# Hyers-Ulam stability and well-posedness for fixed point problems on quasi $b$-metric spaces 

Qusuay H. Alqifiary ${ }^{\text {a }}$, Hassen Aydib ${ }^{b, c, d, *}$<br>${ }^{a}$ Department of Mathematics, College of Science, University of Al-Qadisiyah, Al-Diwaniya, Iraq<br>${ }^{b}$ Institut Supérieur d'Informatique et des Techniques de Communication, Université de Sousse, Hammam Sousse 4000, Tunisia<br>${ }^{c}$ China Medical University Hospital, China Medical University, Taichung 40402, Taiwan<br>${ }^{d}$ Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa

(Communicated by Abasalt Bodaghi)


#### Abstract

In this paper, we ensure the existence of a unique fixed point in quasi $b$-metric spaces for some contraction mappings requiring the concept of $\Psi^{*}$-admissibility. The Ulam-Hyers stability and well-posedness for these fixed point results have been studied and investigated. The obtained results generalize and extend many known results in the literature.


Keywords: Quasi b-metric space, Fixed point, Ulam-Hyers stability, Well posedness 2020 MSC: 35B40, 74F05, 93D15, 47H10

## 1 Introduction

The Ulam stability is a type of a functional equation stability that has been originated with a question posed by Ulam [26] in 1940 regarding the stability of group homomorphisms. One year later, Hyers [16] provided a partial answer to Ulam's question for Banach spaces, which it subsequently referred to the Ulam-Hyers stability. Several published results on the so-called Hyers-Ulam stability have relaxed the stability conditions. Many mathematicians extended the Hyers results in variant directions. The first authors who studied Hyers-Ulam stability of partial differential equations were Prastaro and Rassias [20]. After that, a few results in this direction were given by other authors, regarding partial differential equations [13, 14]. In 2009, Rus [22] has opened a new direction of study of the Ulam stability using Gronwall type inequalities and Picard operators technique. For furtrher details, see [12, 17, 18, Another direction of stability research is that in which results regarding fixed point theory are used. Namely, Bota-Boriceanu and Petrusel [7] and Bota et al. [8, have researched and expanded stability of Ulam-Hyers [1, 3, 4, 5, 6, 9, 21, 25].

On the other hand, Czerwik [10] initiated the notion of a $b$-metric space by changing the triangle inequality with a more generalized inequality involving a coefficient $s \geq 1$. Later, a new space named as a quasi $b$-metric space was proposed by Felhi et al. [11, which is as a combination of a $b$-metric space and a quasi metric space. In quasi $b$-metric spaces, the symmetry property is omitted.

[^0]Received: January 2022 Accepted: April 2022

Definition 1.1. 11 Let $\aleph$ be a nonempty set. Given a real number $s \geq 1$. A function $\hbar: \aleph \times \aleph \longrightarrow[0, \infty)$ is referred to a quasi $b$-metric function if it meets the following conditions for every $k, l, j \in \aleph$ :
(i) $\hbar(k, l)=0$ if and only if $k=l$;
(ii) $\hbar(k, j) \leq s[\hbar(k, l)+\hbar(l, j)]$.

A pair $(\aleph, \hbar)$ is said to be a quasi $b$-metric space.
Due to lack of symmetry, we need to give the Cauchyness and the convergence of a sequence in a quasi $b$-metric space ( $\aleph, \hbar)$.

Definition 1.2. [2, 11] Every sequence $\left\{l_{n}\right\}$ in $\aleph$ converges to some $\omega \in \aleph$ if and only if

$$
\lim _{n \longrightarrow \infty} \hbar\left(l_{n}, \omega\right)=\lim _{n \longrightarrow \infty} \hbar\left(\omega, l_{n}\right)
$$

Definition 1.3. 2, 11] Every sequence $\left\{l_{n}\right\}$ in $\aleph$ is called left-Cauchy (right-Cauchy) if and only if for each $\epsilon>0$, an integer number $K=K(\epsilon)>0$ exists such that $\hbar\left(l_{n}, l_{m}\right)<\epsilon$ for all $n \geq m>K\left(\hbar\left(l_{n}, l_{m}\right)<\epsilon\right.$ for all $\left.m \geq n>K\right)$.

Definition 1.4. 2, 11] Every sequence $\left\{l_{n}\right\}$ in $\aleph$ is called Cauchy if and only if for each $\epsilon>0$, an integer number $K=K(\epsilon)>0$ exists such that $\hbar\left(l_{n}, l_{m}\right)<\epsilon$ for all $m, n>K$.

Lemma 1.1. [2, 11] Let $\mathbb{k}: \aleph \longrightarrow \aleph$ be a continuous mapping at some $u \in \aleph$. Then, for any sequence $\left\{l_{n}\right\} \in \aleph$ converging to $u$, we have $\mathbb{k} l_{n} \longrightarrow \mathbb{k} u$, i.e.,

$$
\lim _{n \longrightarrow \infty} \hbar\left(\mathbb{k} l_{n}, \mathbb{k} u\right)=\lim _{n \longrightarrow \infty} \hbar\left(\mathbb{k} u, \mathbb{k} l_{n}\right)=0 .
$$

Samet et al. 24] proposed the concept of $\alpha$-admissibility in 2012. Using this concept, they showed that several known published papers are not real generalizations.

Definition 1.5. Let $\aleph$ be a non-empty set and $\alpha: \aleph \times \aleph \longrightarrow[0, \infty)$ be a function. For a given real number $s \geq 1$, the mapping $\mathbb{k}: \aleph \longrightarrow \aleph$ is named $\alpha$-admissible, if it meets the condition:

$$
k, l \in \aleph, \quad \alpha(k, l) \geq 1 \Longrightarrow \alpha(\mathbb{k}(k), \mathbb{k}(l)) \geq 1
$$

The above definition is generalized as follows:
Definition 1.6. Let $\aleph$ be a nonempty set and $\Psi^{*}: \aleph \times \aleph \longrightarrow[0, \infty)$ be a function. For a given real number $s \geq 1$, the mapping $\mathbb{k}: \aleph \longrightarrow \aleph$ is called $\Psi^{*}$-admissible ( or $\Psi^{*}-b$-admissible), if it meets the condition:

$$
l, k \in \aleph, \quad \Psi^{*}(l, k) \geq \frac{1}{s^{2}} \Longrightarrow \Psi^{*}(\mathbb{k}(l), \mathbb{k}(k)) \geq \frac{1}{s^{2}}
$$

It is clear that every $\alpha$-admissible mapping is $\Psi^{*}$-admissible, but the converse is not true. To illustrate the difference between $\Psi^{*}$-admissibility and $\alpha$-admissibility, we give the following examples.

Example 1.1. Let $\aleph=\Re$ and $s=2$. Define $\mathbb{k}: \aleph \rightarrow \aleph$ and $\Psi^{*}: \aleph \times \aleph \rightarrow[0, \infty)$ as follows:

$$
\mathbb{k}(l)=-l, \text { for all } l \in \aleph
$$

and

$$
\Psi^{*}(l, k)= \begin{cases}2 & \text { if } l \geq k \\ \frac{1}{2} & \text { otherwise }\end{cases}
$$

Clearly, the mapping $\mathbb{k}$ is $\Psi^{*}$-admissible. While, for $l \geq k$ we have $\Psi^{*}(l, k) \geq 1$ and $\Psi^{*}(\mathbb{k}(l), \mathbb{k}(k))=\frac{1}{2}<1$, so $\mathbb{k}$ is not $\alpha$ - admissible.

Example 1.2. Let $\aleph=[0, \infty)$ and $s=2$. Define $\mathbb{k}: \aleph \rightarrow \aleph$ and $\Psi^{*}: \aleph \times \aleph \rightarrow[0, \infty)$ as follows:

$$
\mathbb{k}(l)= \begin{cases}\frac{l}{2} & \text { if } l \in[0,2] \\ \ln (l) & \text { otherwise }\end{cases}
$$

and

$$
\Psi^{*}(l, k)= \begin{cases}\frac{(l+k)^{2}}{2}+\frac{1}{2} & \text { if } l, k \in[0,2] \\ \frac{1}{1+\min \{l, k\}} & \text { otherwise } .\end{cases}
$$

Clearly, the mapping $\mathbb{k}$ is $\Psi^{*}$-admissible. While, we have $\Psi^{*}\left(\frac{1}{2}, \frac{1}{2}\right) \geq 1$ and $\Psi^{*}(\mathbb{k}(l), \mathbb{k}(k))=\frac{5}{8}<1$, so $\mathbb{k}$ is not $\alpha$-admissible .

In the next definition, we generalize the concept of transitivity, which is useful in the sequel.
Definition 1.7. For a nonempty set $\aleph$ and a given real number $s \geq 1$, we say that $\Psi^{*}: \aleph \times \aleph \longrightarrow[0, \infty)$ is generalized transitive (or a $b$-transitive ) function, if it meets the condition: $l, k, j \in \aleph, \Psi^{*}(l, k) \geq \frac{1}{s^{2}}$ and $\Psi^{*}(k, j) \geq \frac{1}{s^{2}} \Longrightarrow \Psi^{*}(l, j) \geq \frac{1}{s^{2}}$.

In this paper, we establish some fixed point results on quasi $b$-metric spaces for some contraction mappings via the concept of $\Psi^{*}$ - admissibility. We also study their Ulam-Hyers stability and well-posedness.

## 2 Main results

For $s \geq 1$, let $\omega$ be the class of all functions $\beta:[0, \infty) \longrightarrow\left[0, \frac{1}{s^{2}}\right)$ so that for any sequence $\left\{t_{m}\right\}$ of nonnegative real numbers, we have

$$
\lim _{m \longrightarrow \infty} \beta\left(t_{m}\right)=\frac{1}{s^{2}} \Longrightarrow \lim _{m \longrightarrow \infty} t_{m}=0
$$

Definition 2.1. Let $(\aleph, \hbar)$ be a quasi $b$-metric space and $\mathbb{k}: \aleph \longrightarrow \aleph$ be a self-mapping. We say that $\mathbb{k}$ is an $\Psi^{*}-\beta$ - contraction if there are two functions $\Psi^{*}: \aleph \times \aleph \longrightarrow[0 . \infty)$ and $\beta \in \Omega$ such that

$$
\begin{equation*}
\left[\Psi^{*}(l, k)-\frac{1}{s^{2}}+\rho_{*}\right]^{d \hbar(\mathbb{k}(l), \mathbb{k}(k))} \leq \rho^{d \beta(\hbar(l, k)) \hbar(l, k)} \tag{2.1}
\end{equation*}
$$

for all $l, k \in \aleph$, where $d \geq 1$ and $1 \leq \rho \leq \rho_{*}$.
Theorem 2.1. Let $(\aleph, \hbar)$ be a complete quasi $b$-metric space and $\mathbb{k}: \aleph \longrightarrow \aleph$ be an $\Psi^{*}-\beta$ - contraction mapping such that
(i) $\mathbb{k}$ is $\Psi^{*}$-admissible;
(ii) $\Psi^{*}$ is generalized transitive;
(iii) there is $l_{0} \in \aleph$ such that $\Psi^{*}\left(l_{0}, \mathbb{k}\left(l_{0}\right)\right) \geq \frac{1}{s^{2}}$ and $\Psi^{*}\left(\mathbb{k}\left(l_{0}\right), l_{0}\right) \geq \frac{1}{s^{2}}$;
$(i v) \mathbb{k}$ is continuous.
Then, there exists a fixed point $x^{*} \in \aleph$ of $\mathbb{k}$, that is, $x^{*}=\mathbb{k}\left(x^{*}\right)$.
Proof. For such $l_{0} \in \aleph$ given in condition (iii), define a sequence $\left\{l_{n}\right\}$ by

$$
\begin{equation*}
l_{n}=\mathbb{k}\left(l_{n-1}\right) \quad \forall n \in \mathbb{N} . \tag{2.2}
\end{equation*}
$$

We assume that $l_{n} \neq l_{n-1}$ for all $n \in \mathbb{N}$ (Otherwise, if $l_{k}=l_{k-1}$ for some $k \in \mathbb{N}$, then $l_{k}$ is a fixed point of $\mathbb{k}$ ). Again, from condition ( $i$ ), we have

$$
\Psi^{*}\left(l_{0}, l_{1}\right)=\Psi^{*}\left(l_{0}, \mathbb{k}\left(l_{0}\right)\right) \geq \frac{1}{s^{2}}
$$

Also,

$$
\Psi^{*}\left(l_{1}, l_{2}\right)=\Psi^{*}\left(\mathbb{k}\left(l_{0}\right), \mathbb{k}\left(l_{1}\right)\right) \geq \frac{1}{s^{2}} .
$$

By induction, we get $\Psi^{*}\left(l_{n-1}, l_{n}\right) \geq \frac{1}{s^{2}}$ and $\Psi^{*}\left(l_{n}, l_{n-1}\right) \geq \frac{1}{s^{2}}$ for all $n \in \mathbb{N}$. We have

$$
\begin{aligned}
\rho^{\hbar\left(l_{n}, l_{n+1}\right)} & =\rho^{\hbar\left(\mathbb{k}\left(l_{n-1}\right), \mathfrak{k}\left(l_{n}\right)\right)} \\
& \leq \rho_{*}^{\hbar\left(\mathbb{k}\left(l_{n-1}\right), \mathfrak{k}\left(l_{n}\right)\right)} \\
& \leq\left[\Psi^{*}\left(l_{n-1}, l_{n}\right)-\frac{1}{s^{2}}+\rho_{*}\right]^{\hbar\left(\mathbb{k}\left(l_{n-1}\right), \mathbb{k}\left(l_{n}\right)\right)} .
\end{aligned}
$$

Since $\mathbb{k}$ is an $\Psi^{*}-\beta$-contraction, we have

$$
\rho^{\hbar\left(l_{n}, l_{n+1}\right)} \leq \rho^{\beta\left(\hbar\left(l_{n-1}, l_{n}\right)\right)\left(\hbar\left(l_{n-1}, l_{n}\right)\right.} .
$$

This means that for each $n \in \mathbb{N}$,

$$
\begin{equation*}
\hbar\left(l_{n}, l_{n+1}\right) \leq \beta\left(( \hbar ( l _ { n - 1 } , l _ { n } ) ) \left(\hbar\left(l_{n-1}, l_{n}\right)<\frac{1}{s^{2}}\left(\hbar\left(l_{n-1}, l_{n}\right) .\right.\right.\right. \tag{2.3}
\end{equation*}
$$

We conclude that the real sequence $\left\{\left(\hbar\left(l_{n-1}, l_{n}\right)\right\}\right.$ is strictly decreasing, and so there is $\hbar \geq 0$ such that $\left(\hbar\left(l_{n-1}, l_{n}\right) \longrightarrow\right.$ $q$ as $n \longrightarrow \infty$. Assume that $\hbar>0$. Taking limit as $n \longrightarrow \infty$ in 2.3 , we obtain that $1 \leq \lim _{n \longrightarrow \infty} \beta\left(\hbar\left(l_{n-1}, l_{n}\right)\right)<\frac{1}{s^{2}}$. It is a contradiction, then $\hbar=0$, that is, $\lim _{n \longrightarrow \infty} \hbar\left(l_{n-1}, l_{n}\right)=0$. The same procedure allows us to conclude $\lim _{n \longrightarrow \infty} \hbar\left(l_{n}, l_{n-1}\right)=0$.

Now, we will prove that $\left\{l_{n}\right\}$ is a Cauchy sequence in ( $\left.\aleph, \hbar\right)$. First, we show that $\left\{l_{n}\right\}$ is a right-Cauchy sequence. We argue by contradiction. Then there exist $\epsilon>0$ and a subsequence of integers $m_{j}$ and smallest $n_{j}$ with $n_{j}>m_{j} \geq j$ such that

$$
\begin{equation*}
\hbar\left(l_{m_{j}}, l_{n_{j}}\right) \geq \epsilon \tag{2.4}
\end{equation*}
$$

for all $j \in \mathbb{N}$. Then we get

$$
\begin{equation*}
\hbar\left(l_{m_{j}}, l_{n_{j}}\right) \geq \epsilon, \hbar\left(l_{m_{j}}, l_{n_{j-1}}\right)<\epsilon . \tag{2.5}
\end{equation*}
$$

Thus, we get from triangle inequality,

$$
\begin{aligned}
\epsilon \leq \hbar\left(l_{m_{j}}, l_{n_{j}}\right) & \leq s\left[\hbar\left(l_{m_{j}}, l_{n_{j-1}}\right)+\hbar\left(l_{n_{j-1}}, l_{n_{j}}\right)\right] \\
& \leq s \epsilon+s \hbar\left(l_{n_{j-1}}, l_{n_{j}}\right) .
\end{aligned}
$$

On taking the limit as $j \longrightarrow \infty$, we have

$$
\epsilon \leq \lim _{j \longrightarrow \infty} \hbar\left(l_{m_{j}}, l_{n_{j}}\right) \leq s \epsilon<\infty .
$$

Since $n_{j}>m_{j} \geq j$ and $\Psi^{*}$ is generalized transitive, we get $\Psi^{*}\left(l_{m_{j}}, l_{n_{j}}\right) \geq \frac{1}{s^{2}}$. Consider,

$$
\begin{aligned}
\left.\rho^{\hbar\left(l_{m_{j}}, l_{n_{j}}\right.}\right) & \leq \rho^{s \hbar\left(l_{m_{j}}, l_{m_{j+1}}\right)+s^{2} \hbar\left(l_{m_{j+1}}, l_{n_{j+1}}\right)+s^{2} \hbar\left(l_{n_{j+1}}, l_{n_{j}}\right)} \\
& \leq \rho^{s \hbar\left(l_{m_{j}}, l_{m_{j+1}}\right)+s^{2} \hbar\left(\mathbb{k}\left(l_{m_{j}}\right), \mathbb{k}\left(l_{n_{j}}\right)\right)+s^{2} \hbar\left(l_{n_{j+1}}, l_{n_{j}}\right)} \\
& \leq \rho^{s \hbar\left(l_{m_{j}}, l_{m_{j+1}}\right)+s^{2} \hbar\left(l_{n_{j+1}}, l_{n_{j}}\right)} \rho_{*}^{s^{2} \hbar\left(\mathbb{k}\left(l_{m_{j}}\right), \mathbb{k}\left(l_{n_{j}}\right)\right)} \\
& \leq \rho^{s \hbar\left(l_{m_{j}}, l_{m_{j+1}}\right)+s^{2} \hbar\left(l_{n_{j+1}}, l_{n_{j}}\right)} \rho^{\left.\beta \hbar\left(l_{m_{j}}, l_{n_{j}}\right)\right) s^{2} \hbar\left(l_{m_{j}}, l_{n_{j}}\right)} .
\end{aligned}
$$

Hence,

$$
\hbar\left(l_{m_{j}}, l_{n_{j}}\right) \leq s \hbar\left(l_{m_{j}}, l_{m_{j+1}}\right)+s^{2} \hbar\left(l_{n_{j+1}}, l_{n_{j}}\right)+\beta\left(\hbar\left(l_{m_{j}}, l_{n_{j}}\right)\right) s^{2} \hbar\left(l_{m_{j}}, l_{n_{j}}\right) .
$$

That is,

$$
\frac{\hbar\left(l_{m_{j}}, l_{n_{j}}\right)-s \hbar\left(l_{m_{j}}, l_{m_{j+1}}\right)-s^{2} \hbar\left(l_{n_{j+1}}, l_{n_{j}}\right)}{s^{2} \hbar\left(l_{m_{j}}, l_{n_{j}}\right)} \leq \beta\left(\hbar\left(l_{m_{j}}, l_{n_{j}}\right)\right)<\frac{1}{s^{2}} .
$$

By taking the limit as $j \longrightarrow \infty$, we get

$$
\lim _{j \longrightarrow \infty} \beta\left(\hbar\left(l_{m_{j}}, l_{n_{j}}\right)\right)=\frac{1}{s^{2}} .
$$

Since $\beta \in \Omega$, we have $\lim _{j \longrightarrow \infty} \hbar\left(l_{m_{j}}, l_{n_{j}}\right)=0$, which is a contradiction. Thus, $\left\{l_{n}\right\}$ is a right-Cauchy sequence in the quasi $b$-metric space $(\aleph, \hbar)$. Similarly, it is a left-Cauchy sequence in the quasi $b$-metric space $(\aleph, \hbar)$. That is, $\left\{l_{n}\right\}$ is a Cauchy sequence in the quasi $b$-metric space $(\aleph, \hbar)$. Since $(\aleph, \hbar)$ is complete, there exists $x^{*}$ such that $x^{*}=\lim _{n \longrightarrow \infty} l_{n}$ and since $\mathbb{k}$ is continuous,

$$
x^{*}=\lim _{n \longrightarrow \infty} l_{n}=\lim _{n \longrightarrow \infty} \mathbb{k}\left(l_{n+1}\right)=\mathbb{k}\left(\lim _{n \longrightarrow \infty} l_{n+1}\right)=\mathbb{k}\left(x^{*}\right) .
$$

Hence, $x^{*}$ is a fixed point of $\mathbb{k}$.
Theorem 2.2. Let $(\aleph, \hbar)$ be a complete quasi $b$-metric space and $\mathbb{k}: \aleph \longrightarrow \aleph$ be an $\Psi^{*}-\beta$-contraction mapping such that
$(i) \mathbb{k}$ is $\Psi^{*}$-admissible;
(ii) $\Psi^{*}$ is generalized transitive;
(iii) there exists $l_{0} \in \aleph$ such that $\Psi^{*}\left(l_{0}, \mathbb{k}\left(l_{0}\right)\right) \geq \frac{1}{s^{2}}$ and $\Psi^{*}\left(\mathbb{k}\left(l_{0}\right), l_{0}\right) \geq \frac{1}{s^{2}}$;
(iv) if $\left\{l_{n}\right\}$ is a sequence in $\aleph$ such that $\Psi^{*}\left(x^{*}, l_{n}\right) \geq \frac{1}{s^{2}}$ and $\Psi^{*}\left(l_{n}, x^{*}\right) \geq \frac{1}{s^{2}}$ for all $n \in \mathbb{N}$ and $l_{n} \longrightarrow x \in \aleph$ as $n \longrightarrow \infty$.

Then, there exists a unique fixed point $x^{*} \in \aleph$ of $\mathbb{k}$.
Proof. From the proof of Theorem 2.1, the sequence $\left\{l_{n}\right\}$ is Cauchy and converges to some $x^{*}$ in ( $\left.\aleph, \hbar\right)$. We have $\Psi^{*}\left(l_{n}, x^{*}\right) \geq \frac{1}{s^{2}}$ and $\Psi^{*}\left(x^{*}, l_{n}\right) \geq \frac{1}{s^{2}}, \forall n \in \mathbb{N}$. Next,

$$
\begin{aligned}
\rho^{\hbar\left(x^{*}, \mathbb{k}\left(x^{*}\right)\right)} & \leq \rho^{s \hbar\left(x^{*}, l_{n+1}\right)+s \hbar\left(l_{n+1}, \mathfrak{k}\left(x^{*}\right)\right)} \\
& =\rho^{s \hbar\left(x^{*}, l_{n+1}\right)+s \hbar\left(\mathbb{k}\left(l_{n}\right), \mathbb{k}\left(x^{*}\right)\right)}=\rho^{s \hbar\left(x^{*}, l_{n+1}\right)} \rho^{s \hbar\left(\mathbb{k}\left(l_{n}\right), \mathbb{k}\left(x^{*}\right)\right)} \\
& \leq \rho^{s \hbar\left(x^{*}, l_{n+1}\right)} \rho_{*}^{s \hbar\left(\mathbb{k}\left(l_{n}\right), \mathbb{k}\left(x^{*}\right)\right)} \\
& \leq \rho^{s \hbar\left(x^{*}, l_{n+1}\right)}\left[\Psi^{*}\left(l_{n}, x^{*}\right)-\frac{1}{s^{2}}+\rho_{*}\right]^{s \hbar\left(\mathbb{k}\left(l_{n}\right), \mathbb{k}\left(x^{*}\right)\right)} \\
& \leq \rho^{s \hbar\left(x^{*}, l_{n+1}\right)} \rho^{\beta\left(\hbar\left(l_{n}, x^{*}\right)\right) s \hbar\left(l_{n}, x^{*}\right)} \\
& \leq \rho^{s \hbar\left(x^{*}, l_{n+1}\right)+\beta\left(\hbar\left(l_{n}, x^{*}\right)\right) s \hbar\left(l_{n}, x^{*}\right)}
\end{aligned}
$$

for all $n \in \mathbb{N}$. Then we get

$$
\hbar\left(x^{*}, \mathbb{k}\left(x^{*}\right)\right) \leq s \hbar\left(x^{*}, l_{n+1}\right)+\beta\left(\hbar\left(l_{n}, x^{*}\right)\right) s \hbar\left(l_{n}, x^{*}\right)
$$

for all $n \in \mathbb{N}$. Letting $n \longrightarrow \infty$, we obtain that $\hbar\left(x^{*}, \mathbb{k}\left(x^{*}\right)\right)=0$, and so $x^{*}=\mathbb{k}\left(x^{*}\right)$. To prove the uniqueness of the fixed point of $\mathbb{k}$, assume that $y^{*} \in \aleph$ is another fixed point of $\mathbb{k}$. We have

$$
\begin{aligned}
\rho^{\hbar\left(x^{*}, y^{*}\right)} & \leq \rho_{*}^{\hbar\left(x^{*}, y^{*}\right)} \leq \rho_{*}^{s \hbar\left(x^{*}, l_{n+1}\right)+s \hbar\left(l_{n+1}, y^{*}\right)} \\
& \leq \rho_{*}^{s \hbar\left(\mathbb{k}\left(x^{*}\right), \mathbb{k}\left(l_{n}\right)\right)} * \rho_{*}^{s \hbar\left(\mathbb{k}\left(l_{n}\right), \mathbb{k}\left(y^{*}\right)\right)} \\
& \leq\left(\Psi^{*}\left(x^{*}, l_{n}\right)-\frac{1}{s^{2}}+\rho_{*}\right)^{s \hbar\left(\mathbb{k}\left(x^{*}\right), \mathbb{k}\left(l_{n}\right)\right)} *\left(\Psi^{*}\left(l_{n}, y^{*}\right)-\frac{1}{s^{2}}+\rho_{*}\right)^{s \hbar\left(\mathbb{k}\left(l_{n}\right), \mathbb{k}\left(y^{*}\right)\right)} \\
& \leq \rho^{s \beta\left(\hbar\left(x^{*}, l_{n}\right)\right) \hbar\left(x^{*}, l_{n}\right)} * \rho^{s \beta\left(\hbar\left(l_{n}, y^{*}\right)\right) \hbar\left(l_{n}, y^{*}\right)} .
\end{aligned}
$$

Thus,

$$
\hbar\left(x^{*}, y^{*}\right) \leq s \beta\left(\hbar\left(x^{*}, l_{n}\right)\right) \hbar\left(x^{*}, l_{n}\right)+s \beta\left(\hbar\left(l_{n}, y^{*}\right)\right) \hbar\left(l_{n}, y^{*}\right) \leq \frac{1}{s} \hbar\left(x^{*}, l_{n}\right)+\frac{1}{s} \hbar\left(l_{n}, y^{*}\right)
$$

If we repeat this argument $n$-times on both $\hbar\left(x^{*}, l_{n}\right)$ and $\hbar\left(l_{n}, y^{*}\right)$, we get

$$
\hbar\left(x^{*}, y^{*}\right) \leq\left(\frac{1}{s}\right)^{n} \hbar\left(x^{*}, l_{0}\right)+\left(\frac{1}{s}\right)^{n} \hbar\left(l_{0}, y^{*}\right)
$$

By taking limit as $n \longrightarrow \infty$, we get $\hbar\left(x^{*}, y^{*}\right) \leq 0$. Hence, $\hbar\left(x^{*}, y^{*}\right)=0$, then $x^{*}=y^{*}$.
To prove uniqueness of the fixed point that given in Theorem 2.1, we need to add the next hypothesis:
$(C 1) \Psi^{*}(l, k) \geq \frac{1}{s^{2}}$ or $\Psi^{*}(k, l) \geq \frac{1}{s^{2}}$, for all fixed points $l, k \in \aleph$ of $\mathbb{k}$.
Theorem 2.3. Let $(\aleph, \hbar)$ be a complete quasi $b$-metric space and $\mathbb{k}: \aleph \longrightarrow \aleph$ be an $\Psi^{*}-\beta$ - contraction mapping such that
(i) $\mathbb{k}$ is $\Psi^{*}$-admissible;
(ii) $\Psi^{*}$ is generalized transitive;
(iii) there exists $l_{0} \in \aleph$ such that $\Psi^{*}\left(l_{0}, \mathbb{k}\left(l_{0}\right)\right) \geq \frac{1}{s^{2}}$ and $\Psi^{*}\left(\mathbb{k}\left(l_{0}\right), l_{0}\right) \geq \frac{1}{s^{2}}$;
(iv) (C1) holds.

Then, there exists a unique fixed point $x^{*} \in \aleph$ of $\mathbb{k}$.
Proof. Following the proof of Theorem 2.1, there exists a fixed point of $\mathbb{k}$. We claim that the fixed point is unique. Without lose of generality, let $x^{*}, y^{*}$ be fixed points of $\mathbb{k}$ so that $\Psi^{*}\left(y^{*}, x^{*}\right) \geq \frac{1}{s^{2}}$. We have

$$
\begin{aligned}
& \rho^{\hbar\left(x^{*}, y^{*}\right)} \leq \rho_{*}^{\hbar\left(x^{*}, y^{*}\right)} \leq {\left[\Psi^{*}\left(x^{*}, y^{*}\right)-\frac{1}{s^{2}}+\rho_{*}\right]^{\hbar\left(x^{*}, y^{*}\right)} \leq\left[\Psi^{*}\left(x^{*}, y^{*}\right)-\frac{1}{s^{2}}+\rho_{*}\right]^{\hbar\left(\mathbb{k}\left(x^{*}\right), \mathfrak{k}\left(y^{*}\right)\right)} } \\
& \leq\left[\Psi^{*}\left(x^{*}, y^{*}\right)-\frac{1}{s^{2}}+\rho_{*}\right]^{\beta\left(\hbar\left(\left(x^{*}, y^{*}\right)\right) \hbar\left(x^{*}, y^{*}\right)\right.}
\end{aligned}
$$

It follows that

$$
\hbar\left(x^{*}, y^{*}\right) \leq \beta\left(\hbar\left(\left(x^{*}, y^{*}\right)\right) \hbar\left(x^{*}, y^{*}\right)\right.
$$

On contrary, assume that $\neq 0$, then we have

$$
1 \leq \beta\left(\hbar\left(\left(x^{*}, y^{*}\right)\right),\right.
$$

which is a contradiction.

## 3 Application: Ulam-Hyers Stability

Definition 3.1. Let $(\aleph, \hbar)$ be a complete quasi $b$ metric space and $\mathbb{k}: \aleph \longrightarrow \aleph$ be a mapping. The fixed point problem

$$
\begin{equation*}
l=\mathbb{k}(l) \tag{3.1}
\end{equation*}
$$

is called Ulam-Hyers stable if and only if for each $k \in \aleph$ satisfying the inequality

$$
\begin{equation*}
\hbar(k, \mathbb{k}(k)) \leq \epsilon \tag{3.2}
\end{equation*}
$$

and inequality

$$
\begin{equation*}
\hbar(\mathbb{k}(k), k) \leq \epsilon, \tag{3.3}
\end{equation*}
$$

where $\epsilon>0$, there are a solution $x^{*} \in \aleph$ of equation (3.1) and a constant $K>0$ independent of $k$ and $x^{*}$ such that

$$
\begin{equation*}
\hbar\left(k, x^{*}\right) \leq K \epsilon, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\hbar\left(x^{*}, k\right) \leq K \epsilon . \tag{3.5}
\end{equation*}
$$

Definition 3.2. Let $(\aleph, \hbar)$ be a complete quasi $b$-metric space and $\mathbb{k}: \aleph \longrightarrow \aleph$ be a mapping. The fixed point problem 3.1 is called generalized Ulam-Hyers stable if and only if there exists an increasing function $\Xi:[0, \infty) \longrightarrow[0, \infty)$ continuous at 0 with $\Xi(0)=0$ such that for all $\epsilon>0$ and $k \in \aleph$, the inequalities (3.2) and (3.3) hold, there exists a solution $x^{*} \in \aleph$ of the equation (3.1) such that

$$
\begin{equation*}
\hbar\left(k, x^{*}\right) \leq \Xi(\epsilon) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\hbar\left(x^{*}, k\right) \leq \Xi(\epsilon) \tag{3.7}
\end{equation*}
$$

Theorem 3.1. Let $(\aleph, \hbar)$ be a complete quasi $b$-metric space with $s>1$. Suppose that all the hypotheses of Theorem 2.2 (Theorem 2.3) hold. If $\Psi^{*}(l, k) \geq \frac{1}{s^{2}}$ and $\Psi^{*}(k, l) \geq \frac{1}{s^{2}}$ for all $l, k \in \aleph$ which are satisfying the inequalities 3.2) and (3.3), then the fixed point of $\mathbb{k}$ is Ulam-Hyers stable.

Proof. From the proof of Theorem 2.2 (Theorem 2.3), we obtain that $\mathbb{k}$ has a unique fixed point (say $x^{*}$ ). Let $\epsilon>0$ and $k \in \aleph$ such that the inequalities (3.2) and 3.3) hold, that is,

$$
\hbar(k, \mathbb{k}(k) \leq \epsilon
$$

and

$$
\hbar(\mathbb{k}(k), k) \leq \epsilon
$$

In fact, the fixed point $x^{*}$ satisfies the inequality (3.2) and the inequality (3.3). From hypotheses, we have $\Psi^{*}\left(x^{*}, k\right) \geq \frac{1}{s^{2}}$ and $\Psi^{*}\left(k, x^{*}\right) \geq \frac{1}{s^{2}}$. Now, we have

$$
\begin{aligned}
\rho^{\hbar\left(x^{*}, k\right)} & =\rho^{\hbar\left(\mathbb{k}\left(x^{*}\right), k\right)} \\
& \leq \rho^{s \hbar\left(\mathbb{k}\left(x^{*}\right), \mathbb{k}(k)\right)+s \hbar(\mathbb{k}(k), k)} \\
& \leq \rho_{*}^{s \hbar\left(\mathbb{k}\left(x^{*}\right), \mathbb{k}(k)\right)} * \rho^{s \hbar(\mathbb{k}(k), k)} \\
& \leq\left[\Psi^{*}\left(x^{*}, k\right)-\frac{1}{s^{2}}+\rho_{*}\right]^{s \hbar\left(\mathbb{k}\left(x^{*}\right), \mathbb{k}(k)\right)} * \rho^{s \epsilon} \\
& \leq \rho^{s \beta\left(\hbar\left(x^{*}, k\right)\right) \hbar\left(x^{*}, k\right)+s \epsilon} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\hbar\left(x^{*}, k\right) & \leq s \beta\left(\hbar\left(x^{*}, k\right)\right) \hbar\left(x^{*}, k\right)+s \epsilon \\
& \leq \frac{1}{s} \hbar\left(x^{*}, k\right)+s \epsilon
\end{aligned}
$$

This implies that

$$
\hbar\left(x^{*}, k\right) \leq \frac{s^{2} \epsilon}{s-1}
$$

where $s>1$. Consequently, the fixed point problem $\mathbb{k}$ is Ulam-Hyers stable.
Theorem 3.2. Let $(\aleph, \hbar)$ be a complete quasi $b$-metric space. Suppose that all the hypotheses of Theorem 2.2 (Theorem 2.3) hold. Assume that $\beta(0)=0$ and there is a strictly increasing function $\Psi:[0, \infty) \longrightarrow[0, \infty)$ which is defined by $\Psi(t)=\frac{t-s t \beta(t)}{s}$ and onto. If $\Psi^{*}(l, k) \geq \frac{1}{s^{2}}$ and $\Psi^{*}(k, l) \geq \frac{1}{s^{2}}$ for all $l, k \in \aleph$, satisfying the inequalities (3.2) and (3.3), then the fixed point of $\mathbb{k}$ is generalized Ulam-Hyers stable.

Proof . From the same process as in the proof of Theorem 3.1 with $s \geq 1$, we obtain that

$$
\hbar\left(x^{*}, k\right) \leq s \beta\left(\hbar\left(x^{*}, k\right)\right) \hbar\left(x^{*}, k\right)+s \epsilon
$$

and then

$$
\frac{\hbar\left(x^{*}, k\right)-s \beta\left(\hbar\left(x^{*}, k\right)\right) \hbar\left(x^{*}, k\right)}{s} \leq \epsilon .
$$

That is, $\Psi \hbar\left(x^{*}, k\right) \leq \epsilon$. Thus,

$$
\hbar\left(x^{*}, k\right) \leq \Psi^{-1}(\epsilon)
$$

We can conclude that $\Psi^{-1}$ is increasing, continuous at 0 and $\Psi^{-1}(\{0\})=0$. Consequently, the fixed point problem of $\mathbb{k}$ is generalized Ulam-Hyers stable.

## 4 Well-posedness

The concept of well-posedness of a fixed point problem has a great interest for many mathematicians, see [15, 19, 23]. We begin by defining the concept of well-posedness in the context of quasi $b$-metric spaces as follows:

Definition 4.1. 2] Let $(\aleph, \hbar)$ be a quasi $b$-metric space and $\mathbb{k}: \aleph \longrightarrow \aleph$ be a given mapping. Then, the fixed point problem (3.1) is said to be well-posed if:
(1) $\mathbb{k}$ has a unique fixed point $u \in \aleph$;
(2) for any sequence $\left\{l_{n}\right\} \subseteq X$, if $\lim _{n \longrightarrow \infty} \hbar\left(\mathbb{k} l_{n}, l_{n}\right)=\lim _{n \longrightarrow \infty} \hbar\left(l_{n}, \mathbb{k} l_{n}\right)=0$
then, we have $\lim _{n \longrightarrow \infty} \hbar\left(\mathbb{k} l_{n}, u\right)=\lim _{n \longrightarrow \infty} \hbar\left(u, \mathbb{k} l_{n}\right)=0$.
Theorem 4.1. Let $(\aleph, \hbar)$ be a complete quasi $b$-metric space. Suppose that all the hypotheses of Theorem 2.2 (Theorem 2.3) hold with the next supposition:

- If $\left\{l_{n}\right\} \subseteq X$ is a sequence with $\lim _{n \longrightarrow \infty} \hbar\left(\mathbb{k} l_{n}, l_{n}\right)=\lim _{n \longrightarrow \infty} \hbar\left(l_{n}, \mathbb{k} l_{n}\right)=0$, then $\Psi^{*}\left(l_{n}, u\right) \geq \frac{1}{s^{2}}$ and $\Psi^{*}\left(u, l_{n}\right) \geq \frac{1}{s^{2}}$ for all $n$, where $u$ is a fixed point of $\mathbb{k}$.

Then the fixed point equation (3.1) is well-posed.

Proof . By Theorem 2.2 (Theorem 2.3), we have a unique $u \in \aleph$ such that $u=\mathbb{k} u$. Let $\left\{l_{n}\right\} \subseteq X$ be a sequence with $\lim _{n \longrightarrow \infty} \hbar\left(\mathbb{k} l_{n}, l_{n}\right)=\lim _{n \longrightarrow \infty} \hbar\left(l_{n}, \mathbb{k} l_{n}\right)=0$, then we have $\Psi^{*}\left(l_{n}, u\right) \geq \frac{1}{s^{2}}$ and $\Psi^{*}\left(u, l_{n}\right) \geq \frac{1}{s^{2}}$ for all $n$. Now, by using the fact that $\Psi^{*}\left(l_{n}, u\right) \geq \frac{1}{s^{2}}$, we can write

$$
\begin{aligned}
\rho^{\hbar\left(l_{n}, u\right)} & \leq \rho^{s \hbar\left(l_{n}, \mathbb{k}\left(l_{n}\right)\right)+s \hbar\left(\mathbb{k}\left(l_{n}\right), u\right)} \\
& \leq \rho^{s \hbar\left(l_{n}, \mathbb{k}\left(l_{n}\right)\right)+s \hbar\left(\mathbb{k}\left(l_{n}\right), \mathbb{k} u\right)} \\
& \leq \rho^{s \hbar\left(l_{n}, \mathbb{k}\left(l_{n}\right)\right)} * \rho_{*}^{s \hbar\left(\mathbb{k}\left(l_{n}\right), \mathbb{k} u\right)} \\
& \leq \rho^{s \hbar\left(l_{n}, \mathbb{k}\left(l_{n}\right)\right)} *\left[\Psi^{*}\left(l_{n}, u\right)-\frac{1}{s^{2}}+\rho_{*}\right]^{s \hbar\left(\mathbb{k}\left(l_{n}\right), \mathfrak{k}(u)\right)} \\
& \leq \rho^{s \hbar\left(l_{n}, \mathbb{k}\left(l_{n}\right)\right)} * \rho^{s \beta\left(\hbar\left(l_{n}, u\right)\right) \hbar\left(l_{n}, u\right)} .
\end{aligned}
$$

That is,

$$
\begin{aligned}
\hbar\left(l_{n}, u\right) & \leq s \hbar\left(l_{n}, \mathbb{k}\left(l_{n}\right)\right)+s \beta\left(\hbar\left(l_{n}, u\right)\right) \hbar\left(l_{n}, u\right) \\
& \leq s \hbar\left(l_{n}, \mathbb{k}\left(l_{n}\right)\right)+\frac{1}{s} \hbar\left(l_{n}, u\right) .
\end{aligned}
$$

Consequently,

$$
\hbar\left(l_{n}, u\right) \leq \frac{s^{2}}{s-1} \hbar\left(l_{n}, \mathbb{k}\left(l_{n}\right)\right),
$$

for each integer $n$. Letting $n \longrightarrow \infty$, we get

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \hbar\left(l_{n}, u\right)=0 . \tag{4.1}
\end{equation*}
$$

Again, by the same procedure and using the fact that $\Psi^{*}\left(u, l_{n}\right) \geq \frac{1}{s^{2}}$, we can obtain

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \hbar\left(u, l_{n}\right)=0 . \tag{4.2}
\end{equation*}
$$

By (4.1) and 4.2), the fixed point problem (3.1) is well-posed.

## References

[1] Z. Abbasbeygi, A. Bodaghi and A. Gharibkhajeh, On an equation characterizing multi-quartic mappings and its stability, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 1, 991-1002.
[2] H. Aydi, N. Bilgili and E. Karapinar, Common fixed point results from quasi-metric spaces to G-metric spaces, J. Egypt. Math. Soc. 23 (2015), 356-361.
[3] J. Brzdek, J. Chudziak and Z. Pales, A fixed point approach to stability of functional equations, Nonlinear Anal. 74 (2011), no. 17, 6728--6732.
[4] J. Brzdek and K. Ciepliski, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Anal. 74 (2011), no. 18, 6861--6867.
[5] J. Brzdek and K. Cieplinski, A fixed point theorem and the Hyers-Ulam stability in non-Archimedean spaces, J. Math. Anal. Appl. 400 (2013), no. 1, 68-75.
[6] A. Bodaghi, Th.M. Rassias, and A. Zivari-Kazempour, A fixed point approach to the stability of additive-quadraticquartic functional equations, Int. J. Nonlinear Anal. Appl. 11 (2020), no. 2, 17-28.
[7] M.F. Bota-Borticeanu and A. Petrusel, Ulam-Hyers stability for operatorial equations, Ann. Alexandru Ioan Cuza Univer. Math. 57 (2011), 65-74.
[8] M.F. Bota, E. Karapinar and O. Mlesnite, Ulam -Hyers stability results for fixed point problems via $\alpha-\psi$ contractive mapping in (b)-metric space, Abstr. Appl. Anal. 2013 (2013), Article ID 825293, 2013, 6 pages.
[9] L. Cadariu, L. Gavruta and P. Gavruta, Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal. 2012 (2012), Article ID 712743, 10 pages.
[10] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univer. Ostraviensis 1 (1993), no. 1, 5-11.
[11] A. Felhi, S. Sahmim and H. Aydi, Ulam-Hyers stability and well-posedness of fixed point problems for $\alpha-\lambda$ contractions on quasi b-metric spaces, Fixed Point Theory Appl. 2016 (2016), no.1, 20 pages.
[12] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math, Sci. 14 (1991), 431-434.
[13] S.M. Jung, Hyers-Ulam stability of linear partial differential equations of first order, Appl. Math. Lett. 22 (2009), 70-74.
[14] N. Lungu and D. Popa, Hyers-Ulam stability of a first order partial differential equation, J. Math. Anal. Appl. 385 (2012), 86-91.
[15] E. Karapinar, Fixed point theory for cyclic weak-contraction, Appl. Math. Lett. 24 (2011), 822-825.
[16] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Soc. 27 (1941), no.4, 222-224.
[17] D.H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998.
[18] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
[19] M.A. Kutbi and W. Sintunavarat, Ulam-Hyers stability and well-posedness of fixed point problems for $\lambda$-contraction mapping in metric spaces, Abstr. Appl. Anal. 2014 (2014), Article ID 268230.
[20] A. Prastaro and T.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2003), 259-278.
[21] I.A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10 (2009), no. 2, 305-320.
[22] I.A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes Bolyai Math. 54 (2009), 125--134.
[23] S. Reich and A.J. Zaslawski, Well-posedness of fixed point problems, Far East J. Math. Sci. Special Volume (2001), no. 3, 393-401.
[24] B. Samet, C, Vetro and P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165.
[25] F.A. Tise and I.C. Tise, Ulam-Hyers-Rassias stability for set integral equations, Fixed Point Theory 13 (2012), no. 2, 659-668.
[26] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Scince Editors, Wiley, New York, 1960.


[^0]:    *Corresponding author
    Email addresses: qhaq2010@gmail.com, qusuay.alqifiary@qu.edu.iq (Qusuay H. Alqifiary), hassen.aydi@isima.rnu.tn (Hassen Aydi)

