B
(
L2(G)

)
and ϕ ∈ L1(G). Toward this end, first, recall that for each f ∈ L∞(G), the map

τ : f 7→ Tf is an isometric embedding of L∞(G) into B
(
L2(G)

)
. It is rutin checking that Tf ·λ ϕ = Tf ·ϕ for each

f ∈ L∞(G) and ϕ ∈ L1(G). On the other hand, G satisfies in conditions of Theorem 4.1 of [9]. So, the following
statements hold for some bounded linear operators Ψ on L∞(G) such that
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(a) Ψ commutes the action as G-module.

(b) each Ψ(f) is a constant function for all f ∈ L∞(G).

(c) Ψ(f · ϕ) ̸= Ψ(f) · ϕ for some f ∈ L∞(G) and some continuous function ϕ with compact support.

Take now, γ = Ψ◦τ−1
l , where τ−1

l is the left inverse of τ . Note that G is non-discrete and so, B(L2(G)) ̸= UCB(λ).
However, it follows that

γ(Tf ·λ x) = Ψ(f · x) = Ψ(f) · x = γ(Tf ) · x

for each f ∈ L∞(G) and ϕ ∈ L1(G). Besides,

γ(Tf ·λ ϕ) = Ψ(f · ϕ) ̸= Ψ(f) · ϕ = γ(Tf ) · ϕ

for each f and ϕ that satisfy part (c) in the above.

Remark 2.6. Extending to Theorem 2.1, we can show that for each bounded linear operator γ from B(Hπ) into
L∞(G) the following statements are equivalent.

(a) γ commutes with the action as L1(G)-module,

(b) γ = γM for some M ∈ UCB(π)∗.

As seen in Theorem 2.1, when γ restricts to UCB(π), the above statements are also equivalent to the following
part.

(c) γ commutes with action as G-module.

Moreover, one can readily show that if γ is weak∗-weak∗-continuous, then all of the above statements are equivalent.

Recall that LUC(G)∗ is a Banach algebra endowed with the first Arens product as follows.

⟨m⊙ n, f⟩ = ⟨m, n · f⟩ and ⟨n · f, ϕ⟩ = ⟨n, f · ϕ⟩

for all m, n ∈ LUC(G)∗, f ∈ LUC(G) and ϕ ∈ L1(G). For each (π, Hπ) unitary representation of G, we have the
bounded bilinear mapping LUC(G)∗ × UCB(π)∗ −→ UCB(π)∗ given by (m, M) 7→ m · M , where ⟨m · M, T ⟩ =
⟨m, MT ⟩, which makes UCB(π)∗ as a left Banach LUC(G)∗-module. This fact was proven by Proposition 2.3 of [2].
Now, let B(π, G) be the space of all bounded linear operators from B(Hπ) into L∞(G) commuting with the action as
L1(G)-module.

Lemma 2.7. Let (π, Hπ) be a unitary representation of a locally compact group G. Then

(a) B(π, G) is a Banach space with operator norm.

(b) B(π, G) is a left Banach LUC(G)∗-module by the following action.

⟨(m • γ)(T ), ϕ⟩ = ⟨m, γ(T ) · ϕ⟩.

where m ∈ LUC(G)∗, γ ∈ B(π, G), T ∈ B(Hπ) and ϕ ∈ L1(G).

Proof . (a). Assume that γ is an element of the norm-cluster of B(π, G). Then there exists a net (γn) ⊆ B(π, G)
such that converges to γ. So, for each T ∈ B(Hπ) and ϕ ∈ L1(G) with ∥T∥ ≤ 1 and ∥ϕ∥1 ≤ 1, we have

∥γ(T ·π ϕ)− γ(T ) · ϕ∥∞ ≤ ∥γ(T ·π ϕ)− γn(T ·π ϕ)∥∞ + ∥γn(T ) · ϕ− γ(T ) · ϕ∥∞ −→ 0

and so, γ(T ·π ϕ) = γ(T ) · ϕ. Therefore, for each T ∈ B(Hπ) and ϕ ∈ L1(G),

γ(
T

∥T∥
·π

ϕ

∥ϕ∥1
) = γ(

T

∥T∥
) · ϕ

∥ϕ∥1
.

So, since γ and module actions are linear, we have γ(T ·π ϕ) = γ(T ) · ϕ. It implies that γ ∈ B(π, G) and hence,
B(π, G) is a closed subspace of B(B(Hπ), L

∞(G)), bounded linear operators from B(Hπ) into L∞(G). Therefore,
B(π, G) is Banach.
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(b). Let m,n ∈ LUC(G)∗, γ ∈ B(π, G), T ∈ X and ϕ ∈ L1(G). It is easily to check that n • γ ∈ B(π, G) and

n · γ(T ·π ϕ) = (n • γ)(T ·π ϕ).

Then

⟨
(
(m⊙ n) • γ

)
(T ), ϕ⟩ = ⟨m⊙ n, γ(T ) · ϕ⟩

= ⟨m, n · γ(T ·π ϕ)⟩
= ⟨m, (n • γ)(T ·π ϕ)⟩
= ⟨m, (n • γ)(T ) · ϕ⟩
= ⟨

(
m • (n • γ)

)
(T ), ϕ⟩.

So, (m⊙ n) • γ = m • (n • γ). Others are evident. □

We end the work with the following result, as one of the important aims of this memoir.

Theorem 2.8. Let (π, Hπ) be a unitary representation of a locally compact group G. Then there exists an isometric
isomorphism as left Banach LUC(G)∗-modules between the dual of UCB(π) and B(π, G).

Proof . We define a linear map Θ from UCB(π)∗ into B(π, G) by M 7→ γM . Note that Θ is surjective by Remark
2.6. Now, we show that Θ is an isometry. It is clear that ∥γM∥ ≤ ∥M∥. To prove the reverse inequality, let (ϕi) be
an approximate identity of L1(G) bounded to 1. By a rutin calculation, a bounded linear operator T on Hπ lies in
UCB(π) if and only if

∥T ·π ϕi − T∥ −→ 0.

So, for each i and T ∈ UCB(π) with ∥T∥ ≤ 1, we have

∥γM∥ ≥ ∥γM (T )∥∞ ≥ |⟨γM (T ), ϕi⟩| = |⟨M, T · ϕi⟩| −→ |⟨M, T ⟩|.

Consequently, ∥γM∥ ≥ ∥M∥ and so, Θ is one-to-one. The proof completes as follows.

⟨γm·M (T ), ϕ⟩ = ⟨m ·M, T ·π ϕ⟩ = ⟨m, γM (T ) · ϕ⟩
= ⟨(m • γM )(T ), ϕ⟩.

It follows that Θ(m ·M) = m ·Θ(M) for all m ∈ LUC(G)∗ and M ∈ UCB(π)∗. □
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