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Abstract

This paper deals with the stability results for the solution of a fractional g—integro-differential problem with integral
conditions. Using Krasnoselskii’s, and Banach’s fixed point theorems, we prove the existence and uniqueness of results.
Based on the results obtained, conditions are provided that ensure the generalized Ulam stability of the original system
on a time scale. The results are illustrated by the examples under the numerical technique.
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1 Introduction and formulation of the problem

It is interesting to study solution to fractional g-integro-differential problem with integral conditions, which will
allow a generalized stability [9, 1T}, Bl 12]. The authors in [I], considered the problem for the system and we
generalized the system in the g¢-fractional differential equation which it is not explicitly presented, and therefore it
makes sense to consider for t € I := [0.1], o, € I := (0, 1), the problem for the system

DTyl = ha(t () + L7 [ha] (6, (b)) + /0 Ot & y(€)) dg, (1.1)

under boundary condition

5

y(0) = 77/0 y(§)de,  vrrel,

where 7 is a real constant, C]Dg+” is the Caputo fractional g-derivative of order o + v, I7 denotes the left sided

Riemann-Liouville fractional g-integral of order o and h; : I x $ — $ (i = 1,2), O : T x £ — $H, are an appropriate
functions satisfying some conditions which will be stated later. $) here is a Banach space equipped with the norm |.|.

Here we focused our study on the question of existence and uniqueness in Sec. [3] And Sec. [4] is devoted to show
a generalized stability. Note that this representation also allows us to generalize the results obtained recently in the
literature. The paper is ended by two examples illustrating our results in Sec. [5] Finally, we will give some suggestions
to the reader in the conclusion section [6]
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2 Notations and notions preliminaries

We recall some essential preliminaries that are used for the results of the subsequent sections. Let tg € R and
g € . The time scale Ty, is defined by

o = {0FU{t: t=1ty¢", Vn e N}.

If there is no confusion concerning to we shall denote Ty, by T. Let s € R. Define [s]; = (1 —¢°)/(1 —¢q) [8]. The
g-factorial function (y — z)q is defined by

-2 =Jlw-2d"), neN, (2.1)
and (y — ),g ) = 1, where y,z € Rand Ny := {0} UN (]2]). Also, we have

(y—2) ) =y° H y_;;ik, o ER,s 0. (2.2)

In the paper [4], the authors proved

(o+v) _ (

(y = 2)qg &

y_z)q W)

y—q72),

and
(sy — 52) = 87 (y — 2){°).

If z = 0, then it is clear that y(°) = y?. The ¢g-Gamma function is given by [§]
FQ(y) = (1 - Q)l_y(l - q)((]y—l), (y € R\{ =2, -1 0})

In fact, by using (2.2)), we have

o0

tw = -0 1 1‘q5+k 5 (2.3)

Algorithm [1| shows the MATLAB lines for calculation of I'y(y) which we tend n to infinity in it [7) 13].

Algorithm 1: MATLAB lines for calculation I'y(z).
function p = qGamma(q,x,n)

s=1;
for k=0:n
s=sx(1-q" (k+1))/(1—q" (x+k—1));
end;
p = sx(l—q)"(1-x);
end

Note that, T'y(y + 1) = [y]T4(y) [ Lemma 1]. For any positive numbers o and v, the ¢-beta function define by

! 14
Blow) = [ (= e age = T, (2.4

For a function w : T — R, the g-derivative of w, is

Dupl) = () v = L= (2.5)

for all t € T\ {0}, and ([2])
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Also, the higher order g-derivative of the function y is defined by
Dylyl(t) =Dy [Dy~'[y]] (1),  Vn2>1,
where DJ[y](t) = y(t) [2]. In fact

—q" (k)

Z (,f) q“y(tq"), (2:6)

for t € T\ {0} [3].

Remark 2.1. By using Eq. (2.1)), we can change Eq. (2.6) as follows:

n k—1 _n

n 1- q
D7 y](t) = Y ZH — z+1qy’cq) (2.7)
q k=0 i=0
The g-integral of the function y is defined by
t e’}
LBl = [ O, = -0 3 dua?) (28)
k=0

for 0 < t < b, provided the series is absolutely converges [2]. By using the Algorithm [2| we can obtain the numerical
results of I,[y](t) when n — cc.

) Algorithm 2: MATLAB lines for calculation Z4[w](t).
function p = Iq(q,x,n,fun)

s=1;
for k=0:n
s=s+q " k*eval (subs (fun ,xxq k) );
end ;
p=x#*(1—q)x*s
end

If s in [0, b], then
b oo
/ Y(€) dy€ = Tl (6) — L lyl(s) = (1 — @) 3 * [by(ba®) — sy(sq™)]
s k=0

whenever the series exists. The operator I} is given by I9[y](t) = y(t) and

L yl(6) =T, [T~ 5] (v),
for n > 1 and y € C([0,b]) [2]. It has been proved that

D Ioly]] () =y(®), L [Dyly]] () = y(t) = (0),

whenever the function y is continuous at t = 0 [2]. The fractional Riemann-Liouville type g-integral of the function y
is defined by

100 = [@-0 VERas 1o - u, (29)

for t € [0,1] and o > 0 [3] [6].

Remark 2.2. By using Eqgs. (2.2)), (2.3) and (2.8), we obtain
t
(c—1) y(f) o= 1
A(t g)q 1—\( ) qg H fq"“ 1 f) qf

U+z 1 +i

(o]
:ta(l_Q)UH — gt Z H — o+k+z — v ")
=0 i=
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Therefore,

n _ o+i—1 _ okt
LTyl =t7(1 —¢ "nlgrolOZq 1T (gl q?H) (1)(;+g+i2)y(qu)7 (2.10)
k=0 =0

The Caputo fractional g-derivative of the function y is defined by

Dyl =1~ [pl] 0 = [ - 1>]D([ .6 (21)

for t € {0,1] and ¢ > 0 [6, [10]. It has been proved that
L (17 [y]] (8) = L7 [y](1),
and C]Dg []Ig [y]] () = y(t), where o,v > 0 [6]. Also, [6]

o n _ mn [fo = tg+kinﬂ)§[y}(0)
17 (D7 [y]] (t) = Dy [15[y]] (1) — kZ:O e O

Remark 2.3. From Eq.(2.3), Remark 2.1 and Eq. (2.10) in Remark we obtain

/Ot( £)lrl=o-1) Dy [y (€) d,¢

T, (o] - o)
_ [t et s t—&q' 1 S L=g"D)7 )
‘/o rqqa]—a)[gtsqwﬂﬂ] ) (tw(lq)w ;[H I—q™) ]q vl )> Gt

1—q

e S (T e Mt ] (5 [T e oo ),

m=0 *- =0

Thus, we have

it =g e (LA (8 [ S 2

k=0 m=0 * =0
(2.12)

Now, we introduce some basic definitions, lemmas and theorems which are used in the subsequent sections.

Lemma 2.4. [9] Let y € AC™[t;, to]. Then, one has

DG = y(t) + D et — )",
€0,Cly---sCn—1 ER forn—1<o<n, neN.
Lemma 2.5. [9] Let n —1 <o <n, n € Nand y € C[t1, t;]. Then for all t € [t1, ts], we have “D [I7 [y]](t) = y(t).

Lemma 2.6. [9] Let o € (0,1). Then for each y € AC[0,1], I°[D?[y]](t) = y(t) for a.e. t € [0, 1], where

D0 =5 [ -9 1 e

Lemma 2.7. (Banach fixed point theorem, [5]) Let B be a non-empty complete metric space and 7 : B — B is
contraction mapping. Then, there exists a unique point y € B such that T (y) = y.

Lemma 2.8. ([5], Krasnoselskii fixed point theorem) Let € be bounded, closed and convex subset in a Banach space
B. If T1, T2 : € — € are two applications satisfying the following conditions: (A1) T1(y)+Tz2(z) € € for every y, z € &;
(A2) Ty is a contraction; (A3) Tz is compact and continuous. Then there exists v* € B such that 71 (v*) + T2 (v*) = v*.
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3 Existence results

Before presenting our main results, we need the following auxiliary lemma.

Lemma 3.1. Let 0 + v € [ and n7* # 1. Assume that hy, he and © are three continuous functions. If y € C(I, §),
then y is solution of (|L.1)) iff y satisfies the IE

_ [t ‘ fle-ay Y
y(t) = / [m(&,y(@w / O(€, 5,y(s)) ds + / h2<s,y<s>>dqs} A

[y(o+v) Ly(o)
* s o+v s s—r (0—-1)
T 7777”* /0 F(q(cr+u)+ 0 [hl(s y(s / O(s,ry(r ))dr—i—/o (Fq();)hg(r,y(r))dqr} dgs.  (3.1)

Proof . Let y € C(I,$) be a solution of (I.1). Firstly, we show that y is solution of integral equation (3.1I). By
Lemma [2-4] we obtain

17 [ODH [)(8)] = y(t) — y(0). (3.2)

From equation (|1.1)) we have

I [CDg ()] =19t {hl(t,y(f)) + HIZ[hQ](f,y(f))/O Q(t,é,y(f))dﬁ}

_ /(t;i)::)){hty / O(E.5,y(s)) ds + / “;qfff;_lhﬂs,y(s))dqs} deé (33)

By substituting [3-3] in [3.2] with nonlocal condition in problem we get

t (¢ eyotr—1 ¢ € (¢ _ g)o—1
o= [T [enen+ [ otesanast [ E s a0 o

From integral boundary condition of our problem with using Fubini’s theorem and after some computations, we
get

/ {/0g F; Ujr+: 1 (hl(s y / 9 S T, y( ))dr+/os Whg(r,y(r))d r> } §+777' y(O)

/ Uog ;Zj::lh( (8))dqs}dq£+n/0T*[/(J£W/ery())drds} dgé

{/Oj T, aj::) 1 /OS = I:qag)lhg(r,y(r)) dgr dqs} dg& +n7*y(0)

/ (S emeaonasen [ ([ 5 0 ag) ([ ownmnar) as

/o </ » (o j::) 1 45) (/OS %hg(r, y(r)) dqr) dgs +n77y(0),
that is

y(0) = I —77777'* /OT* (;Z(_U?Z:)V {hl(s y(s / O(s,r,y(r))dr + /OS Whg(r,y(r))dqr} dgs. (3.5)

Finally, by substituting (3.5) in (3.4), we find (3.1). Conversely, from Lemma and by applying the operator
“Dg* on both sides of (3.1]), we find

*%

DI [y)() = CDIH [ﬂ;*“ [m(n v+ [ O n(©) ds + Il y“”” 1 CDgy(0)

— hy(ty(8) + I5ha(t, (1) /@t&y . (3.6)
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This means that y satisfies the equation in problem (1.1)). Furthermore, by substituting t by 0 in integral equa-
tion (3.1)), we have clearly that the integral boundary condition in (|1.1)) holds. Therefore, y is solution of problem (|1.1)),
which completes the proof. O

In order to prove the existence and uniqueness of solution for the problem (1.1 in C(I, ), we use two fixed point
theorems. Firstly, we transform the system (1.1]) into fixed point problem as y = iy, where il : (I,$) — (I, ) is an
operator defined by following

t _ o+v 3 13 —g o—1
0 = [ @)+ [ eesmnas+ [Tty as| g

0 [ : o=y
[ ey + [ etsramars [T i ] 4 @)

3.1 Existence result by Krasnoselskii’s fixed point

Theorem 3.2. Consider continuous functions hq,he : I x  — $ and O : ﬂz X $) — $ such that satisfying: (H;) The
inequalities

A (ty(t) — hi(t 2O < pylly(t) — 2D,  7=1,2,
and

||@(t757y(5)) - @(’t,S,Z(S))H < M*Hy(5) - 2(5)“’

where p*, ;> 0, (j = 1,2) with g = max{u1, p2, u*}; (Hz2) There exist three functions o*, p; € L= (I,RT), (j = 1,2),
such that

[h; (G yO) < oDy, =12,
and
10(ts,y(s))]| < 0" (D)lly(s)ll,
viel, y,z € $ and
(t,5) € G := {(t,ﬁ) 0<s<t< 1}.

If A <1 and pu\* <1, then the problem ((1.1]) has at least one solution on I, where

5= loillz= +fo*llz= | llo2llL=By(o + 1,0 +v) llloa L7 4 fnlllo* || oo 7= 7+
Iy(oc+v+1) Ly(c+1DTy(0 +v) |1 —nr*|Ty(oc +v+2)
, Wlleallo=r"*" By (o 4 1,0 v 1) .
1 —vr*Ty(oc + D)y(c + v +1) ’ ’
and
N = i 2reo + T2 B (0 + 1,0+ v+ 1) (3.9)
1 —nr*| | Tyloc +v+2) Fy(oc+ 1o +v+1) '
Proof . For any function y € C(I, $)), we define the norm
lyll. = max {e Iyl : teT},
and consider the closed ball -
Bi={yeC@9) : Iyl <}
Next, let us define the operators 4, s on B, as follows
g = [ B0 ‘o asy [FEZ, dys| d 3.10
12/()*/0 W 1(f»y(§))+/0 (€, 8,y(s)) S+/O W 2(s,y(s)) dgs | dg&. (3.10)
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and

hoy(t) = l—nr]r /T FE(TU_—&-SI)/Z:—yl) [hl(s y(s / O(s,r,y(r))dr + /05 Whg(r,y(r))dqr} dgs.  (3.11)

For y,z € By, t € T and by the assumption (H,), we find

o o+v—1
Hmy(t)+u2z(t)llﬁfo (pq(i)+)

(7% = s)gt
) A e [ S B TSRS N

+/0 (Srqr)hz(r 2(r ))qur] dgs

(-5t
T',(o

q

[wz Y]l + / 16(E. 5. y(s))] ds + / ||h2<s,y<s>>||dqs] Ayt

()
Lt gttt £, C(E-s)7 ",
</ W[m(&)ly(ﬁ)H | e+ [ o) ¢ <S>lly<8>|dq8} dat

7_ 78 o+u s
‘1_m |/ Rt ) [@1<s>||z<s>|+/0 Ol EGIRS

+/0 %(i) 02(r)]2(r >||dqr} dys

t (t_g)a%»ufl 13 (E _ 8)0‘71
< AL — s |lyllee® + [|0* | Loo |y« (€5 = 1) + o */ =1 _esd,s|d
_/O T (U+ ) {|Ql/¢ [yl o™ | o= |yl «( ) + o2l ze=lyll L Tu(0) ¢8| dg€
b [ I Do el + he e el
+92L°<>Z*/ 7_ 1 e’“dr]ds.
A ;
Therefore,
t _ odr—1 £ _ _ 00 1 s
(=97 (e —1) / (€
| oz ||« —_— o " o 0o LA S
it -+ stel. < [ F(Hy) leom S + "ol S + oall . s dge
+ e (e~ 1)
. )[llglllmllzl*etﬂl@ el A5
_7«0 1 e’
Slesalell [ U S ] dys
lo1llz= + |lo* ||Loo 02|z /1 1
<£ + 1— o+v+ od
= [ T, orr+l) T nn,ern ), 1Y s
bl ot 7ot llleals~ [ s a
1 —n7*|Tg(oc +v+1) |1 —n7*[Cy(oo + D)Tg(0 +v+1) Jo a
g[”gllleJrll@*lle lo2|lv(o+ 1,0 +v) || (ll@lllLocT"‘”"HJrll@*llLooT*U“+1
Fy(c+v+1) Fy(c+1DTy(r+1) |1 —nr*| Fy(c+v+2)
x20+v+1
oo 1 1
_|_||Q2||L T vie+l,0+v+1) —IN< 4. (3.12)
Fy(oc+1Dy(c+v+1)

This implies that ($41y + $2) € By. Here we used the computations

1
/O (1— E)7HE dyt = Bylo + 1,0+ v),

*

-
/ (75— 8)g V57 dy€ = T2 e+ 1,0+ v+ 1),
0
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and the estimations:

ot
<L o<1 <L

In this step, we show that $l; is a contraction mapping. Let v,z € §, t € I. We have

*7 )UJrV S
e2y(8) — (0] < 1 / gy [ 9) =~ (sl + [ 1€Gs.75(0) = O,

s( )o’ 1
+ / ﬁ||hQ<v~ V() = halr o) | dys

/ T‘Sm[ Iy el + [ wtly = 2llerd
— 2| € — z||e"dr
|1—777| T, (o+v+1) W , K
(s — 1)1
[ oGy — 2l dr] dgs
o T0) 0

7. _ <7+1/ ‘ -
< [ Iy — e = ol e

[ %uny e dqr} dys
0 Fq(g)

2+

Thus,
T _ S <7+u es (es _ 1) s (S _ T)(T—l er
oy — el < s 7 I gy o,y C D [ .S ]
|77|M 27_*a+1/+1 N *2U+V+1l/(0'+170'+y+1) H
T |1 —nr*| [ Ty(c +v+2)

Lo+ 1Dy(c+v+1)

Then since pA* < 1, 4y is a contraction mapping. The continuity of the functions hq, ho and © implies that $l; is
continuous and ,B, C By, for each y € By, i.e., 4i; is uniformly bounded on B, as

_ g)o+vr—1 13 —g)e-1
sl < [ I e+ [ 1o sanas+ [ s atnlias]

which implies that

Ce- gt (et
< AL S— o
sl < [ e [nan 915 + €l Tl

—1) / (E—s)7 te
ol [ S ae
< el 216 “@““”("“’U”)} <ot

T,(c+v+1) Ly(o+ 1)y (r+1)

(3.13)
Finally, we will show that (;B;) is equi-continuous. For this end, we put

hyj= sup by, =12
(t,y(t))€lxB,

o= sw /||@ Ey(©))] de.
(t,5,y(5)) €GBy,
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Let for any y € By and for each t;,t; € I with ¢; < t5, we have

L R S e

1 " o+v—1 _ _ s\ot+v—1 ¢
o [ [0 -0 i+ [ 1o sl

13 13 — s o—1
st s@nl+ [ 1t syl + [ s uoas]ag

+

(S
v |h2<s,y<s>>|ds] d,é

Fq(a)
bt Ty 5]
S/u T(o +7) [f“@*/o r,() ds}dq&

1 “ o4v—1 otv—1 T oY 552(6_8)0_1
ey B CRt e T BB e v

ta (tQ _5)0'4*1171 . o E2 1 b odbu— o4v—
S/t [h1+9+] dqurFq()/O {(tl — &) = (- 97" 1]

. Tylo+v) I,(c+1) o+v
x| +04+—r—|df+—— |+ 6O
[1 Fq(""'l)] * Fq(”"‘”"'l)[ '

ha
e 2 t©H—t o+v tcr+v_tcr+v .
) (2

The RHS of the last inequality is independent of y and tends to zero when [ty — t;| — 0, this means that

[thy(te) — Lhy,

which implies that ;B is equi-continuous, then l; is relatively compact on By. Hence by Arzeld-Ascoli theorem, iy
is compact on By. Now, all hypothesis of Theorem 3.2 hold, therefore the operator £l; + il has a fixed point on By.
So the problem (|1.1)) has at least one solution on I. This proves the theorem. O

3.2 Existence and uniqueness result

Theorem 3.3. Assume that (H;) holds. If X < 1, then the BVP (1.1]) has a unique solution on I.

Proof . Define m = max{mi, ma, m*}, where m; and m* are positive numbers such that

mj = sup ||hj(t70)Ha (j=1,2), m* = sup [|O(t,s,0)].
tel (t,5)€G

We fix

and we consider

Ne={yeC@L9) : gl <tf.

Then, in view of the assumption (H;), we have

[hq(t y (D) = 1h1(ty(4) — ha(t,0) + hy(t,0)|]
< hg(t, y(t) — hg(t, 0)[| + [|ha(t, 0)]
< pallyll« + ma,

[ha(t y(O) < pallyll« + m2,

and
10t s, y(s))[| < p*[yll« +m™.
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In the first step, we show that ${N, C N,. For each t € I and for any y € Ny,

t _ o+v—1 3 I3 —g o—1
o < | (}(’jﬁ)[nhl(s,y(@m [ 1o votias+ [T EE s uolas| ag

T _ S U+u
|1 —777*| / 0‘+V+ 1) {hl(s?z(s))”

(s =)y
# [ 106 rnatenlar s [FE T gz ar]
< (ul +m)X\ < L.

Hence, UN, C Ny. Now, in the second step, we shall show that £ : Ny — Ny is a contraction. From the assumption
(H1) we have for any y,z € Ny and for each t € I

_ o+rv—1
o ~ 0] < [ (Fq&)[ml(a ()~ h& =)+ [ 1606 3(6) ~ (€ 2] s

(€~ 5)g-
[ thxs V() — hals 25 s g

(% = 5)7t s
‘1 _ ,’7,}_*| / |:|h1(5’y(3)) - h1(87z(s))|| +A ||9(s,7‘,y(7‘)) - @<57T7Z(T))“ dr

—gq 0+1/+1)

S(s—r)g~
e e e R R T P

< 1Ay = 2. (3.14)

Since pA < 1, it follows that &l is a contraction. All assumptions of Lemma 2.2 are satisfied, then there exists
y € C(L, H) such that Uy = y, which is the unique solution of the problem (1.1) in C(I, $). O

4 Generalized Ulam stabilitiestle
The aim is to discuss the Ulam stability for problem (|1.1)), by using the integration

t _ ¢\o+v—1 £ _
0= [ M[mmf, O+ [ et s.z(s)ds + / D0 s, 2(s >>||dqs} dyt

RCEy L)
" T _ g)otv s s (g—p)o—L
[ sy + [etraimars [T b s ] dge

Here 2z € C(ﬂ,j’)) possess a fractional derivative of order ¢ + v, where 0 < 0 + v < 1 and h; : Ix$H — $Hand

0:T xH— $, are continuous functions. Then we define the nonlinear continuous operator 9 : C(I, $) — C(I, H),
as follows

Pa(t) = ODIH () — hu(t,0(6)) — ITho(t / O(t, £, 2(¢)) de.
For each € > 0 and for each solution z of problem (1.1}, such that

B2« <e, (4.1)

the problem ([I.1)), is said to be Ulam—Hyers stable if we can find a solution y € C(I, H4l) of problem (1.1)) and v € R=?,
satisfying the inequality ||y — z||. < ve*, is a positive real number depending on €. Consider function p in C(R*,R*)
such that for each solution z of problem (1.1]), we can find a solution u € C(I, £)) of the problem ([1.1]) such that

ly(t) —z()|l« < pe), tel

Then the problem (|1.1)), is said to be generalized Ulam—Hyers stable. For each ¢ > 0 and for each solution z of
problem (1.1)), the problem (1.1)) is called Ulam-Hyers-Rassias stable with respect to ¢ € C'(I, R™) if

B2 (4)]« < eolt), tel, (4.2)
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and there exist a real number v > 0 and a solution z € C(I, $) of problem (1.1]) such that

ly(t) = 2(O]] < yeso(t), Vel

where €, is a positive real number depending on e.

Theorem 4.1. Under assumption (H;) in Theorem 3.1, with uA < 1. The problem (1.1) is both Ulam-Hyers and
generalized Ulam—Hyers stable.

Proof . Let y € C(I,§) be a solution of problem , satisfying in the sense of Theorem 3.2. Let z be any
solution satisfying . Lemma 2.4 implies the equivalence between the operators P and T — J4 (where T, is the
identity operator) for every solution z € C(I, $)) of problem satisfying uXA < 1. Therefore, we deduce by the
fixed-point property of the operator 7 that

12(6) =yl = 2(8) = Tz(t) + T=() —y(V)]l«
= [2(t) = Tz(t) + Tz(t) = Ty(®)]-
<|IT2(0) = Tyl + [|T2(t) — ()]«
< pAlly — 2l + €,
because pA < 1 and € > 0, we find
lu vl < 7=
I

€

Y and v = 1, we obtain the Ulam-Hyers stability condition. In addition, the generalized Ulam-Hyers

stability follows by taking p(e) = - O

Fixing e, =

Theorem 4.2. Assume that (H;) holds with < A — 1, and there exists a function ¢ € C(I,RT) satisfying the
condition Then the problem (1.1 is Ulam-Hyers-Rassias stable with respect to o.

Proof . We have from the proof of Theorem ly(t) — 2(t)|« < exo(t), Vt € I, where €, = and so the proof

is cimpleted. O

_€
1—pX?

5 Illustrative of our outcome

First we present Example for illustrative our main result.

Example 5.1. Consider the following fractional integro-differential problem

68 — 5 — 1 t —
D (1) = (15 225t)y(f) +]an[(5 f)j;n(y(f))} +/0 y(ﬁ)expéo t+9) ge. (5.1)
with boundary condition o
w0 =5 [ w9 wveer

7 11>
take for y,z € § =R™ and t € [0, 1] the following continuous functions:

(15 — 2)y(t)
25

Clearly 0 +v =8 6=35 7 =0.6 and n = —%. To illustrate our results in Theorem and Theorem we

(5 —Ysin(y(t))

it y(t) = L

ha(ty(t) =

and
y(s) exp(—(t+5))

Ot,5,y(s)) = 50 .

Now, for y, z € §, we have

[P (4 y (1) = P (L 2(1)] < g ly(6) = 2O,

[ha(t, y(t)) — ha(t, (1) < % ly(t) = 2O,
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in Example

Table 1: Numerical results of A and A* for ¢ = %, %7

©|oo

n 7= =3 q=3
A A* A A* A A*

1 0.93177 1.34571 0.71630  0.99360 0.11402 0.07701
2 0.94654 1.39205 0.73885 1.06376 0.11895  0.09638
3 0.95212 1.40943 0.75025 1.09885 0.12377 0.11354
4 0.95422 1.41595 0.75598 1.11640 0.12828  0.12878
5 0.95500 1.41840 0.75885 1.12518 0.13242  0.14232
6 0.95530 1.41931 0.76029 1.12957 0.13618  0.15436
7 0.95541 1.41966 0.76101 1.13176 0.13957  0.16506
8 0.95545 1.41978 0.76137 1.13286 0.14262  0.17458
9 0.95546 1.41983 0.76155 1.13341 0.14536  0.18304
10 0.95547 1.41985 0.76164 1.13368 0.14781  0.19057
11 0.95547 1.41986 0.76168 1.13382 0.15001 0.19727
12 0.95547 1.41986 0.76170 1.13389 0.15197  0.20322
13 0.95547 1.41986 0.76172 1.13392 0.15372  0.20852
14 0.95547 1.41986 0.76172 1.13394 0.15528 0.21323
15 0.95547 1.41986 0.76172 1.13395 0.15667 0.21741
16 0.95547 1.41986 0.76173 1.13395 0.15791 0.22114
17 0.95547 1.41986 0.76173 1.13396 0.15901  0.22445
18 0.95547 1.41986 0.76173 1.13396 0.16000 0.22739
76 0.95547 1.41986 0.76173 1.13396 0.16792  0.25095
77 0.95547 1.41986 0.76173 1.13396 0.16792  0.25096
78 0.95547 1.41986 0.76173 1.13396 0.16793  0.25096
79 0.95547 1.41986 0.76173 1.13396 0.16793  0.25096
80 0.95547 1.41986 0.76173 1.13396 0.16793  0.25096

and
y(s)exp(—(t+s y(s)exp(—(t+s
16(65.5(6) - ©(t,5,5(a))] = AL weerllr )|
1
< _
< g ly(e) — =61l
for each t,s € T and (t,s) € G. Hence, pu; = ;—g, Lo = %, wr = % and so

a 17
p= maX{ul,uzau } = 5

Also, we obtain

(15 — 2t 15 —
[ (t, y ()] = ||y(f)H,
25
(5— 2t) sin(y(t)) 2t
[h2(t, y(O)[| = < ly (O,
43
y(s)exp(—(t+s)) exp( (t+9))
<
605, ys)) < - 2Dyl
for each t,s € I. Hence,
15 — 2t 5—2t . exp(—t)
Ql(t):Ty Q2(0ZT7 0 (t):T’
forall t €I, y,z € $ and (t,5) € G. By the above, we find that
o bed BB (RrLA D) | |SMIxE 0t |k cophtin
Do(r+2+1)  To(f+1)Tg (5 +3 |1—0-6(—7)!F(%+ +2)
3
+’ Blx 2 %0672 1B, (& +1, T +2+1) (5.2)
|1_1i 06|F (11+1)Fq(%+%+1) ’
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and
. L 2x0.611H7 L 0.6, (& +1, 2 + 2 +1)

AT = —2 + (5.3)
[1-06(=%)] |Tq(F+3E+2) To(f+1) Ty (5 +3+1)

With consider ¢ = %, %, %, we can see the results of A and A\* in Table |1l These results are plotted in Fig.[l} Then, we

1 016
|
09r 1 0141
08 f’ 02
07y 1 —e— =318
—e—q=38 oLr —k— L2
06 —H L2 =819
=< a=89 < o8t
05f
006
04t
03 004t
02k ] 002
0 20 4 60 80 100 120 0 2 4 60 80 100 120
n, q n q
() »  Eq.(3) (b) A
15 . . . . . 025
i i
02t
———————
4 ’
—8—q=3/8 015
e . —— =38
x a=8/9 3 —k— =12
4819
o1t
05f
005
0 ! ! ! ! ! 0 ! ! ! ! !
0 20 " 60 80 100 120 0 2 4 60 80 100 120
n g n. q
* *
(© 2, Eq.ED) (@) A
Figure 1: Graphical representation of A\, A\* and A, pA* for ¢ = 2,1, 8 in Example
get

A; =0.95547 < 1, 0.76172 <1, 0.16793 <1,
A =1.41986, 1.13395, 0.25096,
pAs = 09655 <1, 0.7711 <1, 0.1707 < 1,

for ¢; = %, %, g respectively. All assumptions of Theorem are satisfied. Hence, there exists at least one solution

for the problem (5.1)) on I. By take the same functions, we result the assumption

0.6497, qj:%,
pX; =14 0.5180, 4 =g <1,
0.1142, ¢; =3,

then the system (.1)) is Ulam-Hyers stable, then it is generalized Ulam-Hyers stable. It is Ulam-Hyers-Rassias stable
if there exists a continuous and positive function p; € C(I, R™) such that

ejo(t)

() = 2(Oll < €,0(t) = 1= o’
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which it satisfies in assumption of the Theorem [£.2]

In the next example, we review and check Theorem [3.3] numerically.

Samei, Fathipour

Example 5.2. Consider the following fractional integro-differential problem

(16 — v/t) tan™
75

s ! 4 sin™
D [y)(1) = W) | 2 {2{ .

with boundary condition
5

20

Clearly o+v = 45, %,

and t € I the following continuous functions:

g =

(y(f))} +/‘ y(€) exp
0

(—(3t+¢€))

= (5.4)

dg,

0.95
/ y(€)de,  tel

7" =0.95and n = % To illustrate our results in Theorem we take for y,z € H = R™T

() = LTG0 ) - 2o (0O),
and
O(t,5,y(s)) = y<5)exp(1_0(3t+5))'
Now, for y,z € £, we have
an~— — an—l 2
1 (6, 5(8)) — ha(t, 2( H VO tan~!(y(Y) _ (16 ﬂ);g) (2()) H
< o - =001,
in~! in~'(z
ha(t y(8) — ha(t, 2(8)] = H2"S 21(y(t)) 2t 43( (t))H
< 2w — =01
and
16(t,5,5(s)) — O(t, s, 2(s))|| = Hy(ﬁ) eXP(;()(3f+5)) _y(s) eXP(;()(StJrs)) H
< < lly(e) — =(s)1]
for each t,s € T and (t,s) € G. Hence, pu; = %, [y = 22717 = % and so
H = max {Mlaﬂz,u*} = ;—;
Also, we obtain
I R BT
ot () = | 2 H ‘ ’Hy 0
(s gl < [ £ )eXp(m (3t+9)) H oxp(— §?6t+s H”
for each t,s € I. Hence,
n0="2 0 =2
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Table 2: Numerical results of X\ and X for ¢ = %, %7 % in Example

9

n 9= % 9=3 9= 11
A U A uA A 72
1 0.81214  0.55225 0.54150  0.36822 0.15811  0.10752
2 0.81764  0.55600 0.55700  0.37876 0.16610  0.11295
3 0.81923  0.55708 0.56491  0.38414 0.17332  0.11785
4 0.81969  0.55739 0.56890  0.38685 0.17947  0.12204
5 0.81982  0.55748 0.57090  0.38821 0.18462  0.12554
6 0.81986  0.55750 0.57190  0.38889 0.18887  0.12843
7 0.81987  0.55751 0.57240  0.38923 0.19238  0.13082
8 0.81987  0.55751 0.57265  0.38940 0.19526  0.13278
9 0.81987  0.55751 0.57278  0.38949 0.19763  0.13439
10 0.81987  0.55751 0.57284  0.38953 0.19956  0.13570
11 0.81987  0.55751 0.57287  0.38955 0.20115 0.13678
12 0.81987  0.55751 0.57289  0.38956 0.20245  0.13767
13 0.81987  0.55751 0.57290  0.38957 0.20352  0.13839
14 0.81987  0.55751 0.57290  0.38957 0.20439  0.13898
15 0.81987  0.55751 0.57290  0.38957 0.20510  0.13947
43 0.81987  0.55751 0.57290  0.38957 0.20830 0.14164
44 0.81987  0.55751 0.57290  0.38957 0.20830  0.14165
45 0.81987  0.55751 0.57290  0.38957 0.20830  0.14165
46 0.81987  0.55751 0.57290  0.38957 0.20831  0.14165
47 0.81987  0.55751 0.57290  0.38957 0.20831  0.14165
and so (=30
exp(—3t =
Y,z € $ and (t,5) € G. By the above, we find that
+v+1 +v+1
5 = Mol +lle"llr= | lloallz=By(o + Lo+ v) | [nlllefle=r""""""+ [nllle"[lp=T""""
Iylc+v+1) Ty(c+1Dy(0 +v) |1 —nr*|Ty(oc +v+2)
2 1
nlllalla=7"* " By(o + Lo + v + 1)
|1 —nr*Ty(c + Dy(c +v +1)
16 4 1 2B (4 4,1 16 s+i+1 1 s+i+1
_ ==+ 35 51 Be(5 +1,5+5) |25 x 220.955F57 4 [2.5/50.955 75
= 4,1 1 4,1 1,1

2515 x 55 x 0.955* 5 1By (3 + 1,5 + 5 +1)
[1-25x095T,(5+1)g(5+++1)

(5.5)

With consider ¢ = %, %7 1%, we can see the results of A and \* in Table [2| These results are plotted in Fig.
Then, we get

0.81987, qj:%,
Aj =< 057290, ¢; = 3,
0.20831, ¢,

0.55751, qj:%,
pAj == ¢ 0.38957, q; = 3, <1.
0.14165, ¢; = =

=

1°

All assumptions of Theorem are satisfied. Hence, there exists at least one solution for the problem (5.4) on I.

6 Conclusion

The g-integro-differential boundary equations and their applications represent a matter of high interest in the area
of fractional g-calculus and its applications in various areas of science and technology. g-integro-differential boundary
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Figure 2: Graphical representation of A and u for ¢ = %, %, % in Example

value problems occur in the mathematical modeling of a variety of physical operations. Using the Krasnoselskii’s,
Banach fixed point theorems, we proof the existence and uniqueness results. Based on the results obtained, conditions
are provided that ensure the generalized Ulam stability of the original system. The results for investigating Eq. (1.1

on a time scale, are illustrated by two examples.
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