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Abstract

We consider the Steklov problem associated with the weighted p-Laplace operator and (p, q)-Laplacian on submanifolds
with the boundary of Euclidean spaces and prove Reilly-type upper bounds for their first eigenvalues.
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1 Introduction

Let (Mn, g) be a compact Riemannian manifold with a possibility non-empty boundary ∂M . The triple (M, g, dµg =
e−fdv) is called a smooth metric measure space, where f : M → R is a smooth real-valued function on M and dv is
the Riemannian volume element related to g. We also call e−f the density.
For 1 < p < ∞ and any u ∈ W 1,p

0 (M), the p-Laplacian ∆p is defined by

∆pu = div(|∇u|p−2∇u) = |∇u|p−2∆u+ (p− 2)|∇u|p−4Hessu(∇u,∇u),

where div is the divergence operator, ∇ is the gradient operator, and Hessu is the hessian of u. For p = 2, the
p-Laplacian is the Laplace-Beltrami operator of (Mn, g). Also, the weighted p-Laplacian is defined by

∆p,fu = efdiv(e−f |∇u|p−2∇u).

The spectrum of the weighted p-Laplacian has been studied on smooth metric measure spaces with Dirichlet or Neu-
man boundary conditions (see [10, 17, 18, 19]). In the present paper, we will consider the Steklov problem associated
with the weighted p-Laplace operator and (p, q)-Laplacian on submanifolds with boundary of Euclidean spaces.

In following, we will consider the weighted p-Steklov problem on submanifolds with the boundary of the Euclidean
space {

∆p,fu = 0 in M,

|∇u|p−2 ∂u
∂ν = λ|u|p−2u on ∂M,

(1.1)
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where ∂u
∂ν is the derivative of the function u with respect to the outward unit normal ν to the boundary ∂M . If f is a

constant function then the weighted p-Steklov problem (1.1) reduces to the p-Steklov problem which has been studied
in [16]. This problem arises from the following variational characterization of the first positive eigenvalue given by

λ1(M) = inf

{∫
M

|∇u|pdµg∫
∂M

|u|pdµh

∣∣∣u ∈ W 1,p(M) \ {0},
∫
∂M

|u|p−2udµh = 0

}
(1.2)

where dµh is the weighted measure on ∂M . Also, we consider a Steklov problem associated with the (p, q)-Laplacian
as follows: {

∆pu+∆qu = 0 in M,(
|∇u|p−2 + |∇u|q−2

)
∂u
∂ν = σ|u|r−2u on ∂M,

(1.3)

where 1 < p < q < r < ∞, r ∈ (1, q(N−1)
N−q ) if p < N and r ∈ (1,∞) if p ≥ N . The first positive eigenvalue of the

(p, q)-Steklov problem (1.3) defined as

σ1(M) = inf

{∫
M

(|∇u|p + |∇u|q) dvg∫
∂M

|u|r dvh

∣∣∣u ∈ W 1,q(M) \ {0},
∫
∂M

|u|r−2udvh = 0

}
. (1.4)

The (p, q)-Steklov problem has been studied in [4, 5, 6].

The aim of this paper is to obtain upper bounds for the first positive eigenvalue of the problems (1.1) and (1.3),
for submanifolds of Riemannian manifolds, depending on the geometry of boundary in the spirit of the classical Reilly
upper bounds for the Laplacian on closed hypersurfaces.

For the first positive eigenvalue λ1 of Laplacian, Reilly [12] proved the following well-known upper bound

λ1 ≤ n

V ol(M)

∫
M

H2dvg,

where H is the mean curvature of the immersion. Also, he [12] showed that for r ∈ {1, 2, · · · , n},

λ1

(∫
M

Hr−1dvg

)2

≤ V ol(M)

∫
M

H2
r dvg,

where Hr is the r-th mean curvature of the immersion and defined by the r-th symmetric polynomial of the principal
curvatures. Moreover, Reilly studied the equality cases and proved that equality holds in one of these inequalities, if

and only if M is immersed in a geodesic sphere of radius
√

n
λ1
. More generally, he show that if (Mn, g) is isometrically

immersed into RN , N > n+ 1, then

λ1

(∫
M

Hrdvg

)2

≤ V ol(M)

∫
M

|Hr+1|2dvg,

for any even r ∈ {0, 1, · · · , n} and equality holds if and only if M is minimally immersed in a geodesic sphere of RN .
For codimension greater than 1, Hr is a function and Hr+1 is a normal vector field. These inequalities have been
generalized for other ambient spaces and other operators (see [1, 2, 3, 7, 8, 11, 13, 14, 15, 16]).
Du and Mao [9] established the first positive eigenvalue of the p-Laplacian on closed submanifold of RN satisfies the
following inequalities.

λ1 ≤ n
p
2

(V ol(M))p

(∫
M

|H|
p

p−1 dvg

)p−1
{
N

2−p
2 if 1 < p ≤ 2,

N
p−2
2 if p ≥ 2.

In addition, equality holds if and only if p = 2 and M is minimally immersed into a geodesic hypersphere. On the
other hand, Roth [16] proved Reilly-type inequalities for the first eigenvalue of p-Steklov problem on submanifolds of
RN and showed that

λ1 ≤ V ol(M)

(V ol(∂M))p
n

p
2

(∫
M

|H|
p

p−1

)p−1
{
N

2−p
2 if 1 < p ≤ 2,

N
p−2
2 if p ≥ 2.

Moreover, equality holds if and only if p = 2 and M is minimally immersed into BN ( 1
λ1
) such that X(∂M) ⊂ ∂BN ( 1

λ1
),

where X is the isometric immersion.
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2 Main results

Motivated by the above works, we prove that:

Theorem 2.1. Let (Mn, g, dµ = e−fdv) be a compact connected and oriented Riemannian manifold with nonempty
boundary ∂M and p ∈ (1,+∞). Assume that (Mn, g, dµ = e−fdv) isometrically immersied into the Euclidean space
RN by X. If λ1(M) is the eigenvalue of the weighted p-Steklov problem (1.1) then for 1 < p ≤ 2 we have

λ1(M) ≤ 2
1

p−1n− p
2N1− p

2

(∫
∂M

(
|nH|

p
p−1 + |∇f |

p
p−1

)
dµh

)p−1 V olµg
(M)

(V olµh
(∂M))p

and for p ≥ 2 we get

λ1(M) ≤ 2
1

p−1n− p
2N

p
2−1

(∫
∂M

(
|nH|

p
p−1 + |∇f |

p
p−1

)
dµh

)p−1 V olµg
(M)

(V olµh
(∂M))p

.

where V olµg
(∂M) =

∫
M

dµg and V olµh
(∂M) =

∫
∂M

dµh. Moreover,

(i) If f is constant, H does not vanish identically then equality occurs in both inequalities if and only if p = 2 and
M is minimally immersed into BN ( 1

λ1(M) ) so that ∂M lies into geodesic hypersphere ∂BN ( 1
λ1(M) ).

(ii) If f is not constant and equality occurs then M is a self-shrinker for the mean curvature flow and f|M = a− b
2r

2
p

for some constants a, b, where rp is the Euclidean distance to the center of mass p of M . In particular, if
n = N − 1 and H > 0 or n = 2, N = 3 and M is embedded and has genus 0, then M is a geodesic ball.

Let T be a symmetric positive definite and divergence-free (1, 1)-tensor on M . We associated with T the normal vector
field HT defined by

HT =

n∑
i,j=1

⟨Tei, ej⟩B(ei, ej),

where {e1, · · · , en} is a local orthonormal frame of T∂M and B is the second fundamental form of the immersion of
M into RN . We also, recall the generalized Hsiung-Minkowski formula [11, 14, 15] as∫

∂M

(⟨X,HT − T (∇f)⟩+ tr(T )) dµh = 0. (2.1)

In following theorem we extended the theorem 2.1 to estimates with higher order mean curvatures.

Theorem 2.2. Let (Mn, g, dµ = e−fdv) be a compact connected and oriented Riemannian manifold with nonempty
boundary ∂M and p ∈ (1,+∞). Assume that (Mn, g, dµ = e−fdv) isometrically immersed into the Euclidean space
RN by X and let T be a symmetric and divergence-free (0, 2)-tensor on ∂M . If λ1(M) is the eigenvalue of the weighted
p-Steklov problem (1.1) then for 1 < p ≤ 2 we have

λ1(M)

∣∣∣∣∫
∂M

tr(T )dµh

∣∣∣∣p ≤ 2
1

p−1n
p
2N1− p

2

(∫
∂M

(
|HT |

p
p−1 + |∇f |

p
p−1

)
dµh

)p−1

V olµg
(M)

and for p ≥ 2 we get

λ1(M)

∣∣∣∣∫
∂M

tr(T )dµh

∣∣∣∣p ≤ 2
1

p−1n
p
2N

p
2−1

(∫
∂M

(
|HT |

p
p−1 + |∇f |

p
p−1

)
dµh

)p−1

V olµg (M).

where V olµg
(∂M) =

∫
M

dµg and V olµh
(∂M) =

∫
∂M

dµh. Moreover,

(i) If f is constant, HT does not vanish identically then equality occurs in both inequality if and only if p = 2 and
M is minimally immersed into BN ( 1

λ1(M) ) so that ∂M lies into geodesic hypersphere ∂BN ( 1
λ1(M) ).

(ii) If f is not constant and equality occurs then M is a self-shrinker for the mean curvature flow and f|M = a− b
2r

2
p

for some constants a, b, where rp is the Euclidean distance to the center of mass p of M . In particular, if
n = N − 1 and H > 0 or n = 2, N = 3 and M is embedded and has genus 0, then M is a geodesic ball.



298 Azami

For r ∈ {1, · · · , n}, let

Tr =
1

r!

∑
i,i1,...,ir
j,j1,...,jr

ε

(
i, i1, ..., ir

j, j1, ..., jr

)
⟨Bi1j1 , Bi2j2⟩ · · · ⟨Bir−1jr−1

, Birjr ⟩e∗i ⊗ e∗j

if r is even and

Tr =
1

r!

∑
i,i1,...,ir
j,j1,...,jr

ε

(
i, i1, ..., ir

j, j1, ..., jr

)
⟨Bi1j1 , Bi2j2⟩ · · · ⟨Bir−2jr−2

, Bir−1jr−1
⟩Birjr ⊗ e∗i ⊗ e∗j

if r is odd, where the Bij ’s are the coefficients of the second fundamental form B in a orthonormal frame {e1, · · · , en}
with the dual coframe {e∗1, · · · , e∗n} and ϵ is the standard signature for permutations. The r-th mean curvature is
defined as H0 = 0 and Hr = 1

(n−r)(rn)
tr(Tr). If r is even then Hr is a real function and if r is odd then Hr is a normal

vector field, in this case, we will denote it Hr. Also, the Hsiung-Minkowski formula becomes∫
∂M

(⟨X,Hr+1⟩+Hr) dµh = 0

for any even r ∈ {0, 1, · · · , n} if N > n+ 1, and∫
∂M

(⟨X, ν⟩Hr+1 +Hr) dµh = 0

for any r ∈ {0, 1, · · · , n} if N = n + 1, where ν is the normal unit vector field on ∂M chosen to define the shape
operator.
Now we obtain the following corollary from Theorem 2.2.

Corollary 2.3. Let (Mn, g, dµ = e−fdv) be a compact connected and oriented Riemannian manifold with nonempty
boundary ∂M and p ∈ (1,+∞). Assume that (Mn, g, dµ = e−fdv) isometrically immersed into the Euclidean space
RN by X. If λ1(M) is the eigenvalue of the weighted p-Steklov problem (1.1)

(1) If N > n+ 1, and r ∈ {0, · · · , n− 1} is an even integer then we have

(a) If 1 < p ≤ 2 we have

λ1(M)

∣∣∣∣∫
∂M

Hrdµh

∣∣∣∣p ≤ 2
1

p−1n
p
2N1− p

2

(∫
∂M

(
|Hr+1|

p
p−1 + |∇f |

p
p−1

)
dµh

)p−1

V olµg
(M).

(b) If p ≥ 2 we have

λ1(M)

∣∣∣∣∫
∂M

Hrdµh

∣∣∣∣p ≤ 2
1

p−1n
p
2N

p
2−1

(∫
∂M

(
|Hr+1|

p
p−1 + |∇f |

p
p−1

)
dµh

)p−1

V olµg (M).

Moreover, if f is constant, Hr does not vanish identically then equality occurs in both inequality if and only if
p = 2 and M is minimally immersed into BN ( 1

λ1(M) ) so that ∂M lies into geodesic hypersphere ∂BN ( 1
λ1(M) ).

(2) If N = n+ 1, and r ∈ {0, · · · , n− 1} is an even integer then we have

(a) If 1 < p ≤ 2 we have

λ1(M)

∣∣∣∣∫
∂M

Hrdµh

∣∣∣∣p ≤ 2
1

p−1n
p
2N1− p

2

(∫
∂M

(
|Hr+1|

p
p−1 + |∇f |

p
p−1

)
dµh

)p−1

V olµg (M).

(b) If p ≥ 2 we have

λ1(M)

∣∣∣∣∫
∂M

Hrdµh

∣∣∣∣p ≤ 2
1

p−1n
p
2N

p
2−1

(∫
∂M

(
|Hr+1|

p
p−1 + |∇f |

p
p−1

)
dµh

)p−1

V olµg
(M).

Moreover, if f is constant, Hr+1 does not vanish identically then equality occurs in both inequality if and only
if p = 2 and X(M) = BN ( 1

λ1(M) ).
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In following we investigate the first eigenvalue of weighted p-Steklov problem on Riemannian products R×M where
M is a complete Riemannian manifold.

Theorem 2.4. Let p ≥ 2 and (Mn, ḡ) be a complete Riemannian manifold. Consider (Σn, g) a closed oriented
Riemannian manifold isometrically immersed into the Riemannian product (R×M, g̃ = dt2 ⊕ ḡ) with a density e−f .
Moreover, assume that Σ is mean-convex and bounds a domain Ω in R×M . Let λ1(M) be the first eigenvalue of the
weighted p-Steklov problem on Ω, then

λ1(Ω) ≤

κ+(Σ)|H|∞
inf
Σ

H


p
2 (

V olµg
(Ω)

V olµh
(Σ)

)1− p
2

,

where κ+(Σ) = max{κ+(x)|x ∈ M} with κ+ the biggest principal curvature of Σ at the point x.

Now, we obtain Reilly upper bounds for (p, q)-Steklov problem. Similar the theorem 2.1 we have

Theorem 2.5. Let (Mn, g, dv) be a compact connected and oriented Riemannian manifold with nonempty boundary
∂M and 1 < p < q < r < ∞. Assume that (Mn, g, dv) isometrically immersed into the Euclidean space RN by X. If
σ1(M) is the eigenvalue of the (p, q)-Steklov problem (1.3) then

(1) for 1 < p < q < r ≤ 2 we have

σ1(M) ≤
(
N1− p

2 n
p
2 +N1− q

2n
q
2

)(∫
∂M

(
|H|

r
r−1
)
dvh

)r−1
V ol(M)

(V ol(∂M))r
.

(2) For 1 < p < q ≤ 2 and r > 2 we get

σ1(M) ≤ N
r
2−1

(
N1− p

2 n
p
2 +N1− q

2n
q
2

)(∫
∂M

(
|H|

r
r−1
)
dvh

)r−1
V ol(M)

(V ol(∂M))r
.

(3) For 1 < p ≤ 2 and 2 < q < r we get

σ1(M) ≤ N
r
2−1

(
N1− p

2 n
p
2 + n

q
2

)(∫
∂M

(
|H|

r
r−1
)
dvh

)r−1
V ol(M)

(V ol(∂M))r
.

(4) For 2 ≤ p < q < r we get

σ1(M) ≤ N
r
2−1

(
n

p
2 + n

q
2

)(∫
∂M

(
|H|

r
r−1
)
dvh

)r−1
V ol(M)

(V ol(∂M))r
.

In following theorem we extended the theorem 2.5 to estimates with higher order mean curvatures.

Theorem 2.6. Let (Mn, g, dv) be a compact connected and oriented Riemannian manifold with nonempty boundary
∂M and 1 < p < q < r. Assume that (Mn, g, dv) isometrically immersed into the Euclidean space RN by X and let
T be a symmetric and divergence-free (0, 2)-tensor on ∂M . If σ1(M) is the eigenvalue of the (p, q)-Steklov problem
(1.3) then

(1) for 1 < p < q < r ≤ 2 we have

σ1(M)

∣∣∣∣∫
∂M

tr(T )dvh

∣∣∣∣r ≤
(
N1− p

2 n
p
2 +N1− q

2n
q
2

)(∫
∂M

(
|HT |

r
r−1
)
dvh

)r−1

V ol(M).

(2) For 1 < p < q ≤ 2 and r > 2 we get

σ1(M)

∣∣∣∣∫
∂M

tr(T )dvh

∣∣∣∣r ≤ N
r
2−1

(
N1− p

2 n
p
2 +N1− q

2n
q
2

)(∫
∂M

(
|HT |

r
r−1
)
dvh

)r−1

V ol(M).
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(3) For 1 < p ≤ 2 and 2 < q < r we get

σ1(M)

∣∣∣∣∫
∂M

tr(T )dvh

∣∣∣∣r ≤ N
r
2−1

(
N1− p

2 n
p
2 + n

q
2

)(∫
∂M

(
|HT |

r
r−1
)
dvh

)r−1

V ol(M).

(4) For 2 ≤ p < q < r we get

σ1(M)

∣∣∣∣∫
∂M

tr(T )dvh

∣∣∣∣r ≤ N
r
2−1

(
n

p
2 + n

q
2

)(∫
∂M

(
|HT |

r
r−1
)
dvh

)r−1

V ol(M).

Also, we have

Corollary 2.7. Let (Mn, g, dv) be a compact connected and oriented Riemannian manifold with nonempty boundary
∂M and 1 < p < q < r. Assume that (Mn, g, dv) isometrically immersed into the Euclidean space RN by X. If σ1(M)
is the eigenvalue of the (p, q)-Steklov problem (1.3)

(i) If N > n+ 1, and s ∈ {0, · · · , n− 1} is an even integer then we have

(1) for 1 < p < q < r ≤ 2 we have

σ1(M)

∣∣∣∣∫
∂M

Hsdvh

∣∣∣∣r ≤
(
N1− p

2 n
p
2 +N1− q

2n
q
2

)(∫
∂M

(
|Hs+1|

r
r−1
)
dvh

)r−1

V ol(M).

(2) For 1 < p < q ≤ 2 and r > 2 we get

σ1(M)

∣∣∣∣∫
∂M

Hsdvh

∣∣∣∣r ≤ N
r
2−1

(
N1− p

2 n
p
2 +N1− q

2n
q
2

)(∫
∂M

(
|Hs+1|

r
r−1
)
dvh

)r−1

V ol(M).

(3) For 1 < p ≤ 2 and 2 < q < r we get

σ1(M)

∣∣∣∣∫
∂M

Hsdvh

∣∣∣∣r ≤ N
r
2−1

(
N1− p

2 n
p
2 + n

q
2

)(∫
∂M

(
|Hs+1|

r
r−1
)
dvh

)r−1

V ol(M).

(4) For 2 ≤ p < q < r we get

σ1(M)

∣∣∣∣∫
∂M

Hsdvh

∣∣∣∣r ≤ N
r
2−1

(
n

p
2 + n

q
2

)(∫
∂M

(
|Hs+1|

r
r−1
)
dvh

)r−1

V ol(M).

(ii) If N = n+ 1, and s ∈ {0, · · · , n− 1} is an even integer then we have

(1) for 1 < p < q < r ≤ 2 we have

σ1(M)

∣∣∣∣∫
∂M

Hsdvh

∣∣∣∣r ≤
(
N1− p

2 n
p
2 +N1− q

2n
q
2

)(∫
∂M

(
|Hs|

r
r−1
)
dvh

)r−1

V ol(M).

(2) For 1 < p < q ≤ 2 and r > 2 we get

σ1(M)

∣∣∣∣∫
∂M

Hsdvh

∣∣∣∣r ≤ N
r
2−1

(
N1− p

2 n
p
2 +N1− q

2n
q
2

)(∫
∂M

(
|Hs|

r
r−1
)
dvh

)r−1

V ol(M).

(3) For 1 < p ≤ 2 and 2 < q < r we get

σ1(M)

∣∣∣∣∫
∂M

Hsdvh

∣∣∣∣r ≤ N
r
2−1

(
N1− p

2 n
p
2 + n

q
2

)(∫
∂M

(
|Hs|

r
r−1
)
dvh

)r−1

V ol(M).

(4) For 2 ≤ p < q < r we get

σ1(M)

∣∣∣∣∫
∂M

Hsdvh

∣∣∣∣r ≤ N
r
2−1

(
n

p
2 + n

q
2

)(∫
∂M

(
|Hs|

r
r−1
)
dvh

)r−1

V ol(M).

In following we investigate the first eigenvalue of (p, q)-Steklov problem on Riemannian products R×M where M
is a complete Riemannian manifold.
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Theorem 2.8. Let 2 ≤ p < q < r and (Mn, ḡ) be a complete Riemannian manifold. Consider (Σn, g) a closed
oriented Riemannian manifold isometrically immersed into the Riemannian product (R×M, g̃ = dt2 ⊕ ḡ). Moreover,
assume that Σ is mean-convex and bounds a domain Ω in R×M . Let σ1(M) be the first eigenvalue of the weighted
p-Steklov problem on Ω, then

σ1(Ω) ≤ 2

κ+(Σ)|H|∞
inf
Σ

H

 r
2 (

V ol(Ω)

V ol(Σ)

)1− r
2

,

where κ+(Σ) = max{κ+(x)|x ∈ M} with κ+ the biggest principal curvature of Σ at the point x.

3 Proof of main results

In this section we give the proof of our main results.

Proof .[proof of theorem 2.1] For coordinates functions Xk, by replacing if needed, |Xi|p−2Xi by

|Xi|p−2Xi −
∫
∂M

|Xi|p−2Xidµh

V olµh
(∂M)

we can assume without loss of generality, ∫
∂M

|Xi|p−2Xidµh = 0

for all i ∈ {1, 2, · · · , N}. Thus, we can use the coordinates functions Xk as test functions.

The case 1 < p ≤ 2. By the definition of λ1(M) we have

λ1(M)

∫
∂M

N∑
i=1

|Xi|pdµh ≤
∫
M

N∑
i=1

|∇Xi|pdµg. (3.1)

Since p ≤ 2, we get
(∑N

i=1 |Xi|2
) 1

2 ≤
(∑N

i=1 |Xi|p
) 1

p

,

|X|p =

(
N∑
i=1

|Xi|2
) p

2

≤
N∑
i=1

|Xi|p. (3.2)

On the other hand, the concavity of y → y
p
2 yields

N∑
i=1

|∇Xi|p =

N∑
i=1

(
|∇Xi|2

) p
2 ≤ N1− p

2

(
N∑
i=1

|∇Xi|2
) p

2

= N1− p
2 n

p
2 , (3.3)

since we have
∑N

i=1 |∇Xi|2 = n (see [14, Lemma 2.1]). Hence, we obtain

λ1(M)

∫
∂M

|X|pdµh ≤ N1− p
2 n

p
2 V olµg (M). (3.4)

On the other hand, using Hölder inequality we have∫
∂M

⟨X,nH −∇f⟩dµh ≤
(∫

∂M

|X|pdµh

) 1
p
(∫

∂M

|nH −∇f |
p

p−1 dµh

) p−1
p

≤
(∫

∂M

|X|pdµh

) 1
p
(
2

1
p−1

∫
∂M

(|nH|
p

p−1 + |∇f |
p

p−1 )dµh

) p−1
p

With multiply both sides of (3.4) by
(∫

∂M

(
|nH|

p
p−1 + |∇f |

p
p−1

)
dµh

)p−1

and use the integral Hölder inequality,

we conclude that

2−
1

p−1λ1(M)

∣∣∣∣∫
∂M

⟨X,nH −∇f⟩dµh

∣∣∣∣p ≤ N1− p
2 n

p
2

(∫
∂M

(
|nH|

p
p−1 + |∇f |

p
p−1

)
dµh

)p−1

V olµg
(M). (3.5)
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Now, using the Hsiung-Minkouski formula∫
∂M

(⟨X,nH −∇f⟩+ n) dµh = 0 (3.6)

we infer

2−
1

p−1λ1(M) (nV olµh
(∂M))

p ≤ N1− p
2 n

p
2

(∫
∂M

(
|nH|

p
p−1 + |∇f |

p
p−1

)
dµh

)p−1

V olµg
(M). (3.7)

The inequality is proven. First, assume that f is constant, H does not vanish identically, and equality holds. Then
the end of the proof is similar to the proof of Roth [16] for the p-Steklov problem. Now, assume that f is not constant.
If equality occurs, then the end of the proof is similar to the proof of Roth [15].

The case p ≥ 2. It is straightforward that

N∑
i=1

|∇Xi|p =

N∑
i=1

(
|∇Xi|2

) p
2 ≤

(
N∑
i=1

|∇Xi|2
) p

2

= n
p
2 . (3.8)

On the other hand, using the fact that y → y
p
2 is convex, we obtain

N∑
i=1

|Xi|p ≥ N1− p
2

(
N∑
i=1

|Xi|2
) p

2

= N1− p
2 |X|p. (3.9)

Therefore, using the last two inequalities in the variational characterization of λ1(M), we get

λ1(M)

∫
∂M

|X|pdµh ≤ N
p
2−1n

p
2 V olµg

(M). (3.10)

The end of the proof is the same that in case 1 < p ≤ 2. □

Proof .[Proof of theorem 2.2] Similar to the proof of Theorem 2.1, just enough to use the generalized Hsiung-Minkowski
formula (2.1) instead of the classical one. □

Proof .[Proof of theorem 2.4] Similar to [16], we assume that the function t is a test function. Let v = ⟨∂t, ν⟩ = ⟨∇̃t, ν⟩.
Hence, we have ∆t = −nHv and ∫

Σ

|∇t|2dµg =

∫
Σ

nHvt dµg. (3.11)

Also, since ∇v = −S∇t we have ∫
Σ

⟨S∇t,∇t⟩dµg =

∫
Σ

nHv2 dµg. (3.12)

Then,

n inf
Σ
(H)

∫
Σ

v2dµg ≤
∫
Σ

nHv2dµg ≤
∫
Σ

⟨S∇t,∇t⟩dµg ≤ κ+(Σ)

∫
Σ

|∇t|2dµg

≤ κ+(Σ)

∫
Σ

nHvt dµg ≤ nκ+(Σ)|H|∞
∫
Σ

vt dµg (3.13)

≤ nκ+(Σ)|H|∞
(∫

Σ

|t|p dµg

) 1
p
(∫

Σ

|v|
p

p−1 dµg

) p−1
p

.

From the Hölder inequality we have

inf
Σ
(H)

(∫
Σ

|v|
p

p−1 dµg

) 2(p−1)
p

V olµg (Σ)
2−p
p ≤ inf

Σ
(H)

∫
Σ

v2dµg

≤ κ+(Σ)|H|∞
(∫

Σ

|t|p dµg

) 1
p
(∫

Σ

|v|
p

p−1 dµg

) p−1
p

,
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therefore, (∫
Σ
|v|

p
p−1 dµg

) p−1
p

(∫
Σ
|t|p dµg

) 1
p

≤ κ+(Σ)|H|∞
inf
Σ
(H)

V olµg
(Σ)

p−2
p . (3.14)

On the other hand, from the variational characterization of λ1(M), we have

λ1(Ω)

∫
Σ

|t|pdµg ≤
∫
Ω

|∇̃t|pdµg̃. (3.15)

Since |∇̃t| = 1 and ∆̃t = 0 we have∫
Ω

|∇̃t|pdµg̃ = V olµg̃
(Ω) =

(∫
Ω

|∇̃t|2dµg̃

) p
2

V olµg̃
(Ω)1−

p
2 (3.16)

and ∫
Ω

|∇̃t|2dµg̃ =

∫
Σ

⟨t∇̃t, ν⟩dµg =

∫
Σ

tvdµg. (3.17)

By Hölder inequality we get ∫
Ω

|∇̃t|2dµg̃ ≤
(∫

Σ

|t|p dµg

) 1
p
(∫

Σ

|v|
p

p−1 dµg

) p−1
p

, (3.18)

thus, we obtain

λ1(Ω) ≤

(∫
Σ
|v|

p
p−1 dµg

) p−1
2

(∫
Σ
|t|p dµg

) 1
2

V olµg (Ω)
1− p

2 . (3.19)

Therefore, substituting (3.14) in (3.19), we complete the proof of theorem. □

Proof .[Proof of theorem 2.5] For coordinates functions Xk, by replacing if needed, |Xi|r−2Xi by

|Xi|r−2Xi −
∫
∂M

|Xi|r−2Xidµh

V olµh
(∂M)

we can assume without loss of generality, ∫
∂M

|Xi|r−2Xidµh = 0

for all i ∈ {1, 2, · · · , N}. Thus, we can use the coordinates functions Xk as test functions.

(1) The case 1 < p < q < r ≤ 2. By the definition of σ1(M) we have

σ1(M)

∫
∂M

N∑
i=1

|Xi|rdvh ≤
∫
M

N∑
i=1

(
|∇Xi|p + |∇Xi|q

)
dvg. (3.20)

Since r ≤ 2, we get
(∑N

i=1 |Xi|2
) 1

2 ≤
(∑N

i=1 |Xi|r
) 1

r

, then

|X|r =

(
N∑
i=1

|Xi|2
) r

2

≤
N∑
i=1

|Xi|r. (3.21)

On the other hand, the concavity of y → y
p
2 yields

N∑
i=1

|∇Xi|p =

N∑
i=1

(
|∇Xi|2

) p
2 ≤ N1− p

2

(
N∑
i=1

|∇Xi|2
) p

2

= N1− p
2 n

p
2 . (3.22)
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Similarly,
N∑
i=1

|∇Xi|q ≤ N1− q
2n

q
2 ,

Hence, we obtain

σ1(M)

∫
∂M

|X|rdvh ≤
(
N1− p

2 n
p
2 +N1− q

2n
q
2

)
V ol(M), (3.23)

with multiply by
(∫

∂M

(
|H|

r
r−1
)
dvh
)r−1

and use the integral Hölder inequality, we conclude that

σ1(M)

∣∣∣∣∫
∂M

⟨X,H⟩dvh
∣∣∣∣r ≤

(
N1− p

2 n
p
2 +N1− q

2n
q
2

)(∫
∂M

(
|H|

r
r−1
)
dvh

)r−1

V ol(M). (3.24)

Now, using the Hsiung-Minkouski formula ∫
∂M

(⟨X,H⟩+ 1) dvh = 0 (3.25)

we infer

σ1(M) (V ol(∂M))
r ≤

(
N1− p

2 n
p
2 +N1− q

2n
q
2

)(∫
∂M

(
|H|

r
r−1
)
dvh

)r−1

V ol(M). (3.26)

(2) The case 1 < p < q ≤ 2 and r > 2.
It is straightforward that

N∑
i=1

(
|∇Xi|p + |∇Xi|q

)
≤ N1− p

2 n
p
2 +N1− q

2n
q
2 . (3.27)

On the other hand, using the fact that y → y
r
2 is convex, we obtain

N∑
i=1

|Xi|r ≥ N1− r
2

(
N∑
i=1

|Xi|2
) r

2

= N1− r
2 |X|r. (3.28)

Therefore, using the last two inequalities in the variational characterization of σ1(M), we get

σ1(M)

∫
∂M

|X|rdvh ≤ N
r
2−1

(
N1− p

2 n
p
2 +N1− q

2n
q
2

)
V ol(M). (3.29)

(3) The case 1 < p ≤ 2 and 2 < q < r.
It is straightforward that

N∑
i=1

|∇Xi|p ≤ N1− p
2 n

p
2 , (3.30)

and
N∑
i=1

|∇Xi|q =

N∑
i=1

(
|∇Xi|2

) q
2 ≤

(
N∑
i=1

|∇Xi|2
) q

2

= n
q
2 . (3.31)

On the other hand, using the fact that y → y
r
2 is convex, we obtain

N∑
i=1

|Xi|r ≥ N1− r
2 |X|r. (3.32)

Therefore, using the last two inequalities in the variational characterization of σ1(M), we get

σ1(M)

∫
∂M

|X|rdvh ≤ N
r
2−1

(
N1− p

2 n
p
2 + n

q
2

)
V ol(M). (3.33)
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(4) The case 2 < p < q < r.
It is straightforward that

N∑
i=1

(
(
|∇Xi|p + |∇Xi|q

)
≤ n

p
2 + n

q
2 . (3.34)

On the other hand, using the fact that y → y
r
2 is convex, we obtain

N∑
i=1

|Xi|r ≥ N1− r
2 |X|r. (3.35)

Therefore, using the last two inequalities in the variational characterization of σ1(M), we get

σ1(M)

∫
∂M

|X|rdvh ≤ N
r
2−1(n

p
2 + n

q
2 )V ol(M). (3.36)

□

Proof .[Proof of theorem 2.5] Similar to the proof of Theorem 2.5, just enough to use the generalized Hsiung-Minkowski
formula (2.1) instead of the classical one. □

Proof .[Proof of the Theorem 2.8] Similar to [16], we assume that the function t is a test function. Let v = ⟨∂t, ν⟩ =
⟨∇̃t, ν⟩. Hence, we have ∆t = −nHv and ∫

Σ

|∇t|2dvg =

∫
Σ

nHvt dvg. (3.37)

Also, since ∇v = −S∇t we have ∫
Σ

⟨S∇t,∇t⟩dvg =

∫
Σ

nHv2 dvg. (3.38)

Then,

n inf
Σ
(H)

∫
Σ

v2dvg ≤
∫
Σ

nHv2dµg ≤
∫
Σ

⟨S∇t,∇t⟩dvg ≤ κ+(Σ)

∫
Σ

|∇t|2dvg

≤ κ+(Σ)

∫
Σ

nHvt dµg ≤ nκ+(Σ)|H|∞
∫
Σ

vt dvg (3.39)

≤ nκ+(Σ)|H|∞
(∫

Σ

|t|r dvg
) 1

r
(∫

Σ

|v|
r

r−1 dvg

) r−1
r

.

From the Hölder inequality we have

inf
Σ
(H)

(∫
Σ

|v|
r

r−1 dµg

) 2(r−1)
r

V olvg (Σ)
2−r
r

≤ inf
Σ
(H)

∫
Σ

v2dvg

≤ κ+(Σ)|H|∞
(∫

Σ

|t|r dvg
) 1

r
(∫

Σ

|v|
r

r−1 dvg

) r−1
r

,

therefore, (∫
Σ
|v|

r
r−1 dvg

) r−1
r(∫

Σ
|t|r dvg

) 1
r

≤ κ+(Σ)|H|∞
inf
Σ
(H)

V ol(Σ)
r−2
r . (3.40)

On the other hand, from the variational characterization of σ1(M), we have

σ1(Ω)

∫
Σ

|t|rdvg ≤
∫
Ω

(
|∇̃t|p + |∇̃t|q

)
dvg̃. (3.41)
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Since |∇̃t| = 1 and ∆̃t = 0, we have∫
Ω

|∇̃t|pdvg̃ = V ol(Ω) =

(∫
Ω

|∇̃t|2dvg̃
) r

2

V ol(Ω)1−
r
2 (3.42)

and ∫
Ω

|∇̃t|2dvg̃ =

∫
Σ

⟨t∇̃t, ν⟩dvg =

∫
Σ

tvdvg. (3.43)

By Hölder inequality we get ∫
Ω

|∇̃t|2dvg̃ ≤
(∫

Σ

|t|r dvg
) 1

r
(∫

Σ

|v|
r

r−1 dvg

) r−1
r

, (3.44)

thus, we obtain

σ1(Ω) ≤ 2

(∫
Σ
|v|

r
r−1 dvg

) r−1
2(∫

Σ
|t|r dvg

) 1
2

V ol(Ω)1−
r
2 . (3.45)

Therefore, substituting (3.40) in (3.45), we complete the proof of theorem. □
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