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Abstract

In this paper, we further develop the notion of cyclic (α, β)-admissible mappings introduced in ([14], S. Chandok,
K. Tas, A. H. Ansari, Some fixed point results for TAC-type contractive mappings, J. Function spaces, 2016, Article
ID 1907676, 1–6) and (ψ, F )-contraction mappings introduced in ([34], D. Wardowski, Solving existence problems via
F -contractions, Proceedings of the American Mathematical Society, 146 (4), (2018), 1585–1598), in the framework
of b-metric spaces. To achieve this, we introduce the notion of (α, β) − S-admissible mappings and a new class of
generalized (ψ,F )-contraction types and establish a common fixed point and fixed point results for these classes of
mappings in the framework of complete b-metric spaces. As an application, we establish the existence and uniqueness
of the solutions to differential equations in the framework of fractional derivatives involving Mittag-Leffler kernels via
the fixed point technique. The results obtained in this work provide extension as well as substantial generalization
and improvement of the fixed point results obtained in [14, 34, 35] and several well-known results on fixed point theory
and its applications.
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1 Introduction and Preliminaries

The theory of fixed point plays an important role in nonlinear functional analysis and is known to be very useful in
establishing the existence and uniqueness theorems for nonlinear differential and integral equations. Banach [10] in
1922 proved the well celebrated Banach contraction principle in the frame work of metric spaces. The importance of
the Banach contraction principle cannot be over emphasized in the study of fixed point theory and its applications.
Due to its importance and fruitful applications, many authors have generalized this result by considering classes of
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nonlinear mappings which are more general than contraction mappings and in other classical and important spaces
(see [1, 28] and the references therein). For example, Berinde [11, 12] introduced and studied a class of contractive
mappings, which is defined as follows:

Definition 1.1. Let (X, d) be a metric space. A mapping T : X → X is said to be a generalized almost contraction
if there exist δ ∈ [0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ δd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},

for all x, y ∈ X.

Furthermore, in 2008, Suzuki [31] introduced a class of mappings satisfying condition (C), known as Suzuki-type
generalized nonexpansive mapping and he proved some fixed point theorems for this class of mappings.

Definition 1.2. Let (X, d) be a metric space. A mapping T : X → X is said to satisfy condition (C) if for all
x, y ∈ X,

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).

Theorem 1.3. Let (X, d) be a compact metric space and T : X → X be a mapping satisfying

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) < d(x, y),

for all x, y ∈ X. Then T has a unique fixed point.

In 2012, Wardowski [35] introduced the notion of F -contractions, which is defined as follows:

Definition 1.4. Let (X, d) be a metric space. A mapping T : X → X is said to be an F -contraction if there exists
τ > 0 such that for all x, y ∈ X;

d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)), (1.1)

where F : R+ → R is a mapping satisfying the following conditions:

(F1) F is strictly increasing;
(F2) for all sequences {αn} ⊆ R+, limn→∞ αn = 0 if and only if limn→∞ F (αn) = −∞;
(F3) there exists k ∈ (0, 1) such that limα→0+ α

kF (α) = 0.

He established the following result:

Theorem 1.5. Let (X, d) be a complete metric space and T : X → X be an F -contraction. Then T has a unique
fixed point x∗ ∈ X and for each x0 ∈ X, the sequence {Tnx0} converges to x∗.

Remark 1.6. [35] If we suppose that F (t) = ln t, an F -contraction mapping becomes the Banach contraction mapping.

In [25], Piri et al. used the continuity condition instead of condition (F3) and proved the following result:

Theorem 1.7. Let X be a complete metric space and T : X → X be a selfmap of X. Assume that there exists τ > 0
such that for all x, y ∈ X with Tx ̸= Ty,

1

2
d(x, Tx) ≤ d(x, y) ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

where F : R+ → R is continuous strictly increasing and inf F = −∞. Then T has a unique fixed point z ∈ X, and for
every x ∈ X, the sequence {Tnx} converges to z.

In 2013, Secelean established the following result
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Lemma 1.8. [30] Let F : R+ → R be an increasing mapping and {αn} be a sequence of positive integers. Then the
following assertion hold:

1. if limn→∞ F (αn) = −∞ then limn→∞ αn = 0;

2. if inf F = −∞ and limn→∞ αn = 0 then limn→∞ F (αn) = −∞.

Furthermore, the author in [30] replaced the condition (F2) in the definition of F -contraction with the following
condition.

(F∗) inf F = −∞ or, also by

(F∗∗) there exists a sequence {αn} of positive real numbers such that limn→∞ F (αn) = −∞. In the same year,
Turinici in [33] observed that the condition (F2) in the definition of F -contraction can be replaced with

(F
′

2) limn→∞ F (αn) = −∞.

Then, the implication is as follows

(F
′′

2 ) limn→∞ F (αn) = −∞ ⇒ αn → 0, where can be derived from (F1).

Motivated by the work of Turinici [33], Wardowski [34] introduced a modified F -contraction called (ψ, F )-contraction
in the setting of a metric space. He gave the following definition. Let (X, d) be a metric space a mapping T : X → X
is called (ψ,F )-contraction if there are ψ : [0,∞) → [0,∞) and F : [0,∞) → R such that

1. F satisfies (F1) and (F
′

2);

2. lim infs→t+ ψ(s) > 0 for all t ≥ 0;

3. ψ(d(x, y)) + F (d(Tx, Ty)) ≤ F (d(x, y)) for all x, y ∈ X such that Tx ̸= Ty.

In 2016, Chandok et al. [14] introduced a new type of contractive mappings using the notion of cyclic admissible
mappings in the framework of metric spaces.

Definition 1.9. [14] Let T : X → X be a mapping and let α, β : X → R+ be two functions. Then T is called a
cyclic (α, β)-admissible mapping, if

1. α(x) ≥ 1 for some x ∈ X implies that β(Tx) ≥ 1,

2. β(x) ≥ 1 for some x ∈ X implies that α(Tx) ≥ 1.

Definition 1.10. [14] Let (X, d) be a metric space and let α, β : X → [0,∞) be two mappings. We say that T is a
TAC-contractive mapping, if for all x, y ∈ X,

α(x)β(y) ≥ 1 ⇒ ψ(d(Tx, Ty)) ≤ f(ψ(d(x, y)), ϕ(d(x, y))),

where ψ is a continuous and nondecreasing function with ψ(t) = 0 if and only if t = 0, ϕ is continuous with
limn→∞ ϕ(tn) = 0 ⇒ limn→∞ tn = 0 and f : [0,∞)2 → R is continuous, f(a, t) ≤ a and f(a, t) = a ⇒ a = 0
or t = 0 for all s, t ∈ [0,∞).

Theorem 1.11. [14] Let (X, d) be a complete metric space and let T : X → X be a cyclic (α, β)-admissible mapping.
Suppose that T is a TAC contraction mapping. Assume that there exists x0 ∈ X such that α(x0) ≥ 1, β(x0) ≥ 1 and
either of the following conditions hold:

1. T is continuous,

2. if for any sequence {xn} in X with β(xn) ≥ 1, for all n ≥ 0 and xn → x as n→ ∞, then β(x) ≥ 1.

In addition, if α(x) ≥ 1 and β(y) ≥ 1 for all x, y ∈ F (T ) (where F (T ) denotes the set of fixed points of T ), then
T has a unique fixed point.

One of the most interesting generalizations of metric spaces is the concept of b-metric spaces (to be defined in
Section 2) introduced by Czerwik in [15]. He proved the Banach contraction principle in this setting with the fact
that d need not to be continuous. Thereafter, several results have been extended from metric spaces to b-metric
spaces. In addition, a lot of results have been published on the fixed point theory of various classes of single-valued
and multi-valued operators in the frame work of b-metric spaces (see [8, 13, 15, 27, 36] and the references therein).

Definition 1.12. [15] Let X be a nonempty set and let s ≥ 1 be a given real number. A function d : X×X → [0,∞)
is called a b-metric if for all x, y, z ∈ X, the following conditions are satisfied:
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1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space. The number s ≥ 1 is called the coefficient of (X, d). It is clear that, the
class of b-metric spaces is larger than that of metric spaces. If s = 1, a b-metric become a metric.

Example 1.13. [8] Let X = R and d(x, y) = |x− y|2 for all x, y ∈ X. It is easy to see that (x, d) is a b-metric space
with coefficient s = 2, but (X, d) is not a metric space.

Definition 1.14. [13] Let (X, d) be a b-metric space. A sequence {xn} in X is said to be

1. b-convergent if there exists x ∈ X such that d(xn, x) → 0 as n→ ∞. In this case, we write limn→∞ xn = x.

2. b-Cauchy if d(xn, xm) → 0 as n,m→ ∞.

Definition 1.15. [13] Let (X, d) be a b-metric space. Then X is said to be complete if every b-Cauchy sequence in
X is b-convergent.

Yamaod and Sintunawarat [36] introduced the notion of (α, β)-(ψ,φ)-contraction mapping in the frame work of
b-metric spaces as follows:

Definition 1.16. Let (X, d) be a b-metric space with coefficient s ≥ 1 and α, β : X → [0,∞) be two given mappings.
We say that T : X → X is an (α, β)-(ψ,φ)-contraction mapping if the following conditions holds: for all x, y ∈ X with
α(x)β(y) ≥ 1 implies that

ψ(s3d(Tx, Ty)) ≤ ψ(Ms(x, y))− φ(Ms(x, y)),

where Ms(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2s } and ψ,φ : [0,∞) → [0,∞) are alternating distance

functions.

Theorem 1.17. Let (X, d) be a complete b-metric space with coefficient s ≥ 1 and T : X → X an (α, β)-(ψ,φ)-
contraction mapping. Suppose that one of the following conditions holds:

1. there exists x0 ∈ X such that α(x0) ≥ 1,

2. there exists y0 ∈ X such that α(y0) ≥ 1,

and the following holds:

1. T is continuous,

2. T is cyclic (α, β)-admissible.

Then T has a fixed point.

Recently, Babu et al. [8] generalized the result of Chandok et al. [14] by introducing a generalized TAC-contractive
mapping in the frame work of b-metric spaces.

Definition 1.18. Let (X, d) be a b-metric space, α, β : X → [0,∞) be two given mappings and T be a self map on
X. The mapping T is said to be generalized TAC-contrative map in b-metric spaces, if for all x, y ∈ X,

α(x)β(y) ≥ 1 ⇒ ψ(s3d(Tx, Ty)) ≤ f(ψ(Ms(x, y)), ϕ(Ms(x, y))),

whereMs(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2s }, ψ is an alternating distance function, ϕ is continuous

with limn→∞ ϕ(tn) = 0 ⇒ limn→∞ tn = 0 and f : [0,∞)2 → R is continuous with f(a, t) ≤ a and f(a, t) = a⇒ a = 0
or t = 0 for all s, t ∈ [0,∞).

Theorem 1.19. Let (X, d) be a complete b-metric space with coefficient s ≥ 1. Let T : X → X be a generalized
TAC-contraction mapping. Suppose the following conditions hold:

1. T is a cyclic (α, β)-admissible mapping,

2. there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,
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3. T is continuous,

4. if for any sequence {xn} in X with β(xn) ≥ 1, for all n ≥ 0 and xn → x as n→ ∞, then β(x) ≥ 1.

Then T has a fixed point.

Definition 1.20. [17] Let X be a nonempty set and S, T : X → X be any two mappings.

1. A point x ∈ X is called:

(a) coincidence point of S and T if Sx = Tx,
(b) common fixed point of S and T if x = Sx = Tx.

2. If y = Sx = Tx for some x ∈ X, then y is called the point of coincidence of S and T.

3. A pair (S, T ) is said to be:

(a) commuting if TSx = STx for all x ∈ X,
(b) weakly compatible if they commute at their coincidence points, that is STx = TSx, whenever Sx = Tx.

We denote by F the family of all functions F : R+ → R and ψ : [0,∞) → [0,∞) which satisfy conditions
(F ∗

1 ) F satisfies (F1) and (F
′

2);
(F ∗

2 ) F is continuous on (0,∞);
(F ∗

3 ) lim infs→t+ ψ(s) > 0 for all t ≥ 0.

Furthermore, some interesting generalization of the F -contraction has been established by different authors in the
literature. To mention a few, Acar [3] considered a fixed-point problem for mappings involving a rational type and
almost type contraction on complete metric spaces. He established some fixed point results in this direction. Also,
Acar [4] introduced a rational type F -contraction for multivalued integral type mapping on a complete metric space.
Using Wardowski’s technique, he established the existence of a fixed point of the multivalued integral type mapping
provided that the mapping is continuous. For other related work on the generalization of F -contraction, the reader
should see [5, 7, 21, 22] and the references therein.

To the best of our knowledge the results obtain in this work is new in this area of research. Motivated by the
works of Wardowski [34, 35], Chandok [14] and the research work in this direction. The purpose of this work is to
further develop the notion of cyclic (α, β)-admissible mappings and (ψ,F )-contraction in the framework of b-metric
spaces. To do this, we introduce the notion of (α, β)− S-admissible mappings, generalized (ψ, F )-contraction type I,
generalized (ψ, F )-contraction type II, generalized (ψ, F )-contraction type III and generalized (ψ, F )-contraction type
IV and establish common fixed point and fixed point results for these classes of mappings in the framework of complete
b-metric spaces. Finally, we apply our fixed point result in establishing the existence and uniqueness of a fractional
differential equation. The results obtained in this work provide extension as well as substantial generalization and
improvement of the fixed point results obtained in [14, 35, 34] and several well-known results on fixed point theory
and its applications.

2 Main Result

In this section, we introduce the notion of (α, β) − S-admissible mappings, generalized (ψ, F )-contraction type I,
generalized (ψ, F )-contraction type II, generalized (ψ, F )-contraction type III and generalized (ψ, F )-contraction type
IV and establish common fixed point and fixed point results for these classes of mappings in the framework of complete
b-metric spaces.

Definition 2.1. Let X be a nonempty set and s ≥ 1. Let S, T : X → X and α, β : X → [0,∞) be given mappings.
The mapping T is said to be cyclic (α, β)− S-admissible mapping, if

1. α(Sx) ≥ s3 for some x ∈ X implies that β(Tx) ≥ s3,

2. β(Sx) ≥ s3 for some x ∈ X implies that α(Tx) ≥ s3.

Remark 2.2. 1. Clearly, if s = 1 and Sx = x, Definition 2.1 reduces to Definition 1.9.

2. Clearly, if s = 1, then Definition 2.1 reduces to

(a) α(Sx) ≥ 1 for some x ∈ X implies that β(Tx) ≥ 1,
(b) β(Sx) ≥ 1 for some x ∈ X implies that α(Tx) ≥ 1,

which also generalizes Definition 1.9.
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Lemma 2.3. Suppose (X, d) is a b-metric space with s ≥ 1. Let {Sxn} be a sequence in X such that d(Sxn, Sxn+1) →
0 as n → ∞. If {Sxn} is not a Cauchy sequence then there exist an ϵ > 0 and sequences of positive integers {Smk}
and {Snk} with mk > nk > k satisfying d(Sxmk

, Sxnk
) ≥ ϵ and d(Sxmk

, Sxnk−1
) < ϵ such that

1. ϵ ≤ lim infk→∞ d(Sxmk
, Sxnk

) ≤ lim supk→∞ d(Sxmk
, Sxnk

) ≤ sϵ;
2. ϵ

s2 ≤ lim infk→∞ d(Sxmk+1
, Sxnk+1

) ≤ lim supk→∞ d(Sxmk+1
, Sxnk+1

) ≤ s3ϵ;
3. ϵ

s ≤ lim infk→∞ d(Sxmk
, Sxnk+1

) ≤ lim supk→∞ d(Sxmk
, Sxnk+1

) ≤ s2ϵ;
4. ϵ

s2 ≤ lim infk→∞ d(Sxmk+1
, Sxnk+1

) ≤ lim supk→∞ d(Sxmk+1
, Sxnk+1

) ≤ s3ϵ.

Proof . Suppose {Sxn} is not a Cauchy sequence then there exist an ϵ > 0 and sequences of positive integers {mk}
and {nk} with mk > nk > k satisfying

d(Sxmk
, Sxnk

) ≥ ϵ and d(Sxmk
, Sxnk−1

) < ϵ. (2.1)

We choose mk, the least positive integer satisfying (2.1). We now prove (1). Using (2.1)

ϵ ≤ d(Sxmk
, Sxnk

) ≤ sd(Sxmk
, Sxnk−1

) + sd(Sxnk−1
, Sxnk

)

< sϵ+ sd(Sxnk−1
, Sxnk

), (2.2)

clearly, using our hypothesis, we have that and thus

ϵ ≤ lim inf
k→∞

d(Sxmk
, Sxnk

) ≤ lim sup
k→∞

d(Sxmk
, Sxnk

) ≤ sϵ. (2.3)

We now prove (2). Now observe that

d(Sxmk
, Sxnk

) ≤ sd(Sxmk
, Sxmk+1

) + sd(Sxmk+1
, Sxnk

)

≤ sd(Sxmk
, Sxmk+1

) + s2d(Sxmk+1
, Sxnk+1

) + s2d(Sxnk+1
, Sxnk

)) (2.4)

and

d(Sxmk+1
, Sxnk+1

) ≤ sd(Sxmk+1
, Sxmk

) + sd(Sxmk
, Sxnk+1

)

≤ sd(Sxmk+1
, Sxmk

) + s2d(Sxmk
, Sxnk

) + s2d(Sxnk
, Sxnk+1

). (2.5)

Using our hypothesis, (2.4) and (2.5), we have that

ϵ

s2
≤ lim inf

k→∞
d(Sxmk+1

, Sxnk+1
) ≤ lim sup

k→∞
d(Sxmk+1

, Sxnk+1
) ≤ s3ϵ. (2.6)

We now prove (3). Note that,

d(Sxmk
, Sxnk

) ≤ sd(Sxmk
, Sxnk+1

) + sd(Sxnk+1
, Sxnk

) (2.7)

and

d(Sxmk
, Sxnk+1

) ≤ sd(Sxmk
, Sxnk

) + sd(Sxnk
, Sxnk+1

). (2.8)

Using our hypothesis, (2.8) and (2.7), we have that

ϵ

s
≤ lim inf

k→∞
d(Sxmk

, Sxnk+1
) ≤ lim sup

k→∞
d(Sxmk

, Sxnk+1
) ≤ s2ϵ. (2.9)

We now prove (4). Now observe that

ϵ ≤ d(Sxmk
, Sxnk

) ≤ sd(Sxmk
, Sxmk+1

) + s2d(Sxmk+1
, Sxnk+1

) + s2d(Sxnk+1
, Sxnk

) (2.10)

and

d(Sxmk+1
, Sxnk+1

) ≤ sd(Sxmk+1
, Sxnk

) + sd(Sxnk
, Sxnk+1

), (2.11)

thus, using our hypothesis, (2.10), (2.11) and (3), we have

ϵ

s2
≤ lim inf

k→∞
d(Sxmk+1

, Sxnk+1
) ≤ lim sup

k→∞
d(Sxmk+1

, Sxnk+1
) ≤ s3ϵ. (2.12)

□
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Lemma 2.4. Let X be a nonempty set and T : X → X be a cyclic (αs, βs) − S-admissible mapping. Suppose that
there exists Sx0 ∈ X such that α(Sx0) ≥ s3 and β(Sx0) ≥ s3. Define the sequence Sxn+1 = Txn, then α(Sxm) ≥ s3

implies that β(Sxn) ≥ s3 and β(Sxm) ≥ s3 implies that α(Sxn) ≥ s3, for all n,m ∈ N ∪ {0} with m < n.

Proof . Using the fact that T is a cyclic (αs, βs) − S-admissible mapping and our hypothesis, we have that there
exists Sx0 ∈ X such that

α(Sx0) ≥ s3 ⇒ β(Tx0) = β(Sx1) ≥ s3

and

β(Sx0) ≥ s3 ⇒ α(Tx0) = α(Sx1) ≥ s3.

Continuing this way, we obtain that

α(Sxn) ≥ s3 ⇒ β(Txn) = β(Sxn+1) ≥ s3

and

β(Sxn) ≥ s3 ⇒ α(Txn) = α(Sxn+1) ≥ s3

for all n ∈ N ∪ {0}. Using similar approach, we obtain that

α(Sxm) ≥ s3 ⇒ β(Txm) = β(Sxm+1) ≥ s3

and

β(Sxm) ≥ s3 ⇒ α(Txm) = α(Sxm+1) ≥ s3,

for all m ∈ N ∪ {0}. In addition, since

α(Sxm) ≥ s3 ⇒ β(Txm) = β(Sxm+1) ≥ s3 ⇒ α(Sxm+2) ≥ s3 · · ·

with m < n, we deduce that

α(Sxm) ≥ s3 ⇒ β(Sxn) ≥ s3.

Using similar approach, we have that

β(Sxm) ≥ s3 ⇒ α(Sxn) ≥ s3.

□

Definition 2.5. Let (X, d) be a b-metric space with s ≥ 1, α, β : X → (0,∞) be two functions, ψ : [0,∞) → [0,∞)
and S, T be a self map on X. The mapping T is said to be generalized (ψ, F )-contraction type I if F ∈ F and L ≥ 0
such that for all x, y ∈ X

d(Tx, Ty) > 0

⇒ ψ(d(Sx, Sy)) + F (α(Sx)β(Sy)d(Tx, Ty)) ≤ F (d(Sx, Sy)) + LN(x, y), (2.13)

where N(x, y) = min{d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)}

Remark 2.6. We note that

1. if α(Sx) = β(Sy) = 1 and L = 0, we obtain

d(Tx, Ty) > 0 ⇒ ψ(d(Sx, Sy)) + F (d(Tx, Ty)) ≤ F (d(Sx, Sy)), (2.14)

which is a generalization of (ψ, F )-contraction.

2. if Sx = x, α(x) = β(y) = 1 and L = 0, we obtain (ψ,F )-contraction mappings.
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Definition 2.7. Let (X, d) be a b-metric space with s ≥ 1, Let (X, d) be a b-metric space with s ≥ 1, α, β : X →
(0,∞) be two functions, ψ : [0,∞) → [0,∞) and S, T be a self map on X. The mapping T is said to be generalized
(ψ, F )-contraction type II if F ∈ F and L ≥ 0 such that for all x, y ∈ X d(Tx, Ty) > 0 and α(Sx)β(Sy) ≥ s3,
implies that

ψ(d(Sx, Sy)) + F (s5d(Tx, Ty)) ≤ F (d(Sx, Sy)) + LN(x, y), (2.15)

where N(x, y) = min{d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)}

Definition 2.8. Let (X, d) be a b-metric space with s ≥ 1, Let (X, d) be a b-metric space with s ≥ 1, α, β : X →
(0,∞) be two functions, ψ : [0,∞) → [0,∞) and T be a self map on X. The mapping T is said to be generalized
(ψ, F )-contraction type III if F ∈ F and L ≥ 0 such that for all x, y ∈ X, d(Tx, Ty) > 0 implies that

ψ(d(x, y)) + F (α(x)β(y)d(Tx, Ty)) ≤ F (d(x, y)) + LN(x, y), (2.16)

where N(x, y) = min{d(x, y), d(y, Ty), d(x, Ty), d(y, Tx)}.

Definition 2.9. Let (X, d) be a b-metric space with s ≥ 1, Let (X, d) be a b-metric space with s ≥ 1, α, β : X →
(0,∞) be two functions, ψ : [0,∞) → [0,∞) and T be a self map on X. The mapping T is said to be generalized
(ψ, F )-contraction type IV if F ∈ F , such that for all x, y ∈ X, d(Tx, Ty) > 0 implies

ψ(d(x, y)) + F (s5d(Tx, Ty)) ≤ F (d(x, y)). (2.17)

Theorem 2.10. Let (X, d) be a complete b-metric space with s ≥ 1 and T : X → X be a generalized (ψ,F )-
contraction type I mapping. Suppose the following conditions hold:

1. T is a cyclic (αs, βs)− S-admissible mapping,

2. there exists Sx0 ∈ X such that α(Sx0) ≥ s3 and β(Sx0) ≥ s3,

3. T (X) ⊆ S(X),

4. T (X) is complete in S(X),

5. if for any sequence {Sxn} in X with β(Sxn) ≥ s3, for all n ≥ 0 and Sxn → Sx as n→ ∞, then β(Sx) ≥ s3.

Then the pair (T, S) has a coincidence point in X. In addition, if the pair (T, S) is weakly compatible, then the pair
(T, S) has a common fixed point.

Proof . Since, T (X) ⊆ S(X), we can define a sequence {Sxn} by Sxn+1 = Txn for all n ∈ N ∪ {0}. If we suppose
that Sxn+1 = Sxn = Txn, we obtain that xn is the coincidence point of S and T. Now, suppose that Sxn+1 ̸= Sxn for
all n ∈ N ∪ {0}. Since T is a cyclic (αs, βs)− S-admissible mapping and α(Sx0) ≥ s3, we have β(Sx1) = β(Tx0) ≥ s3

and this implies that α(Sx2) = α(Tx1) ≥ s3, continuing the process, we have

α(Sx2k) ≥ s3 and β(Sx2k+1) ≥ s3 ∀ k ∈ N ∪ {0}. (2.18)

Using similar argument, we have that

β(Sx2k) ≥ s3 and α(Sx2k+1) ≥ s3 ∀ k ∈ N ∪ {0}. (2.19)

It follows from (2.18) and (2.19) that α(Sxn) ≥ s3 and β(Sxn) ≥ s3 for all n ∈ N∪{0}. Since α(Sxn)β(Sxn+1) ≥ s3,
we obtain from (2.13)

ψ(d(Sxn, Sxn+1)) + F (d(Sxn+1, Sxn+2)) =ψ(d(Sxn, Sxn+1)) + F (d(Txn, Txn+1))

≤ψ(d(Sxn, Sxn+1)) + F (α(Sxn)β(Sxn+1)d(Txn, Txn+1)) (2.20)

≤F (d(Sxn, Sxn+1)) + Lmin{d(Sxn, Sxn+1), d(Sxn+1, Sxn+2), d(Sxn, xn+2),

d(Sxn+1, Sxn+1)}
=F (d(Sxn, Sxn+1)),

which implies that
F (d(Sxn+1, Sxn+2)) ≤ F (d(Sxn, Sxn+1))− ψ(d(Sxn, Sxn+1)).
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Using similar approach, it is easy to see that

F (d(Sxn, Sxn+1)) ≤ F (d(Sxn−1, Sxn))− ψ(d(Sxn−1, Sxn)).

Using the properties of ψ, then, there exists c > 0 and n0 ∈ N such that ψ(d(xn, xn+1)) > c for all n > n0. We
obtain the following inequalities inductively

F (d(Sxn, Sxn+1)) ≤F (d(Sx0, Sx1))− (ψ(d(Sx0, Sx1)) + · · ·+ ψ(d(Sxn0−1, Sxn0
)))

− (ψ(d(Sxn0
, Sxn0+1)) + · · ·+ ψ(d(Sxn−1, Sxn))) (2.21)

≤F (d(Sx0, Sx1))− (n− n0)c.

Since F ∈ F , taking limit as n→ ∞ in (2.21) and using Lemma 1.8 we have

lim
n→∞

F (d(Sxn, Sxn+1)) = −∞ ⇔ lim
n→∞

d(Sxn, Sxn+1) = 0. (2.22)

In what follows, we now show that {Sxn} is a b-Cauchy sequence. Suppose that {Sxn} is not a b-Cauchy sequence,
then by Lemma 2.3, there exists an ϵ > 0 and sequences of positive integers {Sxnk

} and {Sxmk
} with nk > mk ≥ k

such that d(Sxmk
, Sxnk

) ≥ ϵ. For each k > 0, corresponding to mk, we can choose nk to be the smallest positive
integer such that d(Sxmk

, Sxnk
) ≥ ϵ, d(Sxmk

, Sxnk−1
) < ϵ and (1) − (4) of Lemma 2.3 hold. Since α(Sx0) ≥ s3 and

β(Sx0) ≥ s3, using Lemma 2.4, we obtain that α(Sxmk
)β(Sxnk

) ≥ s3 and we can choose n0 ∈ N ∪ {0} such that

ψ(d(Sxmk+1, Sxnk+1)) + F (d(Sxmk+1, Sxnk+1)) ≤ψ(d(Sxmk+1, Sxnk+1)) + F (α(Sxmk
)β(Sxnk

)d(Txmk
, Txnk

))

≤F (d(Sxmk
, Sxnk

)) + Lmin{d(Sxmk
, Sxmk+1), d(Sxnk

, Sxnk+1),

dS(xmk
, Sxnk+1), d(Sxnk

, Sxmk+1)}. (2.23)

Since F ∈ F , using Lemma 2.3, and (2.22), we have that

lim inf
k→∞

ψ(d(Sxmk
, Sxnk

)) + F (sϵ) = lim inf
k→∞

ψ(d(Sxmk
, Sxnk

)) + F (sϵ)

= lim inf
k→∞

ψ(d(Sxmk
, Sxnk

)) + F (s3
ϵ

s2
)

= lim inf
k→∞

[ψ(d(Sxmk
, Sxnk

) + F (α(Sxmk
)β(Sxnk

)d(Txmk
, Txnk

))]

≤ F (lim inf
k→∞

d(Sxmk
, Sxnk

))

≤ F (sϵ),

where 0 < lim infd(Sxn,Sx)→0+ ψ(d(Sxmk
, Sx)) = µ. That is

µ+ F (sϵ) ≤ F (sϵ)

which is a contradiction. We therefore have that {Sxn} is b-Cauchy. Since T (X) is complete in S(X), there exists
x ∈ X such that limn→∞ Sxn = Sx. More so, using the condition that β(xn) ≥ s3 for all n ∈ N ∪ {0}, we obtain that
β(x) ≥ s3. As such, we have that

ψ(d(Sxn, Sx)) + F (d(Sxn+1, Tx)) ≤ ψ(d(Sxn, Sx)) + F (α(Sxn)β(Sx)d(Txn, Tx))

≤ F (d(Sxn, Sx)) + Lmin{d(Sxn, Sxn+1), d(Sx, Tx), d(Sxn, Tx), d(Sx, Txn)}.

Using the fact that 0 < lim infd(Sxn,Sx)→0+ ψ(d(Sxmk
, Sx)) = µ, F ∈ F and Lemma 1.8, we have that

lim
n→∞

F (d(Sxn+1, Tx)) = −∞

and so

lim
n→∞

d(Sxn+1, Tx) = 0.

Now, observe that

d(Sx, Tx) = lim
n→∞

d(Sxn+1, Tx) = 0.
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Clearly, we have that

d(Sx, Tx) = 0 ⇒ Sx = Tx.

Hence, x is the coincidence point for the pair (T, S). Now,suppose that y = Tx = Sx, using condition () we have
that

Ty = T (Sx) = S(Tx) = Sy.

It is easy to see that α(Sx)β(Sy) ≥ s3, as such we have that

F (d(y, Ty)) = F (d(Tx, Ty)) < ψ(d(Sx, Sy)) + F (d(Tx, Ty)) ≤ ψ(d(Sx, Sy)) + F (α(Sx)β(Sy)d(Tx, Ty))

≤ F (d(Sx, Sy)) + Lmin{d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)},
= F (d(y, Sy)),

which is a contradiction, as such we have that
y = Ty = Sy.

Hence, y is the common fixed point for the pair (T, S). □

Theorem 2.11. Suppose that the hypothesis of Theorem 2.10 holds and in addition suppose α(x) ≥ s3 and β(y) ≥ s3

for all x, y ∈ C(T, S), where C(T, S) is the set of common fixed point for the pair (T, S). Then (T, S) has a unique
common fixed point.

Proof . Let x, y ∈ F (T ), that is x = Tx = Sx and y = Sy = Ty such that x ̸= y. Since, α(x) ≥ s3 and β(y) ≥ s3, we
have α(x)β(y) ≥ s3, we obtain that

F (d(x, y)) = F (d(Tx, Ty)) < ψ(d(Sx, Sy)) + F (d(Tx, Ty)) ≤ ψ(d(Sx, Sy)) + F (α(Sx)β(Sy)d(Tx, Ty))

≤ F (d(Sx, Sy)) + Lmin{d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)},
= F (d(x, y)),

which implies that
F (d(x, y)) < F (d(x, y)).

Clearly, we get a contradiction, thus, (T, S) have a unique common fixed point. □

Theorem 2.12. Let (X, d) be a complete b-metric space with s ≥ 1 and T : X → X be a generalized (ψ, F )-
contraction type II mapping. Suppose the following conditions hold:

1. T is a cyclic (αs, βs)− S-admissible mapping,

2. there exists Sx0 ∈ X such that α(Sx0) ≥ s3 and β(Sx0) ≥ s3,

3. T (X) ⊆ S(X),

4. T (X) is complete in S(X),

5. if for any sequence {Sxn} in X with β(Sxn) ≥ s3, for all n ≥ 0 and Sxn → Sx as n→ ∞, then β(Sx) ≥ s3.

Then the pair (T, S) has a coincidence point in X. In addition, if the pair (T, S) is weakly compatible, then the
pair (T, S) has a common fixed point.

Proof . The prove follow similar approach as in Theorem 2.10 as such we omit it. □

Theorem 2.13. Suppose that the hypothesis of Theorem 2.12 holds and in addition suppose α(x) ≥ s3 and β(y) ≥ s3

for all x, y ∈ C(T, S), where C(T, S) is the set of common fixed point for the pair (T, S). Then (T, S) has a unique
common fixed point.

Proof . The prove follow similar approach as in Theorem 2.13 as such we omit it. □

Theorem 2.14. Let (X, d) be a complete b-metric space with s ≥ 1 and T : X → X be a generalized (ψ, F )-
contraction type III mapping. Suppose the following conditions hold:
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1. T is a cyclic (αs, βs)− S-admissible mapping,

2. there exists x0 ∈ X such that α(x0) ≥ s3 and β(x0) ≥ s3,

3. if for any sequence {xn} in X with β(xn) ≥ s3, for all n ≥ 0 and xn → x as n→ ∞, then β(x) ≥ s3.

Then the pair T has a fixed point.

Proof . The prove follows similar approach as in Theorem 2.10 by taking S = I (identity mapping).

□

Theorem 2.15. Suppose that the hypothesis of Theorem 2.14 holds and in addition suppose α(x) ≥ s3 and β(y) ≥ s3

for all x, y ∈ F (T ), where F (T ) is the set of fixed point of T. Then T has a unique fixed point.

Proof . The prove follows similar approach as in Theorem 2.13 by taking S = I (identity mapping). □

Theorem 2.16. Let (X, d) be a complete b-metric space with s ≥ 1 and T : X → X be a generalized (ψ,F )-
contraction type IV mapping. Then the T has a unique fixed point.

Proof . The prove follows similar approach as in Theorem 2.10 and Theorem 2.13 by taking S = I (identity mapping)L =
0 and removing the condition α(x)β(y) ≥ s3. □

3 Application

In this section, we establish the existence and uniqueness of the solution of a fractional differential equation
involving the Caputo Atangan-Baleanu via fixed point technique.

Dαf(t) = g(t, f(t)), t ∈ I = [0, 1]

f(0) = a, (3.1)

where f : I → R, g ∈ C(I) are continuous functions such that g(0, x(0)) = 0, α ∈ (0, 1) and a is a constant. Let
X = C(I,R) be the space of continuous function defined on I and d(x, y) = supt∈I |x(t) − y(t)|2, where s = 2. It is
well-known that (X, d) is a complete b-metric space.

Definition 3.1. [6, 29, 23] Let f ∈ H1(a, b) with a < b and α ∈ [0, 1]. The Caputo Atangana-Baleanu fractional
derivative of f of oder α is defined by

Dαf(t) =
B(α)

1− α

∫ t

a

f
′
(t)Eα[−α

(t− x)α

1− α
]dx, (3.2)

where Eα is the Mittage-Leffler function defined by

Eα(y) =

∞∑
n=0

yn

Γ(αn+ 1)
(3.3)

and B(α) is a normalizing positive function satisfying B(0) = B(1) = 1. Then, the associated fractional integral is
given by

Iαf(t) =
1− α

B(α)
f(t) +

α

B(α)
Iαf(t), (3.4)

where aI
α is the left Riemann-Liouville fractional integral given as

Iαf(t) =
1

Γ(α)

∫ t

a

(t− x)α−1f(x)dx. (3.5)
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Proposition 3.2. [6] For 0 < α < 1, we have

IαDαf(x) = f(x)− f(a)Eα(λ(x− a)α)− α

1− α
f(a)xαEα,α+1 (λ(x− a)α) (3.6)

= f(x)− f(a).

Similarly

Iαb D
α
b f(x) = f(x)− f(b). (3.7)

Theorem 3.3. Let X = C(I,R) such that for all t ∈ [0, 1] and f1, f2 ∈ C(I,R), we have that

|g(t, f1(s))− g(t, f2(s))| ≤
B(α)Γ(α)

6((1− α)Γ(α) + 1)[1 + supu∈[0,1] |f1(u)|+ supu∈[0,1] |f2(u)|]
× |f1(s)− f2(s)|. (3.8)

Then, the initial value problem (3.1) has a unique solution f(t) ∈ C([0, 1],R).

Proof . Using Proposition 3.2, applying the Atangana–Baleanu integral to both sides of (3.1), we have that

f(t) = a+ Iαg(t, f(t)), (3.9)

defining T : X → X by

(Tf)(t) = a+ Iαg(t, f(t)). (3.10)

It is well-known that if f ∈ C([0, 1],R) is a fixed point of T then f is a solution of problem (3.1).

|(Tf1)(t)− (Tf2)(t)|2 = | Iα[g(s, f1(s))− g(s, f2(s))]|2

=

∣∣∣∣1− α

B(α)
[g(t, f1(t))− g(t, f2(t))] +

α

B(α)
Iα[g(s, f1(s))− g(s, f2(s))]

∣∣∣∣2
≤

{
1− α

B(α)
|g(t, f1(t))− g(t, f2(t))|+

α

B(α)
0I

α|g(s, f1(s))− g(s, f2(s))|
}2

≤
{

B(α)Γ(α)

6((1− α)Γ(α) + 1)[1 + supu∈[0,1] |f1(u)|+ supu∈[0,1] |f2(u)|]

}2

(3.11)

×
{
1− α

B(α)
+

α

B(α)
0I

α(1)

}
|f1(s)− f2(s)|}2

=

{
B(α)Γ(α)

6((1− α)Γ(α) + 1)[1 + supu∈[0,1] |f1(u)|+ supu∈[0,1] |f2(u)|]

}2

×
{
1− α

B(α)
+

α

B(α)

1

αΓ(α)

}
|f1(s)− f2(s)|}2

≤
{

B(α)Γ(α)

6((1− α)Γ(α) + 1)[1 + supu∈[0,1] |f1(u)|+ supu∈[0,1] |f2(u)|]

}2

×
{
1− α

B(α)
+

1

B(α)Γ(α)

}
{ sup
s∈[0,1]

|f1(s)− f2(s)|}2

≤ 1

36[1 + supu∈[0,1] |f1(u)|+ supu∈[0,1] |f2(u)|]2
{ sup
s∈[0,1]

|f1(s)− f2(s)|2}

≤ 1

36[1 + supu∈[0,1] |f1(u)− f2(u)|2]
{ sup
s∈[0,1]

|f1(s)− f2(s)|2}

=
d(f1, f2)

36[1 + d(f1, f2)]
.

Taking f1 = x and f2 = y, we have that d(Tx, Ty) ≤ d(x,y)
25(1+d(x,y)) , which implies that 36d(Tx, Ty) ≤ d(x,y)

1+d(x,y) , it

follows that

32d(Tx, Ty) ≤ 36d(Tx, Ty) ≤ d(x, y)

1 + d(x, y)
⇒ 32d(Tx, Ty) ≤ d(x, y)

1 + d(x, y)
, (3.12)
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taking natural logarithm of both sides, we have that

ln(1 + d(x, y)) + ln(s5d(x, y)) ≤ ln(d(x, y)), (3.13)

taking F (t) = ln(t) and ψ(t) = ln(1 + t), we have

ψ(d(x, y)) + F (s5d(x, y)) ≤ F (d(x, y)), (3.14)

that is T is a generalized (ψ,F )-contraction type IV mapping and all conditions in Theorem 2.16 are satisfied, so T
has a unique fixed point and so problem (3.1) has a unique solution. □
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