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Abstract

Here, the existence of at least one nontrivial solution for the (p, q)-Laplacian problem
div(|∇u|p−2∇u) + div(|∇u|q−2∇u) = f(x, u) x ∈ Ω,

|∇u|p−2 ∂u
∂n + |∇u|q−2 ∂u

∂n = g(x, u) x ∈ ∂Ω

is done, where Ω is a bounded domain in RN , N ≥ 3 and q, p ≥ 2, via variational methods.
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1 Introduction

Usually solutions to (p, q)-Laplacian problems are the steady state solutions of the reaction diffusion systems.
Reaction–diffusion systems are mathematical models which correspond to several physical phenomena. This system
has a wide range of applications in physics and related sciences like chemical reaction design, biophysics, plasma
physics, geology, and ecology.
This equations also arise in the study of soliton-like solutions of the nonlinear Schrödinger equation as a model for
elementary particles for example waves in a discrete electrical lattice. These problems have been intensively studied
in the last decades.
In this note, we investigate the existence of at least one weak solutions for a (p, q)-Laplacian problem with Steklov
boundary conditions and our starting point is introducing some notations and recalling a basic result which compose
the tools that are needed for proving our claim.

2 Preliminaries

Thought this note Ω is a bounded domain in RN , N ≥ 3, for p > 1, by |.|p we denote the norm on the Lebesgue

space Lp(Ω), and ∥.∥p denotes the norm of the Sobolev space W 1,p
0 (Ω), i.e. ∥u∥p = |∇u|p.

f, g : Ω× R → R are Carathéodory functions that hold in the following conditions
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(f1) The constants a1, a2 ≥ 0 exist such that

|f(x, t)| ≤ a1 + a2|t|θ−1, (x, t) ∈ Ω× R

with 1 < θ < p∗, where

p∗(N) =

{ Np
N−p p < N,

∞ p ≥ N ;

(f2) f(x, t)t ≥ 0 for all (x, t) ∈ Ω× R;

(f3) f(x, 0) ̸= 0 for all x ∈ Ω;

(g1) The constant b ≥ 0 exists such that

|g(x, t)| ≤ b|t|γ−1, (x, t) ∈ ∂Ω× R

with 1 < γ < p∂∗(N), where

p∂∗(n) =

{
(N−1)p
N−p p < N,

∞ p ≥ N ;

(g2) There exists constant µ > 0 such that

µG(x, t) ≤ tg(x, t), (x, t) ∈ ∂Ω× R

where G(x, t) =
∫ t

0
g(x, s)ds and p, q, µ, γ, θ satisfy the following relations

2 ≤ p < γ < q < µ & θ < µ. (2.1)

Definition 2.1. ((PS) compactness condition) Let X be a reflexive Banach space. We say that I ∈ C(X,R) satisfies
the Palais-Smale (PS) compactness condition if any sequence {uk} ⊂ X such that

• {I(uk)} is bounded, and

• I ′(uk) → 0 in X,

has a convergent subsequence in X.

The Mountain Pass Theorem (MPT) is an existence theorem from the calculus of variations and is as follows.

Theorem 2.2. Let (X, ∥.∥X) be a reflexive Banach space. Suppose that the functional I : X → (−∞,+∞] satisfies
(PS) compactness condition and also the following assertions

(i) I(0) = 0;

(ii) There exists e ∈ V such that I(e) ≤ 0;

(iii) There exists positive constant ρ such that I(u) > 0, if ∥u∥X = ρ;

Then I has a critical value c ≥ ρ which is characterized by

c = inf
h∈Γ

sup
t∈[0,1]

I(h(t)),

where Γ = {h ∈ C([0, 1], X) : h(0) = 0 , h(1) = e}.
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3 Main result

We state now the main result of the paper.

Theorem 3.1. Let Ω be a bounded domain in Rn, n ≥ 3, constants p, q, γ, µ, θ hold the relations (2.1) and the
functions f, g satisfy the assumptions (f1), (f2) and (g1), (g2), respectively. Then the following Steklov problem

div(|∇u|p−2∇u) + div(|∇u|q−2∇u) = f(x, u) x ∈ Ω,

|∇u|p−2 ∂u
∂n + |∇u|q−2 ∂u

∂n = g(x, u) x ∈ ∂Ω,
(3.1)

admits at least one nontrivial (weak) solution.

We point out in [2, 3, 4, 5, 6, 7, 8] authors have probed some elliptic equations with different boundary conditions
usually on the Heisenberg groups.

We continue by the definition of weak solution for the problem (3.1).

Definition 3.2. (Weak solution) We say that u ∈ W 1,p
0 (Ω) is a weak solution of (3.1) if the following integral equality

is true ∫
Ω

|∇u|p−2∇u∇vdx+

∫
Ω

|∇u|q−2∇u∇vdx+

∫
Ω

f(x, u)vdx =

∫
∂Ω

g(x, u)vdσ,

for any v ∈ W 1,p
0 (Ω).

We consider the Euler-Lagrange energy functional corresponding to the problem (3.1); i.e.,

I(u) :=
1

p

∫
Ω

|∇u|pdx+
1

q

∫
Ω

|∇u|qdx+

∫
Ω

F (x, u)dx−
∫
∂Ω

G(x, u)dσ,

that in which

F (x, t) =

∫ t

0

f(x, s)ds & G(x, t) =

∫ t

0

g(x, s)ds.

Clearly, every critical point of I is a weak solution of the problem (3.1). To prove that I has a critical point we apply
MPT (Theorem 2.2):

Firstly, we verify that I satisfies MPT conditions:

Proof . It is clear that I(0) = 0. Since p < q, so W 1,q(Ω) ↪→ W 1,p(Ω) and from (g2), one has

C|t|µ ≤ G(x, t), (x, t) ∈ ∂Ω× R.

for some suitable C > 0. Take e ∈ W 1,q(Ω) ⊂ W 1,p(Ω), then for appropriate a′1, a
′
2 > 0, we have

I(te) = tp

p ∥e∥
p
p +

tq

q ∥e∥
q
q +

∫
Ω
F (x, te)dx−

∫
∂Ω

G(x, te)dσ

≤ tp

p ∥e∥
p
q +

tq

q ∥e∥
q
q + a′1∥u∥q + a′2|t|θ∥u∥θq − C|t|µ

∫
∂Ω

|e|µdσ.

Now, since µ > q > γ > p > 1 and µ > θ for t large enough I(te) is negative. We now prove condition (iii) of MPT.
From (f2) one gains that F (x, t) ≥ 0 for t ∈ R. Take u with ∥u∥p = ρ > 0. Using standard embedding it follows that

I(u) ≥ 1

p
ρp +

1

q
ρq − b′ργ > 0,

provided ρ > 0 is small enough. Therefore, MPT conditions are held for the functional I. □

Now, we verify Palais-Smale compactness condition.

Proof . In fact we show that any (PS)-sequence is bounded. To this end, suppose that {uk} is a sequence in W 1,p
0 (Ω)

such that
{I(uk)} is bounded & I ′(uk) → 0 in W 1,p

0 (Ω).



122 Razani, Safari

Using the standard embedding, there exists b′ > 0 such that

I ′(uk)uk = ∥uk∥pp + ∥uk∥qq +
∫
Ω
f(x, uk)ukdx−

∫
∂Ω

g(x, uk)ukdσ,
≥ ∥uk∥pp + ∥uk∥qp − b′∥uk∥γp

Thus, for large enough k we have
∥uk∥qp ≤ ∥uk∥pp + ∥uk∥qp ≤ b′∥uk∥γp .

Since γ < q, {uk} is a bounded sequence in W 1,p
0 (Ω) as desired. □
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