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Abstract

In this paper, we investigate the Toeplitz determinant for a family of functions with bounded turnings, we give
estimates of the Toeplitz determinants of fifth order for the set R of univalent functions with bounded turnings in the
unit disc. Also, we obtain bounds of the fifth Toeplitz determinant for the subclasses of the class R.
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1 Introduction

Assume that A denotes the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disc U = {z : z ∈ C : |z| < 1}. Further, by S we shall denote the class of all
functions in A which are univalent in U. Also, let, S∗ and C denote the classes of starlike and convex functions
respectively and are defined as:

S∗ = {f ∈ S : Re

(
zf ′(z)

f(z)

)
> 0, z ∈ U},

C = {f ∈ S : Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ U}.

Suppose that P denote the class of analytic functions p of the type

p(z) = 1 +

∞∑
n=2

cnz
n, (1.2)

such that Re (p(z)) > 0. A function f ∈ A is said to be close-to-convex, if there exists a starlike function g ∈ S∗ such
that

Re

(
zf ′(z)

g(z)

)
> 0,
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for z ∈ U.
Assume that R denotes the class of functions f in A satisfying Re (f ′(z)) > 0 in U. It is easy to verify that

functions in R are close-to-convex and hence univalent. Functions in R are sometimes called functions of bounded
turnings.

Also, let m ∈ N = {1, 2, . . . }. An analytic function f is m−fold symetric in U, if

f(e
2πi
m z) = e

2πi
m f(z), (z ∈ U).

By Sm, we shall denote the set of m−fold univalent functions having the following Taylor series form

f(z) = z +

∞∑
k=1

amk+1z
mk+1, (z ∈ U). (1.3)

The sub-family Rm of Sm is the set of m−fold symetric functions with bounded turnings.
An analytic function f of the form(1.3) belongs the family Rm, if and only if

f ′(z) = p(z),

with p ∈ Pm, where the set Pm is defined by

Pm = {p ∈ P : p(z) = 1 +

∞∑
k=1

cmkz
mk, z ∈ U}. (1.4)

Pommerenke [11, 12] introduced the idea of Hankel determinants, and he defined those for univalent functions
f ∈ S as follows:

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 ... an+q−1

an+1 an+2 ... an+q−2

. . . .

. . . .

. . . .
an+q−1 an+q−2 ... an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣
In the theory of analytic functions, finding the upper bound of |Hq(n)| is one of the most studied problems. Several

researchers found the above-mentioned bound for different subfamilies of univalent functions for fixed values of q and
n[14, 15, 19]. For the subfamilies S∗, C and R of the set S the sharp bounds of |H2(2)| were investigated by Janteng
et al.[5, 6]. they proved the bounds as follows:

|H2(2)| ≤


1 , f ∈ S∗,
1

8
, f ∈ C,

4

9
, f ∈ R.

(1.5)

The accurate estimate of |H2(2)| was obtained by Krishna et al.[7] for the family of Bazilevic functions. For
subfamilies of S, According to Thomas’ conjecture [13], if f ∈ S, then |Hq(2)| ≤ 1, but it was shown by Li and
Srivastava in [9] that this conjecture is not true for n ≥ 4. Estimation of |H3(1)| is much more difficult. Babalola [3]
published the first paper on H3(1)(f) in 2010 in which he obtained the upper bound of |H3(1)| for the subfamilies
S∗, C and R. Zaprawa [18] improved the results of Babalola[3] recently in 2017, by showing

|H3(1)| ≤


1 , f ∈ S∗,
49

540
, f ∈ C,

41

60
, f ∈ R.

(1.6)

Arif et al. [2] found the upper bounds of |H4(1)| and |H5(1)| for the classes of functions with bounded turnings.
Toeplitz determinants are closely related to Hankel determinants [10]. Toeplitz matrices have constant entries along
the diagonal. Toeplitz matrices have some applications in pure and applied mathematics[17].
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Thomas and Halim in [16] introduced the symmetric determinant Tq(n) for analytic functions f of the form (1.1)
defined by,

Tq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 ... an+q−1

an+1 an ... an+q−2

. . . .

. . . .

. . . .
an+q−1 an+q−2 ... an

∣∣∣∣∣∣∣∣∣∣∣∣
q ∈ N \ 1, n ∈ N.

The study of exact upper bound of |Tq(n)| for different subclasses of analytic functions has attracted some authors.
The Toeplitz determinant Tq(n) for class S of univalent functions was studied and improved by Ali et al.[1]. Also Ali
et al.[1] have investigated Tq(n) for subclasses of S.
To prove our main results, we need following lemmas and theorems.

Lemma 1.1. If p ∈ P and of the form (1.2), then for n ∈ N = {1, 2, . . . }, the following sharp inequality hold

|cn| ≤ 2. (1.7)

Lemma 1.2. If p ∈ P and of the form (1.2), then for n, k ∈ N = {1, 2, . . . }, the following inequalities hold

|cn+k − λcnck| ≤ 2, for 0 ≤ λ ≤ 1, (1.8)

the inequalities (1.7) and (1.8) are proved in [4] and [8] respectively.

Lemma 1.3. [2] If f ∈ R and n+m = k + l, then

|anam − akal ≤
4

µ
(1.9)

where µ = min{mn, kl}.

Theorem 1.4. [1] Let f ∈ S be of the form (1.1). Then

(i) : |T2(n)| ≤ |a2n − a2n+1| ≤ 2n2 + 2n+ 1 (1.10)

(ii) : |T3(1)| ≤ 24. (1.11)

Both inequalities are sharp.

Theorem 1.5. [1] Let f ∈ S∗ be of the form (1.1). Then

T3(2) ≤ 84.

The inequality is sharp.

Theorem 1.6. [1] Let f ∈ R be of the form (1.1). Then

(i) : |T2(n)| ≤
4

n2
+

4

(n+ 1)2
, n ≥ 2. (1.12)

(ii) : |T3(1)| ≤
35

9
(1.13)

(iii) : |T3(2)| ≤
7

3
. (1.14)

In this paper, we obtain bounds of the fifth Toeplitz determinant for a family of functions with bounded turnings.



102

2 Bounds of T5(1) for the set R
In this section, we obtain bounds of |T5(1)| for the set R. The fifth Toeplitz determinant |T5(1)| is given by

T5(1) =

∣∣∣∣∣∣∣∣∣∣
1 a2 a3 a4 a5
a2 1 a2 a3 a4
a3 a2 1 a2 a3
a4 a3 a2 1 a2
a5 a4 a3 a2 1

∣∣∣∣∣∣∣∣∣∣
(2.1)

we can write T5(1) in the form
T5(1) = T4(1)− a2A+ a3B − a4C + a5D.

with

T4(1) = T3(1)− a2∆1 + a3∆2 − a4∆3, (2.2)

A = a2T3(1)− a2∆4 + a3∆5 − a4∆6, (2.3)

B = a2∆7 −∆8 + a3∆9 − a4∆10, (2.4)

C = a2∆11 −∆12 + a2∆13 − a4∆14, (2.5)

D = a2∆15 −∆16 + a2∆17 − a3∆18, (2.6)

where

T3(1) = (1− a22)− a2(a2 − a2a3) + a3(a
2
2 − a3), (2.7)

∆1 = a2(1− a22)− a2(a3 − a2a4) + a3(a2a3 − a4), (2.8)

∆2 = a2(a2 − a2a3)− (a3 − a2a4) + a3(a
2
3 − a2a4), (2.9)

∆3 = a2(a
2
2 − a3)− (a3a2 − a4) + a2(a

2
3 − a2a4), (2.10)

∆4 = a3(1− a22)− a2(a4 − a2a5) + a3(a4a2 − a5), (2.11)

∆5 = a3(a2 − a2a3)− (a4 − a2a5) + a3(a3a4 − a2a5), (2.12)

∆6 = a3(a
2
2 − a3)− (a2a4 − a5) + a2(a4a3 − a2a5), (2.13)

∆7 = a2(1− a22)− a2(a3 − a2a4) + a3(a2a3 − a4), (2.14)

∆8 = a3(1− a22)− a2(a4 − a2a5) + a3(a2a4 − a5), (2.15)

∆9 = a3(a3 − a2a4)− a2(a4 − a2a5) + a2(a
2
4 − a3a5), (2.16)

∆10 = a3(a2a3 − a4)− a2(a2a4 − a5) + a2(a
2
4 − a3a5), (2.17)

∆11 = a2(a2 − a2a3)− (a3 − a2a4) + a3(a
2
3 − a2a4), (2.18)

∆12 = a3(a2 − a2a3)− (a4 − a2a5) + a3(a3a4 − a2a5), (2.19)

∆13 = a3(a3 − a2a4)− a2(a4 − a2a5) + a3(a
2
4 − a3a5), (2.20)

∆14 = a3(a
2
3 − a2a4)− a2(a3a4 − a2a5) + (a24 − a3a5), (2.21)

and

∆15 = a2(a
2
2 − a3)− (a2a3 − a4) + a2(a

2
3 − a2a4), (2.22)

∆16 = a3(a
2
2 − a3)− (a2a4 − a5) + a2(a3a4 − a2a5), (2.23)

∆17 = a3(a2a3 − a4)− a2(a2a4 − a5) + a2(a
2
4 − a3a5), (2.24)

∆18 = a3(a
2
3 − a2a4)− a2(a3a4 − a2a5) + (a24 − a3a5), (2.25)

From (2.1) we consider that T5(1) is a polynomial of four successive coefficients a2, a3, a4 and a5 of a function f in
a given class.
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Theorem 2.1. If f ∈ R and has the form (1.1), then

|T4(1)| ≤
5199

486
= 10.69 (2.26)

Proof . Let f ∈ R. From Theorem 1.6, using Lemma 1.2 and Lemma 1.3 along with the inequality |an| ≤
2

n
for

n ≥ 2, we have,

|T3(1)| =
∣∣∣(1− a22)− a2(a2 − a2a3) + a3(a

2
2 − a3)

∣∣∣ ≤ 35

9
,

|∆1| =
∣∣∣a2(1− a22)− a2(a3 − a2a4) + a3(a2a3 − a4)

∣∣∣ ≤ 20

6
,

|∆2| =
∣∣∣a2(a2 − a2a3)− (a3 − a2a4) + a3(a

2
3 − a2a4)

∣∣∣ ≤ 187

54
,

|∆3| =
∣∣∣a2(a22 − a3)− (a3a2 − a4) + a2(a

2
3 − a2a4)

∣∣∣ ≤ 14

6
.

Since,

T4(1) = T3(1)− a2∆1 + a3∆2 − a4∆3,

by using the triangle inequality, we conclude the proof. □

Theorem 2.2. If f ∈ R and has the form (1.1), then

|A| ≤ 735

90
= 8.16. (2.27)

Proof . Let f ∈ R. From Theorem 1.6, using Lemma 1.2 and Lemma 1.3 along with the inequality |an| ≤
2

n
for

n ≥ 2, we get,

|T3(1)| =
∣∣∣(1− a22)− a2(a2 − a2a3) + a3(a

2
2 − a3)

∣∣∣ ≤ 35

9
,

|∆4| =
∣∣∣a3(1− a22)− a2(a4 − a2a5) + a3(a4a2 − a5)

∣∣∣ ≤ 73

30
,

|∆5| =
∣∣∣a3(a2 − a2a3)− (a4 − a2a5) + a3(a3a4 − a2a5)

∣∣∣ ≤ 55

30
,

|∆6| =
∣∣∣a3(a22 − a3)− (a2a4 − a5) + a2(a4a3 − a2a5)

∣∣∣ ≤ 56

45
.

Consequently, from (2.3) by using the triangle inequality, we obtain the declared bound. □

Theorem 2.3. If f ∈ R and has the form (1.1), then

|B| ≤ 4054

540
= 7.50 (2.28)

Proof . Let f ∈ R. Using Lemma 1.2, Lemma 1.3 and |an| ≤
2

n
for n ≥ 2, it follows that

|∆7| =
∣∣∣a2(1− a22)− a2(a3 − a2a4) + a3(a2a3 − a4)

∣∣∣ ≤ 21

6
,

|∆8| =
∣∣∣a3(1− a22)− a2(a4 − a2a5) + a3(a2a4 − a5)

∣∣∣ ≤ 73

30
,

|∆9| =
∣∣∣a3(a3 − a2a4)− a2(a4 − a2a5) + a2(a

2
4 − a3a5)

∣∣∣ ≤ 145

90
,

|∆10| =
∣∣∣a3(a2a3 − a4)− a2(a2a4 − a5) + a2(a

2
4 − a3a5)

∣∣∣ ≤ 1.

Putting the above values and an ≤ 2
n for n ≥ 2 in (2.4) gives the desired result. This completed the proof. □



104

Theorem 2.4. If f ∈ R and has the form (1.1), then

|C| ≤ 1956

270
= 7.24. (2.29)

Proof . Let f ∈ R. Formulas (1.8), (1.9) and the inequality |an| ≤
2

n
for n ≥ 2, result in

|∆11| =
∣∣∣a2(a2 − a2a3)− (a3 − a2a4) + a3(a

2
3 − a2a4)

∣∣∣ ≤ 47

18
,

|∆12| =
∣∣∣a3(a2 − a2a3)− (a4 − a2a5) + a3(a3a4 − a2a5)

∣∣∣ ≤ 615

270
,

|∆13| =
∣∣∣a3(a3 − a2a4)− a2(a4 − a2a5) + a3(a

2
4 − a3a5)

∣∣∣ ≤ 501

270
,

|∆14| =
∣∣∣a3(a23 − a2a4)− a2(a3a4 − a2a5) + (a24 − a3a5)

∣∣∣ ≤ 1.

From the above values along with the inequality |an| ≤
2

n
for n ≥ 2, in (2.5), we obtain the desired result. □

Theorem 2.5. If f ∈ R and has the form (1.1), then

|D| ≤ 412

90
= 4.57. (2.30)

Proof . Let f ∈ R. Applying (1.8), (1.9) and |an| ≤
2

n
for n ≥ 2, we get,

|∆15| =
∣∣∣a2(a22 − a3)− (a2a3 − a4) + a2(a

2
3 − a2a4)

∣∣∣ ≤ 5

3
,

|∆16| =
∣∣∣a3(a22 − a3)− (a2a4 − a5) + a2(a3a4 − a2a5)

∣∣∣ ≤ 112

90
,

|∆17| =
∣∣∣a3(a2a3 − a4)− a2(a2a4 − a5) + a2(a

2
4 − a3a5)

∣∣∣ ≤ 1,

|∆18| =
∣∣∣a3(a23 − a2a4)− a2(a3a4 − a2a5) + (a24 − a3a5)

∣∣∣ ≤ 1.

Now putting the above estimates and |an| ≤
2

n
in (2.6), we obtain the desired result. The proof is complete. □

Theorem 2.6. If f ∈ R and has the form (1.1), then

|T5(1)| ≤ 32.34. (2.31)

Proof . Let f ∈ R be of the form 1.1. Clearly,

|T5(1)| ≤ |T4(1)|+ |a2||A|+ |a3||B|+ |a4||C|+ |a5||D|. (2.32)

Now putting the bounds found in Theorems 2.1–2.5 and the inequality |an| ≤
2

n
for n ≥ 2 in (2.32), we obtain

|T5(1)| ≤
5199

486
+

735

90
+

(
2

3
× 4054

540

)
+

(
1

2
× 1956

270

)
+

(
2

5
× 412

90

)
= 10.69 + 8.16 + 8.04 + 3.62 + 1.83

= 32.34

This concludes the proof. □
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3 Bounds of T5(1) for the sets R2 and R4

In this section, we obtained bounds of |T5(1)| for sub-families R2 and R4.

Theorem 3.1. Let f ∈ R2 be of the form (1.3). Then

|T5(1)| ≤ 3.47

Proof . Since f ∈ R2, there is a function p ∈ P2 such that

f ′(z) = p(z).

Equating coefficients,

a2 = 0, a3 =
c2
3
, a4 = 0, a5 =

c4
5
. (3.1)

By a simple computation, T5(1) can be written as

T5(1) = (1− a23)(1− 2a23 + 2a5a
2
3 − a25). (3.2)

Using (3.1) and triangle inequality, we get

|T5(1)| ≤1 +
|c2|2

3
+

2

45
|c4||c2|2 +

1

25
|c4|2

+
2

81
|c2|4 +

2

405
|c4||c2|4 +

1

225
|c2|2|c4|2.

From Lemma 1.1, it is easily follows that,

|T5(1)| ≤ 1 +
4

3
+

16

45
+

4

25
+

32

81
+

64

405
+

16

225
.

Therefore, |T5(1)| ≤ 3.47. This concludes the proof. □

Theorem 3.2. Let f ∈ R4 be of the form (1.3). Then

|T5(1)| ≤ 1.16

Proof . Since f ∈ R4, there is a function p ∈ P4 such that

f ′(z) = p(z).

From (1.3) and (1.4), when m = 4, we can write

a2 = 0, a3 = 0, a4 = 0, a5 =
c4
5
. (3.3)

It is easy to see that
T5(1) = 1− a25.

Using (3.3) and triangle inequality, we conclude,

|T5(1)| ≤ 1 +
1

25
|c4|2.

From Lemma1.1, it easily follows that |T5(1)| ≤ 1.16. This concludes the proof. □

4 Conclusion

The bounds of Toeplitz and Hankel determinants have always been the main interest of researchers in univalent
and bi-univalent classes. Many studies related to this problem are around analytic normalized functions. Here the
fifth Toeplitz determinant is obtained for functions with bounded turnings.
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