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Abstract

In this paper, introduced a new accelerated iterative algorithm in (λ, ρ) -quasi firmly nonexpansive multi-valued
mappings in modular function spaces and present some results for convergence to a fixed point in this mapping, we use
faster convergence theorem to comparison our iteration with some other iterations and introduced numerical example.
As an application, we have referred to previous work by other researchers.
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1 Introduction

For nearly a century, there have been tremendous into the existence of fixed points and it is applications depending
on contraction mapping, (quasi) non expansive mapping, etc. as indicated in the sources below and others, see [9, 12].
In this context, results have been given in the standard spaces within previous research. As known, the modular
function spaces are extensions of Riesz, Orlicz and Lebesgue where the basic concept of modular space introduced
by Nakano [16] and corresponding modular linear spaces were constructed by Musielak and Orlicz [15]. Later, many
researcher provided various studies in several fields, including approximating fixed point, see [1, 17]. Abed and
AbdulSada studied two common fixed point about the dual of modular function space in ρ- nonexpansive mapping,
and prove some results in weak and strong converge [2], Khan extend the idea λ-firmly nonexpansive mapping from
Banach spaces to (λ, ρ)-firmly nonexpansive in modular function spaces, and introduced iterative scheme [13]. The
(λ, ρ)- quasi firmly nonexpansive mapping in modular spaces introduced by Panwar and discussed some results for
fixed point in these mapping [11]. The concept of normalized duality mapping discussed by Abed and Abduljabbar,
in addition to approximating fixed point for convex modular spaces [3]. Finally Okeke, Bishop and Khan [18] proved
some interesting theorems for ρ-quasi-nonexpansive mappings using the Picard-Krasnoselskii hybrid iterative processes
and applied these results to solve the following problem in differential equations by using the same technique in [12],
Theorem 5.28:

Let ρ ∈ R consider the following initial value problem u : [0, A] −→ E where C ∈ Ep, u (0) = f and u′ (t)+(I − T ) =
0, where f ∈ E, A > 0, and T : E −→ E, ρTρ is ρ- quasi nonexpansive mapping and it solved throughout the following
theorem.
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Theorem 1.1 ([18] Theorem 27 ). Let ρ ∈ R be separable, and E ⊂ Eρ be nonempty, convex, ρ- bounded, ρ-
closed set with Vitali property, T : E −→ ρρ(E) be a multivalued mapping such that ρTρ is ρ- quasi nonexpansive
mapping, let one fixed f ∈ E, define sequence of function un : [0, A] −→ E by the following inductive formula

u0 (t) = f

un+1 (t) = e−1f +
∫ t

0
es−tT (un (s)) ds

then for every t ∈ [0, A] there exists u(t) ∈ C such that ρ(un (t) − u (t)) −→ 0 and the function u : [0, A] −→ E is
solation to initial value problem, moreover

ρ(f − un (t)) ≤ Kn+1(A)δρ(E).

Now, let T : E −→ 2E , and E nonempty convex subset of Lp sequence, here, we introduced the sequence {fn} by
the following algorithm.

f1 ∈ E

hn = (1− βn)fn + βnun

gn = vn

Jn = (1− αn) gn + αnwn

fn+1 = mn, n ∈ N

(1.1)

where {αn}and {βn} in (0,1), un ∈ PT
ρ (fn), vn ∈ PT

ρ (hn), wn ∈ PT
ρ (gn) and mn ∈ PT

ρ (Jn),

This paper concludes three convergence main results, comparison result and illustrative example to comparison between
algorithm 1.1 and the following two well-known 1.2 and 1.3

fn+1 ∈ PT
ρ gn

gn = (1− λ) fn + λPT
ρ (vn) n ∈ N

(1.2)

where {λ} ⊂ (0, 1), vn ∈ PT
ρ (fn) [17].

f0 ∈ D

gn = (1− βn) fn + βnun

fn+1 = (1− αn)un + αnvn, n ∈ N

(1.3)

where {αn}and {βn} in (0,1) , un ∈ PT
ρ (fn), vn ∈ PT

ρ (gn) [6].

2 Preliminearies

This section is included with the basis required. Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of
subsets of Lp .let ρ be a nontrivial ring subsets of Ω, which means that ρ is closed with respect to forming finite
union, and countable intersections and differences, Assume further that E ∩ A ∈ ρ for any E ∈ ρ and A ∈ Σ, let us
assume that there exists an increasing sequence of sets Kn ∈ ρ such that Ω =

⋃
Kn. Throughout this paper, E :=

the linear space of all simple functions with supports from ρ, M∞ := we denote the space of all extended measurable
functions, 1A := the characteristic function of the set A [17].
f : Ω −→ [−∞,∞] such that there exists a sequence {gn} ⊂ E, |gn| ≤ |f |and gn(w) −→ f for all w ∈ Ω, By 1A we
denote the characteristic function of the set A [5,10].

Definition 2.1 ([17]). Let ρ : M∞ −→ [0,∞] be a nontrivial, convex, and even function. We say that ρ is a regular
convex function pseudo modular if:

(a) ρ (0) = 0

(b) ρ is monotone, that is, |f(w)| ≤ |g(w)| for all w ∈ Ω implies ρ(f) ≤ ρ(g), where f, g ∈ M∞
(c) ρis orthogonally sub additive , that is, ρ (f1A∪B

) ≤ ρ (f1A)+ ρ (f1B ) for any A,B ∈ Σ such that A∩B nonempty
, where f ∈ M∞.

(d) ρ has the Fatou property: |fn(w)| ↑ |f(w)| for all w ∈ Ω implies ρ(fn) ↑ ρ(f),where f ∈ M∞.

(e) ρ is order continuous in E , that is, gn ∈ E and |gn(w)| ↓ 0 implies ρ(gn) ↓ 0.
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we define M = {f ∈ M∞ : |f (w)| < ∞, ρ − a.e}, where each f ∈ M is actually an equivalence class of functions
equal ρ− a.e. rather than an individual function.

Definition 2.2 ([10]). Let ρ : M −→ [0,∞] possesses the following properties

1. ρ (0) = 0 iff , f = 0, ρ− a.e

2. ρ (αf) = ρ(f), for every scalar α.

3. ρ (αx+ βy) ≤ ρ (x) + ρ (y) for every α, β ≥ 0 with α+ β = 1.

ρ is called a convex modular.

Definition 2.3 ([13]). If ρ is convex modular in X, then is called modular function spaces

Lp = {f ∈ M : ρ(λf) −→ 0 as λ −→ 0}

The modular spaces Lp can be equipped with an F-norm define by

∥f∥ρ = inf{α > 0 : ρ

(
f

α

)
≤ α}

If ρ is convex modular F-norm is define

∥f∥ρ = inf{α > 0 : ρ

(
f

α

)
≤ 1}

F-norm is called Luxemburg norm.

Also we define L0
ρ = {f ∈ Lρ, ρ(f, .) is order continuous} and define the liner space Eρ = {f ∈ Lρ : λf ∈ L0

ρ for every
λ > 0 }

Definition 2.4 ([2, 3]). Let ρ ∈ R

1. We say that {fn}is ρ-convergent to f if ρ(fn − f) −→ 0

2. A sequence {fn} is ρ-Cauchy sequence if ρ(fn − fm) −→ 0 as n,m → ∞
3. A set B ⊂ Lp is called ρ-closed if for any fn ∈ Lp the convergence ρ (fn − f) −→ 0and f belongs to B.

4. A set B ⊂ Lp is called ρ-bounded if ρ- diameter is finite. ρ- diameter define as Hp (B) = sup {ρ (f − g) , f ∈ B,g ∈
B} < ∞.

5. A set B ⊂ Lp is called strongly ρ-bounded if there exists β > 1 such that Mp (B) = sup {ρ(β (f − g)), f ∈ B,g ∈
B} < ∞.

6. A set B ⊂ Lp is called ρ-compact if every fn ∈ B , there exists a subsequence {fnk
} and f in B ρ(fnk

− f) → 0.

7. A set B ⊂ Lp is called ρ− a.e, closed if every fn ∈ B , whichρ− a.e, converges to some f , then f in B.

8. A set B ⊂ Lp is called ρ − a.e, -compact if every fn ∈ B, there exists a subsequence {fnk
} ρ − a.e -converges

to some f in B.

9. Let f in Lp and B ⊂ Lp , the ρ-distance between f and B is defined as
distp (f,B) = inf {ρ (f − g) , g ∈ B}.

Definition 2.5 ([9]). Let {an}∞n=1 and {bn}∞n=1 by two iterative scheme sequence converging to the same fixed point

s, and let limn−→∞
ρ(an−s)
ρ(bn−s) = L, then

1. if L = 0 then {an}∞n=1 converges faster than {bn}∞n=1 to fixed point s.

2. if 1 < L < ∞ then {an}∞n=1 and {bn}∞n=1 have the same rate of

Definition 2.6 ([13]). Let ρ ∈ R then ρ has ∆2-condition if supn≥1 ρ (2fn, Dk) −→ 0 as k −→ ∞ and Dk −→ ∅,
and supn≥1 ρ (fn, Dk) −→ 0
ρ is regular convex function modular if ρ (f) = 0 then f = 0, a− e the class of all nonzero regular convex function in
modular Ω is denoted by R
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Note that, Lρ = Eρ if ρ is satisfied ∆2-condition and convex.
Note that, modular converge and F-norm converge are equivalent if and only if ρ is satisfied ∆2-condition

Definition 2.7 ([11]). Let ρ be a nonzero regular convex function modular defined on Ω let r > 0, ϵ > 0 define
D(r, ϵ) = {(f, g) : f, g ∈ LP , ρf ≤ r, ρf − g ≥ ϵr}
Let ξ1 (r, ϵ) = inf

{
1− 1

rρ(
f+g
2 ) : (f, g) ∈ D (r, ϵ)

}
if D (r, ϵ) ̸= ∅ and ξ1 (r, ϵ) = 1,If D (r, ϵ) = ∅, said to be ρ satisfy

(UC1) if for every r> 0, ϵ > 0 ξ1 (r, ϵ) > 0 then D (r, ϵ) ̸= ∅.

Definition 2.8 ([13]). E ⊂ Lp , let T : E −→ 2Esaid to be satisfy condition (I) if there exists no decreasing function
∅ : [0,∞) −→ [0,∞) with ∅ (0) = 0, ∅(r) > 0 for all r ∈ [0,∞] such that ρ(f − Tf) ≥ ∅(distρ (f, Fp (t))) for all
f ∈ E.

Definition 2.9 ([14, 7]). A set E ⊂ Lp is called ρ- proximinal if for each f ∈ Lp there exists an element g in E
such that

ρ (f − g) = distp (f,E) = inf{ ρ (f − h) : h in E} .

Pp(E):= the family of nonempty ρ-proximinal, ρ-bounded subsets of E

Cp (E) :=the family of nonempty ρ-closed, ρ-bounded subsets of E

Hp(., .):= ρ- Hausdorff distance on Cp(E), where

Hp (A,B) = max
{
supf∈A distp (f,B) , supg∈B distp (g,A)

}
A,B ∈ Cp(Lp)

and distp (f,B) = inf{ ρ (f − h) : h in B}

Lemma 2.10 ([11]). Let ρ ∈ R satisfy (UUC1) and let {tn} in (0,1) be bounded away from 0 and 1, if there exists
m > 0 such that

lim supn−→∞ρ (fn) ≤ m, lim supn−→∞ρ(gn) ≤ m

And limn−→∞ ρ (tnfn + (1− tn) gn) = m, then limn−→∞ρ (fn − gn) = 0

Lemma 2.11 ([14]). Let ρ∈ R and satisfy A,B ∈ Pp(Lp) for each f in A there exists g in B such that ρ(f − g) ≤
Hp(A,B).

Definition 2.12 ([14]). Let T : E −→ 2E is multivalued mapping said to be ρ- quasi nonexpansive mapping if for
s ∈ Fp(T ) is the set of fixed point of T in modular spaces

Hp (Tf, s) ≤ ρ (f − s)

said to be ρ-contraction mapping if there exists constant 0 ≤ k < 1

Hp(Tf − Tg) ≤ kρ (f − g)

for all f, g in E.

Definition 2.13 ([18]). Let T : E −→ 2E be a multivalued mapping, a sequence {fn} in E is said to be Fajer
monotone if ρ(fn+1 − s) ≤ ρ(fn − s) for all s fixed point.

3 Convergence Results

Begin this section with the following definition and useful Lemma.

Definition 3.1. Let ⊂ Lp , let T : E −→ 2E is multivalued mapping said to be said to be (λ, ρ)- quasi firmly
nonexpansive mapping if for λ in (0,1) and s ∈ Fp(T ) is the set of fixed point of T in modular spaces

Hp(Tf, s) ≤ ρ[(1− λ) (f − s) + λ (u− s)] where u ∈ Tf
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Lemma 3.2. Every(λ, ρ)- quasi firmly nonexpansive mapping is ρ- quasi nonexpansive mapping

Proof . Hp (Tf, s) ≤ ρ [(1− λ) (f − s) + λ (u− s)] , u ∈ Tf
By convexity of ρ, Lemma 2.11, and Definitions 2.12, 3.1, we get

Hp (Tf, s) ≤ (1− λ) ρ (f − s) + λρ (u− s)

≤ (1− λ) ρ (f − s) + λHp (Tf, s)

Hence Hp (Tf, s) ≤ ρ (f − s) □

Theorem 3.3. Let ρ ∈ R satisfy (UUC1) and ∆2-condition , let E be nonempty ρ-bounded, ρ-closed and convex
E ⊂ Lp and T : E −→ 2E , be (λ, ρ)- quasi firmly nonexpansive multivalued mapping, let {fn} in E define by 1.1,
then {fn} is Fajer monotone

Proof . s ∈ Fp(T ), by 1.1, convexity of ρ, Definitions 2.12, 3.1, Lemmas 2.11, 3.2 implies that

ρ (fn+1 − s) = ρ(mn − s) ≤ Hp(P
T
p (Jn) , (s)) ≤ ρ(Jn − s) (3.1)

And ρ (Jn − s) ≤ ρ ((1− αn) gn + αnwn)− s)

≤ ((1− αn) ρ(gn − s) + αnρ(wn − s))

≤ (1− αn) ρ(gn − s) + αnHp(P
T
p (gn) , (s))

≤ ρ(gn − s) (3.2)

Similarity, ρ (gn − s) = ρ(vn − s) ≤ Hp(P
T
p (hn) , (s)) ≤ ρ (hn − s) (3.3)

Similarity, ρ (hn − s) = ρ(βnun + (1− βn) fn − s)

≤ βnHp(P
T
p (fn) , (s)) + (1− βn) ρ(fn − s)

≤ ρ(fn − s) (3.4)

By 3.1, 3.2, 3.3, 3.4 and Definition 2.13 {fn} is Fajer monotone □

Theorem 3.4. Let ρ ∈ R satisfy (UUC1) and ∆2-condition , let E be nonempty ρ-bounded, ρ-closed and convex
E ⊂ Lp and T : E −→ 2E , be (λ, ρ)- quasi firmly nonexpansive multivalued mapping, let {fn} in E define by 1.1,
then limn−→∞ ρ(fn − s) exists for all s is fixed point.

Proof . By 3.1, 3.2, 3.3 and 3.4 so, ρ (fn+1 − s) ≤ ρ(fn − s) this prove is complet. □

Theorem 3.5. Let ρ ∈ R satisfy (UUC1) and ∆2-condition , let E be nonempty ρ-bounded, ρ-closed and convex
E ⊂ Lp and T : E −→ 2E , be (λ, ρ)- quasi firmly nonexpansive multivalued mapping, let {fn} in E define by 1.1 then
limn−→∞ distρρ

(
fn, P

T
p (fn)

)
= 0

Proof . By Theorem 3.4 limn−→∞ ρ (fn − s) exists

Let lim
n−→∞

ρ (fn − s) = k, where k ≥ 0 (3.5)

By 3.2, 3.3 and 3.4 the following hold

ρ (hn − s) ≤ ρ (fn − s) ⇒ limn−→∞ρ (hn − s) ≤ k (3.6)

lim
n−→∞

ρ (gn − s) ≤ k (3.7)

lim
n−→∞

ρ (Jn − s) ≤ k (3.8)

ρ(vn − s) ≤ Hp(P
T
p (hn) , P

T
p (s)) ≤ ρ(hn − s) ≤ ρ(fn − s)

lim
n−→∞

ρ(vn − s) ≤ lim
n−→∞

ρ(fn − s) ≤ k (3.9)

ρ (un − s) ≤ Hp

(
PT
p (fn) , P

T
p (s)

)
≤ ρ (fn − s) ,

then lim
n−→∞

ρ(un − s) ≤ k (3.10)
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ρ(wn − s) ≤ Hp(P
T
p (gn) , P

T
p (s)) ≤ ρ(gn − s) ≤ ρ(fn − s)

then lim
n−→∞

ρ(wn − s) ≤ k (3.11)

ρ(mn − s) ≤ Hp(P
T
p (Jn) , P

T
p (s)) ≤ ρ(Jn − s) ≤ ρ(fn − s)

then lim
n−→∞

ρ(mn − s) ≤ k (3.12)

Let lim
n−→∞

αn = α

ρ (fn+1 − s) = ρ(mn − s) ≤ Hp(P
T
p (Jn) , P

T
p (s)) ≤ ρ(Jn − s) ≤ ρ(αnwn + (1− αn) gn − s)

≤ αnρ(wn − s) + (1− αn) ρ(gn − s).

so, lim
n−→∞

inf ρ (fn+1 − s) ≤ lim
n−→∞

inf [αnρ(wn − s) + (1− αn) ρ(gn − s)]

then, k ≤ lim
n−→∞

infαnρ(wn − s) + (1− α) k ⇒ αk ≤ α lim
n−→∞

infρ(wn − s)

hence, k ≤ lim
n−→∞

infρ(wn − s) (3.13)

By 3.11 and 3.13,

lim
n−→∞

ρ(wn − s) = k (3.14)

ρ(wn − s) ≤ Hp(P
T
p (gn) , P

T
p (s)) ≤ ρ(gn − s)

then, k ≤ ρ(gn − s) (3.15)

By 3.7 and 3.15,

lim
n−→∞

ρ (gn − s) = k (3.16)

Since,

ρ (gn − s) = ρ (vn − s) , so, lim
n−→∞

ρ (vn − s) = k (3.17)

ρ(vn − s) ≤ Hp(P
T
p (hn) , P

T
p (s)) ≤ ρ(hn − s) ⇒ lim

n−→∞
ρ (vn − s) ≤ lim

n−→∞
ρ (hn − s)

so, k ≤ lim
n−→∞

ρ (hn − s) (3.18)

By 3.6 and 3.18, then

lim
n−→∞

ρ (hn − s) = k (3.19)

By 3.19,

lim
n−→∞

ρ (hn − s) = k ⇒ lim
n−→∞

ρ (βnun + (1− βn)fn − s) = k

lim
n−→∞

ρ (βn(un − s) + (1− βn)(fn − s) = k (3.20)

By 3.5, 3.10, 3.20 and Lemma 2.11,

lim
n−→∞

ρ (fn − un) = 0.

Then un ∈ PT
p (fn). Since distρρ

(
fn, P

T
p (fn)

)
≤ limn−→∞ ρ (fn − un), limn−→∞ distρρ

(
fn, P

T
p (fn)

)
= 0. This

completes the proof. □

Theorem 3.6. Let ρ ∈ R satisfy (UUC1) and ∆2-condition , let E be nonempty ρ-bounded, ρ-closed, ρ-compact and
convex E ⊂ Lp and T : E −→ 2E , be (λ, ρ)- quasi firmly nonexpansive multivalued mapping, and T satisfied condition
(I), let {fn} in E define by 1.1 then fn converge to fixed point s of T.

Proof . By Theorem 3.4 limn−→∞ ρ (fn − s) exists for all s is fixed point, if limn−→∞ ρ (fn − s) = 0, nothing to prove,
if limn−→∞ ρ (fn − s) = k, k ≥ 0
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Since ρ (fn+1 − s) ≤ ρ (fn − s) ,

distρ (fn+1, Fp(T )) ≤ distρ (fn, Fp(T )) .

So limn−→∞ distρ (fn, Fp(T )) exists, by applying condition (I) and Theorem 3.5

lim
n−→∞

∅(distρ (fn, Fp (T )) ≤ lim
n−→∞

distρρ
(
fn, P

T
p (fn)

)
= 0.

Since ∅ (0) = 0, we have
lim

n−→∞
distρ (fn, Fp(T )) = 0.

By Theorem 3.4 limn−→∞ ρ (fn − s) exists, then limn−→∞ ρ (fn − Fp(T )) exists and s ∈ Fp(T ). Suppose that fnk
is

a subsequence of fn, and uk is a sequence in Fp(T ). Then ρ(fnk
−uk) ≤ 1

2k
, because lim infn−→∞ distp (fn, Fp(T )) = 0.

So

ρ(fn+1
− uk) ≤ ρ(fn − uk) ≤

1

2k
.

Thus,

ρ (uk+1 − uk) ≤ ρ (uk+1 − fn+1) + ρ(fn+1 − uk) ≤
1

2k+1
+

1

2k
≤ 1

2k−1
.

This implies that
ρ (uk+1 − uk) −→ 0

as k −→ ∞. Hence, uk is a ρ-Cauchy in Fp (T ). Since ∆2 condition implies that ρ-cauchy⇐⇒ ρ-converge. So, uk is
ρ-converges to Fp (T ) , then ρ (uk − s) −→ 0. Now, we havw

ρ (fnk
− s) ≤ ρ (fnk

− uk) + ρ (uk − s) .

Hence, fn converges to fixed point s in Fp(T ). □

4 Faster Convergence Results

In this section, we will prove that the iterative scheme in equation 1.1 is faster than iterative schemes in 1.2 and
1.3, in contraction mapping, and prove the iterative scheme in 1.2 is faster than iterative scheme in 1.3 through the
following theorem.

Theorem 4.1. Let ρ ∈ R satisfy (UUC1), let E be nonempty ρ-bounded, ρ-closed and convex E ⊂ Lp and T : E −→
2E , be contraction multivalued mapping, let αn and βn in (0,1), consider iterative scheme, defined by 1.1,1.2 and 1.3
respectively then

1. the iterative scheme in 1.1 converges to fixed point s faster than 1.2 and 1.3

2. the iterative scheme in 1.2 converges to fixed point s faster than 1.3.

Proof . Firstly the iterative scheme in 1.1

By 1.1, convexity of ρ, Lemma 2.11, 3.2, and Definition 2.12, 3.1

ρ (fn+1 − s) = ρ (mn − s) ≤ Hp(P
T
p (Jn), P

T
p (s)) ≤ Kρ (Jn − s)

≤ k((1− αn) ρ(gn − s) + αnHp(P
T
p (gn), P

T
p (s))

= k((1− αn) + kαn)ρ(gn − s))

≤ k((1− αn) + kαn)Hp(P
T
p (hn), P

T
p (s)))

≤ k(k (1− αn) + k2αn)ρ((1− βn) fn + βnun − s))

≤ k(k (1− αn) + k2αn)((1− βn) ρ(fn − s) + βnHp(P
T
p (fn), P

T
p (s)))

≤ k(k (1− αn) (1− βn) + k2αn (1− βn) + k2 (1− αn)βn + k3αnβn)ρ(fn − s))

assume αn = βn = γ

ρ (fn − s) ≤ kn(k (1− γ)
2
+ 2k2γ (1− γ) + k3γ2)

n
ρ(f0 − s)) (4.1)
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By the same way, the iterative scheme in 1.2, and assume λn = γ

ρ (fn+1 − s) ≤ kn((1− γ) + kγ)
n
ρ(f0 − s) (4.2)

By the same way, the iterative scheme in 1.3, and assume αn = βn = γ

ρ (fn+1 − s) ≤ kn[
(
1− γ2

)
+ kγ2]

n
ρ(f0 − s) (4.3)

1. By 4.1 and 4.2 limn−→∞
ρ(fn−s) in 1.1
ρ(fn−s)in 1.2 = 0 then 1.1 converges to fixed point s faster than 1.2.

and by 4.1 and 4.3 limn−→∞
ρ(fn−s) in 1.1
ρ(fn−s) in 1.3 = 0 then 1.1 converges to fixed point s faster than 1.3

2. By 4.2 and 4.3 limn−→∞
ρ(fn−s) in 1.2
ρ(fn−s) in 1.3 = 0 then 1.2 converges to fixed point s faster than 1.3.

□

The results of the above theorem will be confirmed by the following example

Example 4.2. The set of real number R by the space ρ (f) = |f |, ρ is satisfy (UUC1) and ∆2-condition, E = [0, 2]
define T : E −→ E a mapping, ∅ : [0,∞) −→ [0,∞), ∅ (r) = r

8 and

Tf =

{
1 if f ∈ [0, 1]
f+3
4 if f ∈ [1, 2]

, Fp (T ) = {1}.

To prove ρ(f −Tf) ≥ ∅(distp(f, Fp (T )) for all f in E. If f ∈ [0, 1] , then ρ (f − Tf) = ρ (f − 1) = |f − 1| = f −1,
while

∅(distp(f, Fp (T )) = ∅(distp (f, {1}) = ϕ[ρ (f − 1)] =
f − 1

8
.

If f ∈ [1, 2] , then ρ (f − Tf) = ρ
(
f − f+3

4

)
= 3f+3

4 , while

∅(distp(f, Fp (T )) = ∅(distp (f, {1}) = ϕ[ρ (f − 1)] =
f − 1

8
.

Now, prove T is (λ, ρ)-quasi firmly nonexpansive mapping. If f ∈ [0, 1] , then ρ (Tf − s) = ρ (1− s) = ρ
(
4
4 (1− s)

)
=

ρ( 34 (1− s) + 1
4 (1− s)), T is (λ, ρ)-quasi nonexpansive mapping when λ = 1

4 .

If f ∈ [1, 2] , then ρ (Tf − s) = ρ
(

f+3
4 − s+3

4

)
=

∣∣ 1
4 (f − s)

∣∣ ≤
∣∣ 13
16 (f − s)

∣∣ ≤ ρ( 34 (f − s) + 1
4

(
1
4 (f − s)

)
), T is

(λ, ρ)-quasi nonexpansive mapping when λ = 1
4 .

We will comparison the numerical results of first, second and third equations, as shown in the tables 1, 2

Table 1: shown fn in 1.1, 1.2 and 1.3 where αn = βn = λn = 0.5, with f1 = 2
step fn in 1.1 fn in 1.2 fn in 1.3
1 2 2 2
2 1.024414063 1.15625 1.203125
3 1.000596046 1.024414063 1.041259765
4 1.000014552 1.003814697 1.00838089
5 1.000000355 1.000596046 1.001702368
6 1.000000008 1.000093137 1.000345793
7 1 1.000014552 1.000070239
8 1 1.000002274 1.000014267
9 1 1.000000355 1.000002897
10 1 1.000000055 1.000000588
11 1 1.000000008 1.000000119
12 1 1.000000001 1.000000024
13 1 1 1.000000004
14 1 1 1

5 Conclusion

In this paper, the concept of (λ, ρ)-quasi firmly multivalued nonexpansive mappings were introduced in modular
function spaces and some results to approximate the fixed points of these mappings on a faster iterative algorithm
were proved. Through Example 4.2 it was noted that Tables 1 and 2, show that {fn} ρ-converges to 1, the fixed point
of T on 6th iteration and 7th iteration. {fn} ρ-converges faster to 1 if αn, βn and λn near the fixed point. As an
application, it is possible to adopt Theorem 1.1 and algorithm 15 which was considered in [18] as a special case of
algorithm 1.
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Table 2: shown fn in 1.1, 1.2 and 1.3 where αn = βn = λn = 0.9, with f1 = 2
step fn in 1.1 fn in 1.2 fn in 1.3
1 2 2 2
2 1.006601563 1.08125 1.098125
3 1.00004358 1.0006601563 1.009628515
4 1.000000288 1.000536377 1.000944798
5 1.000000002 1.000043580 1.000092708
6 1 1.000003541 1.000009097
7 1 1.0000002880 1.000000892
8 1 1.0000000023 1.000000087
9 1 1.000000002 1.000000008
10 1 1 1.0000000001
11 1 1 1
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