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Abstract

In this paper, we investigate a class of initial value problems of nonlinear fractional differential equations with state
deviating arguments, delayed impulses and supremum on the half line. A global existence-uniqueness result is obtained
using the theory of fixed points in uniform spaces, which is different from what is commonly used in such studies. Our
result is obtained in a setting where classical variants of the fixed point theorems frequently used in the literature are
inapplicable, and moreover without any bounding restriction with respect to time, neither on the solution nor on the
reaction part of the problem. Two examples illustrating our main findings are also given.
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1 Introduction

Differential equations with ”maxima” model many real world processes (in automotic control theory for example)
whose the present state depends on its maximal value on certain time interval [8, 25]. In addition, as is observed
in numerous fields of science and thechnology, when the simulated process is subject to abrupt changes in certain
moments of time, impulsive differential equations are used [9, 21].

Recently, some existence results and stability properties of solutions for first and second order impulsive differential
equations with supremum (IDESs) are investigated in [15, 17, 16, 26]. However, to the best of our knowledge, in the
fractional case, there are not so many contributions on this type of equations, except in a few publications such
as [27, 30], where some integral inequalities, existence and finite-time stability results for Hadamard type impulsive
differential equations with maxima are studied. Thus, we found a lack of interst in the existence of solutions for this
type of problem in the current literature. Especially since most of the results concerning the stability of solutions for
(IDESs) are subordinated to the existence of solutions [17, 27].

Motivated by the above considerations, and in a sequel of our previous work [24], with some generalizations, we
treat in this paper, the following initial value problem, of nonlinear fractional differential equation, with state deviating
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arguments, delayed impulses and a supremum:

CDα
0+u (t) = f

(
t, sup
σ∈[a(t), b(t)]

u(σ),u(t−τ1(t)),...,u(t−τN (t))

)
, t∈Jk, k∈N (1.1)

∆u(tk) = Ik (u (tk − ρk(tk))) , k ∈ N∗ (1.2)

u (t) = ϕ (t) , t ≤ 0, (1.3)

where CDα
0+ denotes the Caputo fractional derivative operator of order α ∈ ]0, 1[, N is a positive integer, a, b and τi

(with 0 ≤ i ≤ N) are real continuous functions defined on R+ = [0, +∞[ subject to conditions which will be specified
later, f : R+ × R1+N −→ R is a nonlinear continuous function, ∆u(tk) = u(t+k ) − u(t−k ), where u(t+k ) and u(t−k )
represent the right and left limits of u at t = tk and {tk} is a sequence of points in R+ such that tk < tk+1 for k ∈ N∗

and lim
k→∞

tk = ∞, J0 = [0, t1] and Jk = ]tk, tk+1] (k ∈ N∗), the initiale condition ϕ : ] −∞, 0] −→ R is a continuous

function such that ϕ (0) = ϕ0 > 0.

It should be noted that (1.1) − (1.3) contains as special cases a wide class of fractional differential equations,
including those with and without impulses, with and without delayes, with and without supremum, for a bounded
or unbounded time interval, considered in different works such as [11, 22, 24, 29]. Note also that most existence
and uniqueness results for ordinary or fractional differential equations with and without impulses, require that the
nonlinear part of the problem under consideration satisfies the Lipschitz condition with bounded arguments (see,
e.g.,[3, 4, 23, 24] and the references therein). Keeping in mind to overcome this restriction, we aim throught this work,
to obtain an existence-uniqueness result of (1.1) − (1.3) and the similar problem without impulses (3.6)-(3.7) given
below, for a wider class of nonlinearities that includes those satisfying the classical Lipschitz conditionas a special case
(see Remark 3.1).

Although some types of differential and integral equations with supremum are investigated in [10, 12, 18] and the
references therein, it is worth to mention that those existence results are inapplicable to (3.6)-(3.7). This is mainly
due to the fact that the unbounded interval of time in (3.6)-(3.7) (which is not the case in the mentioned papers),
fundamentally affects the functional setting used in the previously cited papers, and the possibility of generalizing
these results to the unbounded case is not straightforward and requires further investigations. In this sens, the result
of Corollary 3.7 is new and may complements some previously known results in the literature.

To our knowledge, most existence results for differential and integral equations of ordinary or fractional order are
based on various tools in metric or normed spaces such as the fixed point theorems, the method of lower and upper
solutions, etc. However, in the framework of uniform spaces, theses tools are used only in some few papers such as
[6, 24, 28]. In this context, we also aim to contribute in this field of applications of the fixed point theory in uniform
spaces, in particual when the classical variants of this theory frequently used in the literature, fail to be applicable
directly (see Remark 3.6 (i)). This explains the approach chosen in this work, different from what is commonly used
in such studies.

The rest of the paper is organized as follows. In Section 2, we recall the definition of the fractional derivatives, we
introduce the tools used in this work and we give an auxiliary lemma. In Section 3, we prove the existence-uniqueness
result for (1.1)-(1.3) and the similar problem without impulses. Finally, in Section 4 we provide two examples to
illustrate the applicability of our theoretical results.

2 Preliminaries

Let us recall the notion of the fractional derivatives. For further details on some essential related properties, we
refer to [13, 19].
Let n be a positive integer, α the positive real such that n − 1 < α ≤ n and dn/dtn the classical derivative operator
of order n.

Definition 2.1. [[13, 19]] The Riemann-Liouville fractional integral, and the Riemann-Liouville fractional derivative,
of a real function u defined on R+ of order α, are defined respectively by

Iα0+u (t) :=
1

Γ (α)

∫ t

0

(t− s)α−1u (s) ds, t > 0,

Dα
0+u (t) :=

dn

dtn
In−α
0+ u (t) :=

1

Γ (n− α)

dn

dtn

∫ t

0

(t− s)n−α−1u (s) ds, t > 0,
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where Γ (.) is the Gamma function, provided that the right hand sides exist.

Definition 2.2. [[13, 19]] The Caputo fractional derivative of a real function u defined on R+ of order α, noted by
CDα

0+ , is defined by

CDα
0+u (t) :=

(
Dα

0+

[
u−

n−1∑
k=0

u(k)(0)

k!
(.)k

])
(t) , t > 0,

provided that the right hand side exists point wise.

In what follows we give a fixed point theorem for non-self mappings in uniform spaces [28, Theorem 1], on which our
main result is based. We also define some useful and related concepts and notations which can be found in [5, 6, 28].

Let X be a Hausdorff sequentially complete locally convex topological vector space and P = {PK : K ∈ K} be a
saturated family of semi-norms, generating the topology of X, where K is an index set. For further details on locally
convex spaces, we refer to [20].
For E ⊂ X we denote by ∂E the boundary of E. Let j : K −→ K be a mapping from the index set into itself, and
jn(K) = j(jn−1(K)) stands for the nth iterate of the mapping j, where j0(K) = K.

Definition 2.3 ([5, 28]). A nonempty closed subset E of X is said to be j-bounded, if for every u, v ∈ E and K ∈ K

C (K,u, v) := sup
{
Pjn(K)(u− v) : n = 0, 1, 2, . . .

}
< ∞. (2.1)

Definition 2.4 ([6, 28]). A nonlinear mapping F : E −→ X is said to be j-contractive if for any K ∈ K

∃LK ∈ [0, 1[ such that PK(Fu− Fv) ≤ LK · Pj(K)(u− v), ∀u, v ∈ E

Definition 2.5 ([7]). X is said to be metrically convex with respect to some semi-norm PK ∈ K, if for any u, v in X
(with u ̸= v), there exists a point w in X (u ̸= w ̸= v) such that

PK(u− w) + PK(w − v) = PK(u− v). (2.2)

Theorem 2.6. [28, Theorem 1] Assume that X is metrically convex with respect to every semi-norm. Let E be a
j-bounded subset of X and F : E −→ X be a j-contractive mapping such that

(i) For every K ∈ K the following series is convergent

∞∑
n=0

22nLKLj(K) . . . Ljn(K). (2.3)

(ii) F (∂E) ⊂ E.

Then F has a unique fixed point in E.

2.1 Concept of solutions for (1.1)-(1.3)

Because of the non-local character of fractional order differential operators, there is a fundamental dependence
between the fractional derivative and the lower integration bound considered in its definition. Consequently, this
leads to different concepts of solutions for impulsive fractional differential equations. Currently, there are mainly two
approaches (see [1, 2]). We will precise in Definition 2.7 below, the approach adopted in this work.

Let X be the following locally convex sequentially complete Hausdorff space of real valued piecewise continuous
functions defined on R :

X =
{

u : R → R : u |R−∈ C (R−) and for every k ∈ N :

u |Jk
∈ C (Jk) with u(t+k ) finite

}
.

(2.4)

and {PK : K ∈ K} be the saturated family of semi-norms, generating the topology of X, defined by

PK (u) = sup
t∈K

{
e−λt |u (t)|

}
, (2.5)

where K runs over the set of all compact subsets of R denoted by K, and λ is a positive real number to be specified
later.

In the following definition of solutions, the approach A1 in [2] is adapted to (1.1)-(1.3).
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Definition 2.7. [[2]] A function u ∈ X is said to be a solution of (1.1)− (1.3), if it satifies (1.3), moreover u = u0 |J0
,

and for every k ∈ N∗: u = uk |Jk
, where u0 ∈ C (]−∞, t1]) is the solution of

CDα
0+u (t) = f

(
t, sup
σ∈[a(t), b(t)]

u(σ),u(t−τ1(t)),...,u(t−τN (t))

)
, t∈]0,t1]

u (t) = ϕ (t) , t≤0

and for k ∈ N∗: uk ∈ C (]−∞, tk+1]) is the solution of

CDα
0+u (t) = f

(
t, sup
σ∈[a(t), b(t)]

u(σ),u(t−τ1(t)),...,u(t−τN (t))

)
, t∈[0,tk+1]

u(t+k ) = u(t−k ) + Ik
(
u
(
t−k − ρk(t

−
k )
))

,

u (t) = ϕ (t) , t<0

2.2 Equivalent integral equation of (1.1)-(1.3)

To formulate an equivalent integral equation of (1.1)− (1.3), we need the following assumptions.

(H1) a, b are continuous functions such that

(i) ∀t ≥ 0: 0 ≤ a ≤ a(t) ≤ b(t), with a = inf a(t), ∃b such that a < b, a(t) = a, b(t) = b : ∀t ∈
[
0, b
]
and b(t) ≤

t for t > b.

(ii) b < t1

(H2) τi (1 ≤ i ≤ N) is a continuous function such that

(i) ∃τ > 0 : τi(t) > t− τ, ∀t > 0.

(ii) τ < t1, and if τi(t) ∈ {tk}∞k=1, then t− τi(t) ∈ {tk}∞k=1.

(iii) ∃hi > 0 such that: τi(t) ≥ t, ∀t ∈ [0, hi] and τi(t) < t , ∀t ∈ ]hi,+∞[.

(H3) For every k ∈ N∗ : ρk(t) > 0, ∀t > 0

Using the reproduction of the proof of [24, Lemma 1] for an interval of time equals ]−∞, t1] instead of whole R, in
addition of [14, Lemma 2.6] with a slight adaptation, we get the equivalent integral equation to (1.1)-(1.3) given by
the following lemma.

Lemma 2.8. Let f be a continuous function and (H1) , (H2.(i), (ii)) , (H3) hold true. Then, u ∈ X is a solution of
(1.1)-(1.3) if and only if u is a solution of the following integral equation

u(t) =



ϕ0 +

∫ t

0

(t−s)α−1

Γ(α)
f

(
s, sup

σ∈[a(s),b(s)]

u(σ),u(s−τ1(s)),...,u(s−τN (s))

)
ds, t∈J0,

ϕ0 +

∫ t

0

(t−s)α−1

Γ(α)
f

(
s, sup

σ∈[a(s),b(s)]

u(σ),u(s−τ1(s)),...,u(s−τN (s))

)
ds

+

k∑
i=1

Ii(u(t
−
i − ρi(t

−
i ))), t∈Jk:k∈N∗

ϕ(t), t≤0

(2.6)

3 Main Results

To prove our main results, we need the following further assumptions.

(H4) There exist positive real valued functions L1 and L2 defined on R+, satisfying

(i) |f (t,ξ,x1,...,xN)− f (t,η,y1,...,yN)| ≤ L1 (t) |ξ − η|+ L2 (t)
N∑
i=1

|xi − yi| whenever the left hand side is defined.
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(ii) For λ > 0 and ν := 1 + 1/α , we have

Rλ :=

∫ +∞

0

Lν
1 (s) e

−νλ(s−b(s))ds < ∞, and Sλ =

∫ +∞

0

Lν
2 (s) e

−νλsds < ∞.

(H5) ∀k ∈ N∗, ∃lk > 0 such that: |Ik(x)− Ik(y)| ≤ lk |x− y| , ∀x, y ∈ R

(H6) There exists a positive constant M > ϕ0 such that

1

Γ (α)α
f (t,M, x1, ..., xN ) ≤ M − ϕ0

b
α , ∀(t,x1,...,xN )∈[0 ,b]×RN .

(H7) f is a non negative function and moreover, ∃ι ∈]ϕ0, M [ such that

1

Γ (α)α
f (t, ι, x1, ..., xN ) >

M − ϕ0

|b− max
1≤i≤N

hi|α
, ∀(t,x1,...,xN )∈[0 ,b]×(]ϕ0, ϕ0+

ι−ϕ0
b

τ [)
N
.

Remark 3.1. Note that if L1 and L2 are bounded functions then the requirement stated in (H4.(ii)) is satisfied
(recall that b(t) ≤ t for t > b). However, we point out that with (H4), not only L1 and L2 but even f is allowed to
increase indefinitely with respect to t (an example is given in the last section). So, hypothesis (H4) includes a wide
range of functions compared to the classical Lipschitz condition.

We denote by Eϕ,M the subset of X defined by

Eϕ,M =
{
u ∈ X : u (t) = ϕ (t) for t ≤ 0, and u (t) ≤ M for t ∈ [a, b]

}
,

where a, b and M are the constants given by (H1) and (H6). Eϕ,M is closed and its boundary is:

∂Eϕ,M =

{
u ∈ X : u (t) = ϕ (t) for t ≤ 0 and max

t∈[a, b]
u (t) = M

}
.

Note that the extremities of the interval on which the supremum is taken, a and b depend on the time t. This
is motivated by applications in the theory of neutral functional differential equations [5, 6, 28], but it is also used to
force the corresponding operator to be contractive in the sens of Definition 2.4. Following this idea, let us define a
map j : K −→ K by

j(K) :=

{
K if K+ = ∅,[
0, max{Km, τ, b}

]
if K+ ̸= ∅, (3.1)

where K+ := K ∩ ]0, +∞[ , Km = supK.

Lemma 3.2. [24, Remark 2] For j defined by (3.1), the set Eϕ,M is j-bounded.

Throughout the remaining of this paper, F denotes the operator defined on Eϕ,M by the right hand side of (2.6).
Under some appropriate hypotheses, the following lemma asserts the non-self nature of this operator.

Lemma 3.3. Under the hypotheses (H1)− (H3), F maps Eϕ,M into X and moreover, (H7) ensure that it does not
map Eϕ,M into itself provided that

max
1≤i≤N

hi < b (3.2)

Proof . Recall first that the functions f , τi (1 ≤ i ≤ N) , a, b and ρk (k ∈ N∗) are all continuous. Let now
u ∈ Eϕ,M ⊂ X, then u |Jk

∈ C (Jk), so in view of (H1) − (H3), Fu ∈ C (Jk) as a composition of continuous functions
on Jk. Since for every k ∈ N∗, u(t+k ) exists, then Fu(t+k ) exists also as a limite of a composotion of functions, which
admit each of them a limit in t+k . Hence Fu ∈ X.
Let now v0 ∈ Eϕ,M be a function defined by means of the constant ι given in (H7) such that for t ∈ [0, b] :

v0(t) = ϕ0 +
(ι− ϕ0)t

b
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According to (H1), (H2.(i), (iii)), (H7) and (3.2), we get

Fv0
(
b
)

= ϕ0 +

∫ b

0

(
b− s

)α−1

Γ (α)
f (s,ι,v0(s−τ1(s)),...,v0(s−τN (s))) ds

> ϕ0 + α M−ϕ0

(b− max
1≤i≤N

hi)α

∫ b

max
1≤i≤N

hi

(b− s)α−1ds = M

Which means that Fv0 /∈ Eϕ,M and completes the proof. □

Proposition 3.4. Let (H1)− (H5) be satisfied. Then, for each u, v ∈ Eϕ,M and every K ∈ K the following inequality
holds true:

PK (Fu− Fv) ≤ CλPj(K) (u− v) , (3.3)

where

Cλ =
Γ(α2)

1
1+α

Γ(α)λ
α2

α+1

(
R

α
α+1

λ +N eλτ S
α

α+1

λ

)
+
∑
k≥1

lk

Proof . For K+ = ∅, we have
PK (Fu− Fv) = PK (ϕ0 − ϕ0) = 0,

and thus (3.3) is satisfied.

Now for K+ ̸= ∅, let t ∈ K+. Using (H1), (H2.(iii)), (H3), (H4.(i)) and (H5), we obtain

|Fu (t)− Fv (t)| ≤
∫ t

0

(t− s)
α−1

Γ (α)
L1 (s)

∣∣∣∣∣ sup
σ∈[a(s),b(s)]

u (σ)− sup
σ∈[a(s),b(s)]

v (σ)

∣∣∣∣∣ ds
+

∫ t

0

(t− s)
α−1

Γ (α)
L2 (s)

N∑
i=1

|u (s− τi (s))− v (s− τi (s)) |ds

+
∑
tk<t

lk
∣∣u(t−k − ρ(t−k ))− v(t−k − ρ(t−k ))

∣∣
≤
∫ t

0

L1 (s)
(t− s)

α−1

Γ (α)
sup

σ∈[a(s),b(s)]

|u (σ)− v (σ) |ds

+
∑

i∈{1,...,N :hi≤t}

∫ t

hi

L2 (s)
(t− s)

α−1

Γ (α)
|u (ri (s))− v (ri (s))| ds

+
∑
tk<t

lk
∣∣u(t−k − ρ(t−k ))− v(t−k − ρ(t−k ))

∣∣
≤
∫ t

0

L1 (s)
(t− s)

α−1

Γ (α)
eλb(s) max

σ∈[a,max{Km,b}]
e−λσ|u (σ)− v (σ) |ds

+
∑

i∈{1,...,N :hi≤t}

∫ t

hi

L2 (s)
(t− s)

α−1

Γ (α)
eλri(s)e−λri(s) |u (ri (s))− v (ri (s))| ds

+
∑
tk<t

lk.e
λt max

δ∈[0, t]
e−λδ |u(δ)− v(δ)|,

where ri (s) = s− τi (s). Taking into account (3.1) together with (H2.(i), (iii)), we get:

|Fu (t)− Fv (t)| ≤∫ t

0

L1 (s)
(t− s)

α−1

Γ (α)
eλb(s)ds+

∑
i∈{1,...,N :hi≤t}

∫ t

hi

L2 (s)
(t− s)

α−1

Γ(α)
eλri(s)ds+

∑
tk<t

lk.e
λt

Pj(K) (u− v) .
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Now, multiplying both sides of the above inequality by e−λt, we obtain:

e−λt |Fu (t)− Fv (t)| ≤

[∫ t

0

L1 (s)
(t− s)

α−1

Γ (α)
e−λ(t−b(s))ds

+
∑

i∈{1,...,N :hi≤t}

∫ t

hi

L2 (s)
(t− s)

α−1

Γ(α)
e−λ(t−ri(s))ds

+
∑
tk<t

lk

]
Pj(K) (u− v)

The change of variable x = λ (t− s), leads to:

e−λt |Fu (t)− Fv (t)| ≤[
1

λαΓ(α)

∫ λt

0

L1(t−
x

λ
)xα−1e−xe−λ((t− x

λ )−b(t− x
λ ))dx +

1
λαΓ(α)

∑
i∈{1,...,N :hi≤t}

∫ λ(t−ti)

0

L2(t−
x

λ
)xα−1e−xe−λτi(t− x

λ )dx

+
∑
tk<t

lk

]
Pj(K) (u− v)

According to (H4.(ii)), Hölder’s inequality toghether with (H2.(i)), give:

e−λt |Fu (t)− Fv (t)| ≤

 1

λαΓ (α)

(∫ λt

0

xµ(α−1)e−µxdx

) 1
µ
(∫ λt

0

Lν
1(t−

x

λ
)e−νλ((t− x

λ )−b(t− x
λ ))dx

) 1
ν

+
1

λαΓ (α)

∑
i∈{1,...,N :hi≤t}

(∫ λt

0

xµ(α−1)e−µxdx

) 1
µ

(∫ λt

0

Lν
2(t−

x

λ
)e−νλτi(t− x

λ )dx

) 1
ν

+
∑
k≥1

lk

Pj(K) (u− v)

≤

 Γ(α2)
1
µ

Γ(α)λ
α2

α+1

(
R

1
ν

λ +N eλτ S
1
ν

λ

)
+
∑
k≥1

lk

Pj(K) (u− v)

Finally, by taking the supremum on K, this yields immediately to (3.3) and completes the proof. □

The following theorem provides sufficient conditions for the existence-uniqueness result of (1.1)-(1.3).

Theorem 3.5. Let hypotheses (H1)− (H7) and condition (3.2) hold true. If the following relation is satisfied:

max{τ, b}
α2

α+1
Γ(α2)

1
1+α

Γ(α)

(
R

α
α+1

1/max{τ, b} +N eS
α

α+1

1/max{τ, b}

)
+
∑
k∈N∗

lk <
1

4
, (3.4)

then the problem (1.1)-(1.3) admits a unique global solution in Eϕ,M .
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Proof . Recall that, in view of Lemma 2.8, the solutions of (1.1)-(1.3) are the fixed points of the operator F . Hence
it is sufficient to show that all conditions of Theorem 2.6 are fulfilled.

For any u, v in X (with u ̸= v), let β ∈ ]0, 1[, then wβ = (1− β)u+ βv is such that u ̸= w ̸= v. A straightforward
computation yields to (2.2) and hence X is metrically convex with respect to every semi-norm.

Note first that the series (2.3) in our case turns into

∞∑
n=0

22nCn+1
λ (3.5)

Let us now choose λ = 1/max{τ, b} in (2.5). In view of Proposition 3.4, condition (3.4), means that (3.3) holds true
with Cλ < 1/4. Consequently F is j-contractive and moreover the series (3.5) converges.

Let now u ∈ ∂Eϕ,M , then for a ≤ t ≤ b, (H1) and (H6) give:

Fu (t) = ϕ0 +
1

Γ (α)

∫ t

0

(t− s)
α−1

f (s,M,u(s−τ1(s)),...,u(s−τN (s))) ds

≤ ϕ0 +
α(M − ϕ0)

b
α

∫ t

0

(t− s)
α−1

ds ≤ M,

which means that F (∂Eϕ,M ) ⊂ Eϕ,M and completes the proof. □

Remark 3.6.

(i) We emphasize here, that under the hypotheses of Theorem 3.5 and in view of Lemma 3.3, the operator F is a
non self mapping. Thus, the classical variants of fixed point theorems frequently used in the literature, fail to
be applicable directly.

(ii) In addition to the existence and uniqueness result for solutions of (1.1)-(1.3), Theorem 3.5 also provides (with
appropriate adaptation) a generalization and improvements of [24, Theorem 1] given by Corollary 3.7 below.
The generalization is due to the assuption (H1) that allows the supremum to be taken on very long time intervals
for some required necessity. A first aspect of improvement is due to (H4) (see Remark 3.1) and a second is due
to the condition (3.8) which is less restrictive than (21) in [24] for values of α close to 1 in the particular case
where L1 and L2 in (H4) are constants.

Corollary 3.7. Under hypotheses (H1.(i)) , (H2.(i), (iii)) , (H4), (H6) , (H7) and condition (3.2), the problem

CDα
0+u (t) = f

(
t, max
σ∈[a(t), b(t)]

u(σ),u(t−τ1(t)),...,u(t−τN (t))

)
, t > 0 (3.6)

u (t) = ϕ (t) , t ≤ 0, (3.7)

admits a unique continuous solution in Aϕ,M provided that

max{τ, b}
α2

α+1
Γ(α2)

1
1+α

Γ(α)

(
R

α
α+1

1/max{τ, b} +N eS
α

α+1

1/max{τ, b}

)
<

1

4
. (3.8)

Where

Aϕ,M =
{
u ∈ C (R) : u (t) = ϕ (t) for t ≤ 0, and u (t) ≤ M for t ∈ [a, b]

}
Proof . By omitting the impulsive condition (1.2), that is when for every k ∈ N∗ : Ik = 0, the problem (1.1)-(1.3) is
reduced to (3.6)-(3.7). Furthermore, the hypotheses of Theorem 3.5 reduces to those of Corollary 3.7.
Note also that in this particular case, condition (1.2) with Ik = 0, implies that:

∆u(tk) := u(t+k )− u(t−k ) = Ik (u (tk − ρk(tk))) = 0.

Which means that the space X defined in (2.4) becomes C (R) and consequently, the subset Eϕ,M becomes Aϕ,M .
Now, since the condition (3.4) includes as a special case the condition (3.8) in which lk = 0 (k ∈ N∗), the result follows
immediately from Theorem 3.5. □
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4 Examples

We conclude with two examples illustrating the validity of our findings including the improvements explained in
Remark 3.6.

Example 1. Let us consider the following problem

CD0.5u (t) =
4.25( t

3+1)
1
3

3×10−1+2×10−3

∣∣∣∣∣ sup
σ∈[a(t), b(t)]

u(σ)

∣∣∣∣∣
+

5.43( 2t
15+

1
3 )

1
3

1+3×10−4
∣∣∣u(3×10−4− 3×10−4+12×10−8

1+t

)∣∣∣ , t>0, t ̸=10k, k∈N∗

(4.1)

∆u(10k) =
1

4ek(k + 1)
(
1 +

∣∣∣u(− 1
5k − 3×10k

4+4×10k

) ∣∣∣) , k ∈ N∗ (4.2)

u (t) = t+ 1, t ≤ 0 (4.3)

where

a(t) =

 10−1 : 0≤t≤ 1
2

2× 10−1t : t≥ 1
2

and b(t) =

 1/2 : 0≤t≤ 1
2

(2t+ 1)/4 : t≥ 1
2

The problem (4.1)-(4.3) is identified to (1.1)-(1.3) with:

α = 0.5, N = 1, τ1 (t) = t− 3× 10−4 +
3×10−4(1+4×10−4)t

(1+t) ,

f (t, x, y) =
4.25( t

3+1)
1
3

3×10−1+2×10−3|x| +
5.43( 2t

15+
1
3 )

1
3

1+3×10−4|y| , ϕ(t) = t+ 1

(4.4)

and

{tk}k∈N∗ = {10k}k∈N∗ , Ik(x) =
1

4ek(k + 1) (1 + |x|)
, ρk(t) = t+

1

5k
+

3t

4 + 4t

It is not hard to see that hypotheses (H1)− (H3) are satisfied with

a = 10−1, b =
1

2
, τ = 3× 10−4 and h1 = 4× 10−4

Let us verify (H4), we have

|f (t, ξ, x)− f (t, η, y)| ≤
2× 4.25

(
t
3 + 1

) 1
3 × 10−3 (|η| − |ξ|)

(3× 10−1 + 2× 10−3 |ξ|) (3× 10−1 + 2× 10−3 |η|)

+
3× 5.43

(
2t
15 + 1

3

) 1
3 × 10−4 (|y| − |x|)

(1 + 3× 10−4 |x|) (1 + 3× 10−4 |y|)

≤ 9.44× 10−2
(
t
3 + 1

) 1
3 |ξ − η|

+16.29× 10−4
(
2t
15 + 1

3

) 1
3 |x− y|

So, (H4. (i)) is fulfilled with

L1(t) = 9.44× 10−2

(
t

3
+ 1

) 1
3

and L2(t) = 16.29× 10−4

(
2t

15
+

1

3

) 1
3

A straightforward computation leads to

Rλ =8.42421124×10−4

(
63λ+18

162λ2 + 9λ+1

27λ2 e
3λ
2

)
and Sλ =4.32278119×10−9( 15λ+2

135λ2 )



1446 Ouani, Nisse, Nisse

Which means that (H4. (ii)) is satisfied too. Now, for all k ∈ N∗ we have:

|Ik(x)− Ik(y)| ≤ 1

4ek(k + 1)

∣∣∣ 1

1 + |x|
− 1

1 + |y|

∣∣∣
≤ 1

4ek(k + 1)

|x− y|
(1 + |x|)(1 + |y|)

≤ 1

4ek(k + 1)
|x− y|

So (H5) is verified with lk =
1

4ek(k + 1)
.

In addition, there exists M = 15.2 > ϕ0 = 1, such that for every (t, x) ∈ [0, 1
2 ]× R, we have

f (t,M, x) ≤
4.25

(
7
6

) 1
3

3× 10−1 + 2× 10−3 ×M
+ 5.43

(
2
5

) 1
3 ≃ 17.5422869253

and

α.Γ(α).
M − ϕ0

b
α = 0, 5.

√
π
15.2− 1

0.50.5
≃ 17.7970607499

Consequently (H6) holds true.

To check (H7), let us choose ι = ϕ0 + 10−9, then we have for every (t, x) ∈ [0, 1
2 ]×

[
ϕ0, ϕ0 +

ι−ϕ0

b
τ
]
:

f(t, ι, x) >
4.25

3× 10−1 + 2× 10−3 × ι

+
5.43

(
1
3

) 1
3

1 + 3× 10−4
(
ϕ0 +

ι−ϕ0

b
τ
) ≃ 17.8377994017

and

α.Γ(α)
M − ϕ0

|b− h1|α
= 0, 5.

√
π.

15.2− 1

(0, 4996)
1
2

≃ 17.8041838483

Since moreover f is clearly non negative, hypothesis (H7) holds true.

Furthermore, (3.2) is clearly satisfied and

max{τ, b}
α2

α+1
Γ(α2)

1
1+α

Γ(α)

(
R

α
α+1

1/max{τ,b} +NeS
α

α+1

1/max{τ,b}

)
+
∑
k∈N∗

lk ≃ 0.0928213

That is, all conditions of Theorem 3.5 are fulfilled, and consequently (4.1)-(4.3) has a unique solution in Eϕ,M ,
where

Eϕ,M =
{
u ∈ X : u (t) = t+ 1 for t ≤ 0 and

u (t) ≤ 15.2 for t ∈ [10−1, 1/2]
}

Note that f increases indefinitely with respect to t as it is pointed out in Remark 3.1.

Example 2. Let (P) be the special form of (3.6)-(3.7) corresponding to α, N, τ1, f, and ϕ given by (4.4) with

a(t) = 10−1 and b(t) =


1
2 0 ≤ t ≤ 1

2

0.2− 1
0.999 t t ≥ 1

2

(4.5)
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From the discussion done in Example 1, we immediately deduce that all conditions of Corollary 3.7 are satisfied and
consequently the problem on question admits a unique continuous solution in Aϕ,M , where

Aϕ,M =
{
u ∈ C (R) : u (t) = t+ 1 for t ≤ 0 and

u (t) ≤ 15.2 for t ∈
[
10−1, 1/2

] }
Note that b(t) in (4.5) is bounded by b = 1

2 , that is [24, Theorem 1] covers (P), but fails to be applicable as f do
not satisfies the Lipschitz condition with constant arguments.

5 Conclusion

In this paper, we investigate a class of initial value problems of nonlinear fractional differential equations with
state deviating arguments, delayed impulses and supremum on the half line.

These equations appear in the modeling of many real-world processes (in automatic control theory, for example). In
this type of considered equations, what determines the solution at a time t, is the current state but also its maximum
value over a certain past time interval. After converting the problem into an equivalent integral equation, by means
of some techniques from the context of generalized contractions, appropriate conditions on the data, lead to a global
existence-uniqueness result. This, without any bounding restriction with respect to time, neither on the solution nor
on the reaction part of the problem.

It should be noted that our approach is based mainly on the theory of fixed points in uniform spaces, which is rarely
used in this field. Our result is obtained in a setting where classical variants of the fixed point theorems frequently
used in the literature are inapplicable, and moreover allowing the nonlinear part of the problem to increase indefinitely
with time.
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