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Abstract

In this paper, we consider a class of nonlinear fourth-order wave equation with damping and source terms of variable-
exponent types. First, by the Faedo-Galerkin approximation method with positive initial energy and suitable conditions
on the variable exponents m(.) and r(.), we established the local existence. We also prove that the local solution is
global. Finally, the stability estimate of the solution was obtained by using the Komornik inequality
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1 Introduction

We consider the following boundary value problem: utt +∆2u−∆u+ |ut|m(x)−2
ut = |u|r(x)−2

u, (x, t) ∈ Ω× (0, T ) ,
u (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

(1.1)

where Ω is a bounded domain in Rn, n ≥ 1 with smooth boundary ∂Ω. m (.) and r (.) are given measurable functions
on Ω, satisfying

2 < r1 ≤ r (x) ≤ r2 < 2
n− 1

n− 2
, if n ≥ 3,

2 < r (x) < ∞, if n = 1, 2,

2 < m1 ≤ m (x) ≤ m2 < 2
n

n− 2
, if n ≥ 3,

2 < m (x) < ∞, if n = 1, 2,
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and

r1 := ess inf
x∈Ω

r (x) , r2 := esssup
x∈Ω

r (x) ,

m1 := ess inf
x∈Ω

m (x) , m2 := esssup
x∈Ω

m (x) ,

We also assume that m (.) and r (.) satisfy the log-Hölder continuity condition:

|q (x)− q (y)| ≤ − A

log |x− y|
, for a.e. x, y ∈ Ω, with |x− y| < δ, (1.2)

A > 0, 0 < δ < 1.

Equation (1.1) can be viewed as a generalization of the following equation

utt +∆2u−∆u+ g (ut) = f (u) , (1.3)

have been discussed by many authors. For g (ut) = |ut|p−2
ut, the global existence and blow up results can by found

in [6]. Recently, Pişkin and Polat [13] proved decay of the solution of problem (1.3).

Messaoudi [8] studied the following equation

utt +∆2u+ |ut|p−2
ut = |u|r−2

u, (1.4)

he proved the local existence and blow up of the solution. Also, Wu and Tsai [15] obtained global existence and blow
up of the solution of the problem (1.4). Later, Chen and Zhou [1] studied blow up of the solution of the problem (1.4)
for positive initial energy.

Many authors studied the existence and nonexistence of solutions for problem with variable exponents, can refer
[4, 5, 10, 12, 14, 16, 17]. Messaoudi et al. [11] considered the following equation:

utt −∆u+ a |ut|m(x)−2
ut = b |u|p(x)−2

u,

and used the Faedo-Galerkin method to establish the existence of a unique weak local solution. They also proved
that the solutions with negative initial energy blow up in finite time. Messaoudi and Talahmeh [9], considered the
following equation:

utt − div
(
|∇u|r(x)−2 ∇u

)
+ a |ut|m(x)−2

ut = b |u|p(x)−2
u,

where a, b are the nonnegative constants. They proved a finite-time blow-up result for the solution with negative initial
energy as well as for certain solutions with positive initial energy; in the case where m (x) = 2 and under suitable
conditions on the exponents, they established a blow-up result for solutions with arbitrary positive initial energy.

Our objective in this paper is to study: In section 2, some notations, assumptions and preliminaries are introduced,
in section 3, we proved the local solution, the global existence of solution is proved and the main results of this article
are shown in section 4.

2 Preliminaries

We begin this section with some notations and definitions about Lebesgue and Sobolev spaces with constant
exponents and variable exponents (see [3]). Denote by ∥.∥p , the Lp (Ω) norm of a Lebesgue function u ∈ Lp (Ω)
endowed with the norm

∥u∥pp =

∫
Ω

|u (x)|p dx.

We also consider the Sobolev space equiped with the scalar product

(u, v)H2(Ω) = (u, v) + (∆u, ∆v) .

We define the subspace of H2 (Ω) , denoted by H2
0 (Ω) , as the closure of C∞

0 (Ω) in the strong topology of H2 (Ω) .
This space endowed with the norm induced by the scalar product

(u, v)H2
0 (Ω) = (∆u, ∆v) .
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is a Hilbert space. We use W 1,p
0 (Ω) to the well-known Sobolev space such that u and |∇u| are in Lp (Ω) equipped

with the norm ∥u∥W 1,p
0 (Ω) = ∥∇u∥p .

Let q : Ω → [1, +∞] be a measurable function, where Ω is a domain of Rn.

We define the Lebesque space with a variale exponent q (.) by:

Lq(.) (Ω) :=
{
v : Ω → R : measurable in Ω, ϱq(.) (λv) < +∞, for some λ > 0

}
,

where ϱq(.) (v) =
∫
Ω

|v (x)|q(x) dx.

The set Lq(.) (Ω) equipped with the norm ( Luxemburg’s norm)

∥v∥q(.) := inf

λ > 0 :

∫
Ω

∣∣∣∣v (x)λ

∣∣∣∣q(x) dx ≤ 1

 ,

Lq(.) (Ω) is a Banach space [3].

We next, define the variable-exponent Sobolev space W 1,q(.) (Ω) as follows:

W 1,q(.) (Ω) :=
{
v ∈ Lq(.) (Ω) such that ∇v exists and |∇v| ∈ Lq(.) (Ω)

}
.

This is a Banach space with respect to the norm ∥v∥W 1,q(.)(Ω) = ∥v∥q(.) + ∥∇v∥q(.) .

Furthemore, we set W
1,q(.)
0 (Ω) to be the closure of C∞

0 (Ω) in the space W 1,q(.) (Ω). Let us note that the space

W
1,q(.)
0 (Ω) has a differenet definition in the case of variable exponents.

However, under the log-Hölder continuity condition, both definitions are equivalent [3]. The space W−1,q
′
(.) (Ω) ,

dual of W
1,q(.)
0 (Ω) , is defined in the same way as the classical Sobolev spaces, where 1

q(.) +
1

q′ (.)
= 1.

Lemma 2.1. [3] If
1 ≤ q1 := ess inf

x∈Ω
q (x) ≤ q (x) ≤ q2 := esssup

x∈Ω
q (x) < ∞,

then we have
min

{
∥u∥q1q(.) , ∥u∥q2q(.)

}
≤ ϱq(.) (u) ≤ max

{
∥u∥q1q(.) , ∥u∥q2q(.)

}
,

for any u ∈ Lq(.) (Ω) .

Lemma 2.2. [3]( Hölder’s Inequality) Suppose that p, q, s ≥ 1 are measurable functions defined on Ω such that

1

s (y)
=

1

p (y)
+

1

q (y)
, for a.e. y ∈ Ω.

If u ∈ Lp(.) (Ω) and v ∈ Lq(.) (Ω) , then uv ∈ Ls(.) (Ω) , with

∥uv∥s(.) ≤ 2 ∥u∥p(.) ∥v∥q(.) .

Lemma 2.3. (Lars et al) [3] If p is a measurable function on Ω satisfying (1.2), then the embedding H1
0 (Ω) ↪→

Lp(.) (Ω) is continuous and compact.

From the Lemma 2.3, there exists the positive constant c∗ satisfying

∥u∥p(.) ≤ c∗ ∥∇u∥2 , for u ∈ H1
0 (Ω) .

Lemma 2.4. [2]Let G : R+ −→ R+ be a non-increasing function and assume that there are two constants α > 0 and
C > 0 such that

∞∫
t

Gα+1 (s) ds ≤ CGα (0)G (s) , ∀t ∈ R+.
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Then we have

G (t) ≤ G (0)

(
C + αt

C + αC

)−1
α

, ∀ t ≥ C.

Theorem 2.5. Suppose that r, m ∈ C
(
Ω
)
and satisfies (1.2). Then, for any (u0, u1) ∈ H2 (Ω) ∩H4 (Ω) × L2 (Ω) ,

problem (1.1) has a unique weak local solution

u ∈ L∞ (
(0, T ) , H2 (Ω)

)
,

ut ∈ L∞ (
(0, T ) , L2 (Ω)

)
∩ Lm(.) (Ω× (0, T )) ,

utt ∈ L∞ (
(0, T ) , L2 (Ω)

)
.

In the order to state and prove our result, we define the potential energy functional and Nehari’s functional, by
the following

E (t) = E (u (t)) =
1

2

(
∥ut (t)∥22 + ∥∇u (t)∥22 + ∥∆u (t)∥22

)
−
∫
Ω

1

r (x)
|u (t)|r(x) dx. (2.1)

I (t) = I (u (t)) = ∥∇u (t)∥22 + ∥∆u (t)∥22 −
∫
Ω

|u (t)|r(x) dx. (2.2)

J (t) = J (u (t)) =
1

2

(
∥∇u (t)∥22 + ∥∆u (t)∥22

)
−
∫
Ω

1

r (x)
|u (t)|r(x) dx. (2.3)

Lemma 2.6. Under the assumptions of theorem 2.5, we have

E
′
(t) = −

∫
Ω

|ut (t)|m(x)
dx ≤ 0, t ∈ [0, T ] .

and
E (t) ≤ E (0) .

Proof . We multiply the first equation of (1.1) by ut and integrating over the domain Ω, we get

d

dt

1

2

(
∥ut (t)∥22 + ∥∇u (t)∥22 + ∥∆u (t)∥22

)
−
∫
Ω

1

r (x)
|u (t)|r(x) dx


= −

∫
Ω

|ut (t)|m(x)
dx,

then

E
′
(t) = −

∫
Ω

|ut (t)|m(x)
dx ≤ 0. (2.4)

Integratying (2.4) over (0, t) , we obtain
E (t) ≤ E (0) .

□

Lemma 2.7. Assume that the assumptions of theorem 2.5 and E (0) > 0 hold,

I (0) > 0,

and
θ1 + θ2 < 1, (2.5)
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where

θ1 := αmax

{
cr11,∗

(
2r1

r1 − 2
E (0)

) r1−2
2

, cr21,∗

(
2r1

r1 − 2
E (0)

) r2−2
2

}
,

θ2 := (1− α)max

{
cr12,∗

(
2r1

r1 − 2
E (0)

) r1−2
2

, cr22,∗

(
2r1

r1 − 2
E (0)

) r2−2
2

}
,

with 0 < α < 1, c1,∗ and c2,∗ are the bests embedding constants of H1
0 (Ω) ↪→ Lr(.) (Ω) and H2

0 (Ω) ↪→ Lr(.) (Ω)
respectively, then I (t) > 0, for all t ∈ [0, T ] .

Proof . By continuity, there exists T∗, such that

I (t) ≥ 0, for all t ∈ [0, T∗] . (2.6)

Now, we have for all t ∈ [0, T∗] :

J (t) = J (u (t)) =
1

2

(
∥∇u (t)∥22 + ∥∆u (t)∥22

)
−
∫
Ω

1

r (x)
|u (t)|r(x) dx

≥ 1

2
∥∇u (t)∥22 +

1

2
∥∆u (t)∥22 −

1

r1

(
∥∇u (t)∥22 + ∥∆u (t)∥22 − I (t)

)
≥ r1 − 2

2r1

(
∥∇u (t)∥22 + ∥∆u (t)∥22

)
+

1

r1
I (t) ,

using (2.6), we obtain

∥∇u (t)∥22 + ∥∆u (t)∥22 ≤ 2r1
r1 − 2

J (t) , for all t ∈ [0, T∗] . (2.7)

By Lemma 2.6, we get

∥∇u (t)∥22 + ∥∆u (t)∥22 ≤ 2r1
r1 − 2

E (t) ≤ 2r1
r1 − 2

E (0) (2.8)

On the other hand, by Lemma 2.1, we have∫
Ω

|u (t)|r(x) dx ≤ Max
{
∥u (t)∥r1r(.) , ∥u (t)∥r2r(.)

}
= α Max

{
∥u (t)∥r1r(.) , ∥u (t)∥r2r(.)

}
+ (1− α)Max

{
∥u (t)∥r1r(.) , ∥u (t)∥r2r(.)

}
.

By the embedding of H1
0 (Ω) ↪→ Lr(.) (Ω) and H2

0 (Ω) ↪→ Lr(.) (Ω) , we obtain∫
Ω

|u (t)|r(x) dx ≤ α Max
{
cr11,∗ ∥∇u (t)∥r12 , cr21,∗ ∥∇u (t)∥r22

}
+ (1− α)Max

{
cr12,∗ ∥∆u (t)∥r12 , cr22,∗ ∥∆u (t)∥r22

}
≤ α Max

{
cr11,∗ ∥∇u (t)∥r1−2

2 , cr21,∗ ∥∇u (t)∥r2−2
2

}
× ∥∇u (t)∥22

+ (1− α)Max
{
cr12,∗ ∥∆u (t)∥r1−2

2 , cr22,∗ ∥∆u (t)∥r2−2
2

}
× ∥∆u (t)∥22

≤ α Max

{
cr11,∗

(
2r1

r1 − 2
E (0)

) r1−2
2

, cr21,∗

(
2r1

r1 − 2
E (0)

) r2−2
2

}
× ∥∇u (t)∥22

+ (1− α)Max

{
cr12,∗

(
2r1

r1 − 2
E (0)

) r1−2
2

, cr22,∗

(
2r1

r1 − 2
E (0)

) r2−2
2

}
× ∥∆u (t)∥22
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Then, we get ∫
Ω

|u (t)|r(x) dx ≤ θ1 ∥∇u (t)∥22 + θ2 ∥∆u (t)∥22 , for all t ∈ [0, T∗] . (2.9)

Since θ1 + θ2 < 1, then ∫
Ω

|u (t)|r(x) dx < ∥∇u (t)∥22 + ∥∆u (t)∥22 , for all t ∈ [0, T∗] . (2.10)

This implies that
I (t) > 0, for all t ∈ [0, T∗] .

By repeating the above procedure, we can extend T∗ to T. □

3 Local existence

In this section we are going to obtain the existence of local solution to the problem (1.1). We will use the Faedo-
Galerkin’s method approximation. Let {vl}∞l=1 be a basis of H2

0 (Ω) wich constructs a complete orthonormal system
in L2 (Ω). Denote by Vk = span {v1, v2, ..., vk} the subspace generated by the first k vectors of the basis {vl}∞l=1 . By
the normalization, we have ∥vl∥ = 1, for any given integer k, we consider the approximation solution

uk (t) =

k∑
l=1

ulk (t) vl,

where uk is the solutions to the following Cauchy problem

(
u

′′

k (t) , vl

)
+
(
∆2uk (t) , vl

)
− (∆uk (t) , vl) +

(∣∣∣u′

k (t)
∣∣∣m(x)−2

u
′

k (t) , vl

)

=
(
|uk (t)|r(x)−2

uk (t) , vl

)
, l = 1, 2, ..., k, (3.1)

uk (0) = u0k =

k∑
i=1

(uk (0) , vl) vl → u0 in H2
0 (Ω) ∩H4 (Ω) , (3.2)

u
′

k (0) = u1k =

k∑
l=1

(
u

′

k (0) , vl

)
vl → u1 in L2 (Ω) . (3.3)

Note that, we can solve the system (3.1)-(3.3) by a Picard’s iteration method in ordinary differential equations.
Hence, there exists a solution in [0, T∗) for some T∗ > 0 and we can extend this solution to the whole interval [0, T ]
for any given T > 0 by making use of the priori estimates below.

The first estimate. Multiplying equation (3.1) by u
′

lk (t) and summing over l from 1 to k,

d

dt

1

2

∥∥∥u′

k

∥∥∥2
2
+

1

2
∥∇uk∥22 +

1

2
∥∆uk∥22 −

∫
Ω

1

r (x)
|uk|r(x)

 dx = −
∫
Ω

∣∣∣u′

k

∣∣∣m(x)

dx. (3.4)

Then

E
′
(uk (t)) = −

∫
Ω

∣∣∣u′

k

∣∣∣m(x)

dx ≤ 0.
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Integrating (3.4) over (0, t) , we obtain the estimate

1

2

∥∥∥u′

k

∥∥∥2
2
+

1

2
∥∇uk∥22 +

1

2
∥∆uk∥22

−
∫
Ω

1

r (x)
|uk|r(x) dx+

t∫
0

∫
Ω

∣∣∣u′

k

∣∣∣m(x)

dxds ≤ E (0) . (3.5)

Then, from (2.10), the inequality (3.5) becomes

1

2
sup

t∈(0, T )

∥∥∥u′

k

∥∥∥2
2
+

r1 − 2

2r1
sup

t∈(0, T )

∥∇uk∥22 +
r1 − 2

2r1
sup

t∈(0, T )

∥∆uk∥22

+

t∫
0

∫
Ω

∣∣∣u′

k

∣∣∣m(x)

dxds ≤ E (0) . (3.6)

From (3.6), we conclude that{
{uk} is uniformly bounded in L∞ (

[0, T ] , H2
0 (Ω)

)
,{

u
′

k

}
is uniformly bounded in L∞ (

[0, T ] , L2 (Ω)
)
∩ Lm(x) (Ω× [0, T ]) .

(3.7)

Since
{
u

′

k

}
is uniformly bounded in Lm(x) (Ω× [0, T ]), then

{∣∣∣u′

k

∣∣∣m(x)−2

u
′

k

}
is bounded in L

m(x)
m(x)−1 (Ω× [0, T ]) ;

hence, up to a subsequence,
∣∣∣u′

k

∣∣∣m(x)−2

u
′

k ⇀ Φ weakly in L
m(x)

m(x)−1 (Ω× [0, T ]) . As in [11], we have to show that

Φ =
∣∣∣u′

∣∣∣m(x)−2

u.

Furthemore, we have from Lemma 2.3 and (3.7) that{
|uk|r(x)−2

uk

}
is uniformly bounded in L∞ (

[0, T ] , L2 (Ω)
)
. (3.8)

By (3.7) and (3.8), we infer that there exists a subsequence of uk (denote still by the same symbol) and a function
u such that 

uk ⇀ u weakly star in L∞ (
[0, T ] , H2

0 (Ω)
)
,

u
′

k ⇀ u
′
weakly star in L∞ (

[0, T ] , L2 (Ω)
)
and weakly in Lm(x) (Ω× [0, T ]) ,

|uk|r(x)−2
uk ⇀ Ψ weakly in L∞ (

[0, T ] , L2 (Ω)
)
.

(3.9)

By the Aubin-Lions compactness Lemma [7], we conclude from (3.9) that

uk ⇀ u strongly in C
(
[0, T ] , H2

0 (Ω)
)
,

which implies
uk ⇀ u everywhere in Ω× [0, T ] . (3.10)

It follow from (3.9) and (3.10) that

|uk|r(x)−2
uk ⇀ |u|r(x)−2

u weakly in L∞ (
[0, T ] , L2 (Ω)

)
. (3.11)

The second estimate. Now, we would like to get more estimates. In doing so, differentiating (3.1) with respect to
t, we get

(
u

′′′

k (t) , vl

)
+
(
∆2u

′

k (t) , vl

)
−
(
∆u

′

k (t) , vl

)
+

(
(m (x)− 1)

∣∣∣u′

k (t)
∣∣∣m(x)−2

u
′′

k (t) , vl

)

=
(
(r (x)− 1) |uk (t)|r(x)−2

u
′

k (t) , vl

)
, l = 1, 2, ..., k, (3.12)
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Next, multiplying the equation (3.12) by u
′′

lk (t) and summing over l from 1 to k, we get

1

2

d

dt

∫
Ω

∣∣∣u′′

k

∣∣∣2 dx+

∫
Ω

∣∣∣∆u
′

k

∣∣∣2 dx+

∫
Ω

∣∣∣∇u
′

k

∣∣∣2 dx
+

∫
Ω

(m (x)− 1)
∣∣∣u′

k

∣∣∣m(x)−2

u
′′2
k dx

=

∫
Ω

(r (x)− 1) |uk|r(x)−2
u

′

ku
′′

kdx (3.13)

We have from Hölder’s inequality that∣∣∣∣∣∣
∫
Ω

(r (x)− 1) |uk|r(x)−2
u

′

ku
′′

kdx

∣∣∣∣∣∣ ≤ (r2 − 1) ∥uk∥r(x)−2
2(r(x)−1)

∥∥∥u′

k

∥∥∥
2(r(x)−1)

∥∥∥u′′

k

∥∥∥
2

(3.14)

We have uk ∈ L∞ (
[0, T ] , H2

0 (Ω)
)
, then∫

Ω

|uk|2r(x)−2
dx ≤

∫
Ω

|uk|2r1−2
dx+

∫
Ω

|uk|2r2−2
dx < +∞,

since, 2 (r1 − 1) ≤ 2 (r (x)− 1) ≤ 2 (r2 − 1) ≤ 2 n
n−2 .

The inequality (3.14), becomes∣∣∣∣∣∣
∫
Ω

(r (x)− 1) |uk|r(x)−2
u

′

ku
′′

kdx

∣∣∣∣∣∣ ≤ c1

∥∥∥u′

k

∥∥∥
2(r(x)−1)

∥∥∥u′′

k

∥∥∥
2

(3.15)

We have from Young’s inequality and Poincare’s inequality that∣∣∣∣∣∣
∫
Ω

(r (x)− 1) |uk|r(x)−2
u

′

ku
′′

kdx

∣∣∣∣∣∣ ≤ cδ

∥∥∥∇u
′

k

∥∥∥2
2
+ δ

∥∥∥u′′

k

∥∥∥2
2

(3.16)

Substituting (3.16) into (3.13) and integrating over (0, t) for all t ∈ [0, T ] , we obtain∫
Ω

∣∣∣u′′

k

∣∣∣2 dx+

∫
Ω

∣∣∣∆u
′

k

∣∣∣2 dx+

∫
Ω

∣∣∣∇u
′

k

∣∣∣2 dx
≤

∥∥∥u′′

k (0)
∥∥∥2
2
+
∥∥∥∆u

′

k (0)
∥∥∥2
2
+

∥∥∥∇u
′

k (0)
∥∥∥2
2
+ c2

t∫
0

(∥∥∥∇u
′

k

∥∥∥2
2
+

∥∥∥u′′

k

∥∥∥2
2

)
ds

(3.17)

It follows from (3.3) and the fact
∥∥∥∇u

′

k (0)
∥∥∥2
2
≤ c3

∥∥∥∆u
′

k (0)
∥∥∥2
2
that

∥∥∥∇u
′

k (0)
∥∥∥2
2
+

∥∥∥∆u
′

k (0)
∥∥∥2
2
≤ c4 (3.18)

where c4 is a positive constant independent of k.

Multiplying both sides of (3.1) by u
′′

lk (t), and then summing over over l from 1 to k and putting t = 0, we get∥∥∥u′′

k (0)
∥∥∥2
2
+
(
∆2uk (0) , u

′′

k (0)
)
−
(
∆uk (0) , u

′′

k (0)
)
+

(∣∣∣u′

k (0)
∣∣∣m(x)−2

u
′

k (0) , u
′′

k (0)

)
=

(
|uk (0)|r(x)−2

uk (0) , u
′′

k (0)
)
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We have from Young’s inequality, (3.2) and (3.3) that∥∥∥u′′

k (0)
∥∥∥
2
≤ c5 (3.19)

where c5 is a positive constant independent of k.

By (3.18) and (3.19), (3.17) becomes

∫
Ω

∣∣∣u′′

k

∣∣∣2 dx+

∫
Ω

∣∣∣∆u
′

k

∣∣∣2 dx+

∫
Ω

∣∣∣∇u
′

k

∣∣∣2 dx ≤ c6 + c7

t∫
0

(∥∥∥u′′

k

∥∥∥2
2
+

∥∥∥∆u
′

k

∥∥∥2
2
+

∥∥∥∇u
′

k

∥∥∥2
2

)
ds.

(3.20)

We gain from (3.20) and Gronwall’s lemma that∥∥∥u′′

k

∥∥∥2
2
+
∥∥∥∆u

′

k

∥∥∥2
2
+
∥∥∥∇u

′

k

∥∥∥2
2
≤ c8, (3.21)

for all t ∈ [0, T ] , and c8 is a positive constant independent of k.

We conclude from (3.21) that
{
u

′

k

}
is uniformly bounded in L∞ (

[0, T ] , H2
0 (Ω)

)
,{

u
′′

k

}
is uniformly bounded in L∞ (

[0, T ] , L2 (Ω)
)
.

(3.22)

Similarly, we have {
u

′

k ⇀ u
′
weakly star in L∞ (

[0, T ] , H2
0 (Ω)

)
,

u
′′

k ⇀ u
′′
weakly star in L∞ (

[0, T ] , L2 (Ω)
)
.

(3.23)

Setting up k −→ ∞ and passing to the limit in (3.1), we obtain(
u

′′
(t) , vl

)
+
(
∆2u (t) , vl

)
− (∆u (t) , vl) +

(∣∣∣u′
(t)

∣∣∣m(x)−2

u
′
(t) , vl

)

=
(
|u (t)|r(x)−2

u (t) , vl

)
, l = 1, 2, ..., k, (3.24)

Since {vl}∞l=1 be a basis of H2
0 (Ω) , we deduce that u satisfies the equation of (1.1). From (3.9), (3.23) and Lemma

3.1.7 in [18] with B = H2
0 (Ω) and L2 (Ω), respectively, we infer that{

uk (0) ⇀ u (0) weakly in H2
0 (Ω) ,

u
′

k (0) ⇀ u
′
(0) weakly in L2 (Ω) .

(3.25)

We get from (3.2), (3.3) and (3.25) that u (0) = u0, u
′
(0) = u1.

Thus, the proof of existence is complete.

Uniqueness of the solution. Now it remains to prove uniqueness. Let u1, u2 be two solutions in the class described
in the statement of this theorem, and w = u1 − u2.

Then w satisfies

wtt +∆2w −∆w +
∣∣u1

t

∣∣m(x)−2
u1
t −

∣∣u2
t

∣∣m(x)−2
u2
t =

∣∣u1
∣∣r(x)−2

u1 −
∣∣u2

∣∣r(x)−2
u2 (3.26)

and
w (x, 0) = w0 (x) , wt (x, 0) = w1 (x)



1778 Ouaoua, Boughamsa

Multiplying (3.26) by wt, then integrating with respect to x, we get

1

2

∫
Ω

|wt|2 dx+
1

2

∫
Ω

|∆w|2 dx+
1

2

∫
Ω

|∇w|2 dx

+

t∫
0

∫
Ω

(∣∣u1
t

∣∣m(x)−2
u1
t −

∣∣u2
t

∣∣m(x)−2
u2
t

)
wtdxds =

t∫
0

∫
Ω

(∣∣u1
∣∣r(x)−2

u1 −
∣∣u2

∣∣r(x)−2
u2

)
wtdxds

By using the inequality (
|a|m(x)−2

a− |b|m(x)−2
b
)
(a− b) ≥ 0,

for all a, b ∈ R and a.e. x ∈ Ω.

This implies

∥wt∥22 dx+ ∥∆w∥22 + ∥∇w∥22

≤ C

t∫
0

∫
Ω

(∣∣u1
∣∣r(x)−2

u1 −
∣∣u2

∣∣r(x)−2
u2

)
wtdxds (3.27)

By repeating the estimate as in [11], we arive at

∫
Ω

|wt|2 dx+ ∥∆w∥22 + ∥∇w∥22 ≤ C

t∫
0

∫
Ω

|wt|2 dx+ ∥∇w∥22

 ds (3.28)

Then ∫
Ω

|wt|2 dx+ ∥∆w∥22 + ∥∇w∥22 ≤ C

t∫
0

∫
Ω

|wt|2 dx+ ∥∆w∥22 + ∥∇w∥22

 ds (3.29)

Gronwall’s inequality yields
∥wt∥22 + ∥∆w∥22 + ∥∇w∥22 = 0.

Thus, w = 0. The shows the uniqueness. □

4 Global existence and stability result

In this section our main result is based a Komornik’s inequality [2].

Now, we state our main results:

Theorem 4.1. Under the assumptions of lemma 2.7, the local solution of (1.1) is global.

Proof . We have

E (u (t)) =
1

2

(
∥ut (t)∥22 + ∥∇u (t)∥22 + ∥∆u (t)∥22

)
−
∫
Ω

1

r (x)
|u (t)|r(x) dx.

≥ 1

2
∥ut (t)∥22 +

r1 − 2

2r1
∥∇u (t)∥22 +

r1 − 2

2r1
∥∆u (t)∥22 .

So that
∥ut (t)∥22 + ∥∇u (t)∥22 ≤ C E (t) . (4.1)

By Lemma 2.6, we obtain
∥ut (t)∥22 + ∥∇u (t)∥22 ≤ C E (0) . (4.2)

This implies that the local solution is global in time. □
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Lemma 4.2. Suppose that the assumptions of Lemma 2.7 hold, then, there exists a positive constant c such that∫
Ω

|u (t)|m(x)
dx ≤ cE (t) .

Proof . ∫
Ω

|u (t)|m(x)
dx ≤ Max

{
∥u (t)∥m1

m(.) , ∥u (t)∥m2

m(.)

}
= α Max

{
∥u (t)∥m1

r(.) , ∥u (t)∥m2

r(.)

}
+ (1− α)Max

{
∥u (t)∥m1

m(.) , ∥u (t)∥m2

m(.)

}
.

By the embedding of H1
0 (Ω) ↪→ Lm(.) (Ω) and H2

0 (Ω) ↪→ Lm(.) (Ω) , we obtain∫
Ω

|u (t)|m(x)
dx ≤ α Max

{
λm1
1,∗ ∥∇u (t)∥m1

2 , λm2
1,∗ ∥∇u (t)∥m2

2

}
+ (1− α)Max

{
λm1
2,∗ ∥∆u (t)∥m1

2 , λm2
2,∗ ∥∆u (t)∥m2

2

}
≤ α Max

{
λm1
1,∗ ∥∇u (t)∥m1−2

2 , λm2
1,∗ ∥∇u (t)∥m2−2

2

}
× ∥∇u (t)∥22

+ (1− α)Max
{
λm1
2,∗ ∥∆u (t)∥m1−2

2 , λm2
2,∗ ∥∆u (t)∥m2−2

2

}
× ∥∆u (t)∥22

≤ α Max

{
λm1
1,∗

(
2m1

m1 − 2
E (0)

)m1−2
2

, λm2
1,∗

(
2m1

m1 − 2
E (0)

)m2−2
2

}
× ∥∇u (t)∥22

+ (1− α)Max

{
λm1
2,∗

(
2m1

m1 − 2
E (0)

)m1−2
2

, λm2
2,∗

(
2m1

m1 − 2
E (0)

)m2−2
2

}
× ∥∆u (t)∥22
= c1 ∥∇u (t)∥22 + c2 ∥∆u (t)∥22 .

By using (2.8), we obtain ∫
Ω

|u (t)|m(x)
dx ≤ cE (t) .

□

Theorem 4.3. Let the assumptions of Lemma 2.7, then, there exists a positive constant C > 0, such that

E (t) ≤ C

(1 + t)
2

m2−2

, for all t ≥ 0.

Proof . Multiplying first equation of (1.1) by u (t) E
m2−2

2 (t) and integrating over Ω× (S, T ) , we obtain

T∫
S

E
m2−2

2 (t)

∫
Ω

u (t)
[
utt (t) + ∆2u (t)−∆u (t) + |ut (t)|m(x)−2

ut (t)
]
dxdt

=

T∫
S

E
m2−2

2 (t)

∫
Ω

|u (t)|r(x) dxdt.

So that
T∫
S

E
m2−2

2 (t)

∫
Ω

[
(u (t)ut (t))t − |ut (t)|2 + |∆u (t)|2 + |∇u (t)|2
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+u (t) |ut (t)|m(x)−2
ut

]
dxdt =

T∫
S

E
m2−2

2 (t)

∫
Ω

|u (t)|r(x) dxdt.

We add and substract the term

T∫
S

E
m2−2

2 (t)

∫
Ω

[
θ1 |∇u (t)|2 + θ2 |∆u (t)|2 + (2 + θ1 + θ2) |ut (t)|2

]
dxdt,

and use (2.9), to get

(1− θ1)

T∫
S

E
m2−2

2 (t)

∫
Ω

[
|∇u (t)|2 + |ut (t)|2

]
dxdt

+ (1− θ2)

T∫
S

E
m2−2

2 (t)

∫
Ω

[
|∆u (t)|2 + |ut (t)|2

]
dxdt

+

T∫
S

E
m2−2

2 (t)

∫
Ω

[
(u (t)ut (t))t − (3− θ1 − θ2) |ut (t)|2

]
dxdt

+

T∫
S

E
m2−2

2 (t)

∫
Ω

u (t) |ut (t)|m(x)−2
ut (t) dxdt

= −
T∫
S

E
m2−2

2 (t)

∫
Ω

[
θ1 |∇u (t)|2 + θ2 |∆u (t)|2 − |u (t)|r(x)

]
dxdt ≤ 0. (4.3)

It is clear that

γ

T∫
S

E
m2−2

2 (t)

∫
Ω

[
1

2
|∇u (t)|2 + 1

2
|∆u (t)|2 + |ut (t)|2

2
− |u (t)|r(x)

r (x)

]
dxdt

≤ (1− θ1)

T∫
S

E
m2−2

2 (t)

∫
Ω

[
1

2
|∇u (t)|2 + |ut (t)|2

2

]
dxdt

+ (1− θ2)

T∫
S

E
m2−2

2 (t)

∫
Ω

[
1

2
|∆u (t)|2 + |ut (t)|2

2

]
dxdt, (4.4)

where γ = Min ((1− θ1) , (1− θ2)) . By (4.3), (4.4) and definition of E (t) , we get

γ

T∫
S

E
m2
2 (t) dt ≤ −

T∫
S

E
m2−2

2 (t)

∫
Ω

(u (t)ut (t))t dxdt

−
T∫
S

E
m2−2

2 (t)

∫
Ω

u (t) |ut (t)|m(x)−2
ut (t) dxdt

+ (3− θ1 − θ2)

T∫
S

E
m2−2

2 (t)

∫
Ω

|ut (t)|2 dxdt. (4.5)

Using the definition of E (t) and the following expression

d

dt

E
m2−2

2 (t)

∫
Ω

u (t)ut (t) dx

 = E
m2−2

2 (t)

∫
Ω

(u (t)ut (t))t dx
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+
m2 − 2

2

T∫
S

E
m2−2

2 −1 (t)
d

dt
E (t)

∫
Ω

u (t)ut (t) dxdt. (4.6)

Then, inequality (4.5), becomes

γ

T∫
S

E
m2
2 (t) dt ≤ −

T∫
S

d

dt

E
m2−2

2 (t)

∫
Ω

u (t)ut (t) dx

 dt

−
T∫
S

E
m2−2

2 (t)

∫
Ω

u (t) |ut (t)|m(x)−2
ut (t) dxdt

+
m2 − 2

2

T∫
S

E
m2−2

2 −1 (t)
d

dt
E (t)

∫
Ω

u (t)ut (t) dxdt

+ (3− θ1 − θ2)

T∫
S

E
m2−2

2 (t)

∫
Ω

|ut (t)|2 dxdt. (4.7)

We estimate the terms in the right-hand side of (4.7) as follow:

For the first term, we have

−
T∫
S

d

dt

E
m2−2

2 (t)

∫
Ω

u (t)ut (t) dx

 dxdt

≤

∣∣∣∣∣∣Em2−2
2 (t)

∫
Ω

u (S)ut (S) dx− E
m2−2

2 (t)

∫
Ω

u (T )ut (T ) dx

∣∣∣∣∣∣
≤ E

m2−2
2 (t)

∣∣∣∣∣∣
∫
Ω

u (x, S)ut (x, S) dx

∣∣∣∣∣∣+ E
m2−2

2 (t)

∣∣∣∣∣∣
∫
Ω

u (x, T )ut (x, T ) dx

∣∣∣∣∣∣
≤ cE

m2
2 (S) + cE

m2
2 (T ) ≤ cE

m2−2
2 (0)E (S)

≤ cE (S) . (4.8)

For the second term, we use the following Young inequality:

XY ≤ ε

λ1
Xλ1 +

1

λ2ε
λ2
λ1

Y λ2 , X, Y ≥ 0, ε > 0 and
1

λ1
+

1

λ2
= 1.

with λ1 (x) = m (x) , λ2 (x) =
m(x)

m(x)−1 . By Lemma 2.6 and Lemma 4.2, we obtain

−
T∫
S

E
m2−2

2 (t)

∫
Ω

u (t) |ut (t)|m(x)−2
ut (t) dxdt

≤
T∫
S

E
m2−2

2 (t)

εc

∫
Ω

|u (t)|m(x)
dx+ cε

∫
Ω

|ut (t)|m(x)
dx

 dt

≤ εc

T∫
S

E
m2−2

2 (t)

∫
Ω

|u (t)|m(x)
dxdt+ cε

T∫
S

E
m2−2

2 (t)
(
−E

′
(t)

)
dt

≤ εc

T∫
S

E
m2
2 (t) dt+ cεE (S) . (4.9)
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By Young’s, Poincare’s inequalities and (5.1), we obtain

m2 − 2

2

T∫
S

E
m2−2

2 −1 (t)
d

dt
E (t)

∫
Ω

u (t)ut (t) dxdt

≤ m2 − 2

2

T∫
S

E
m2−2

2 −1 (t)
(
−E

′
(t)

)∫
Ω

(
1

2
|u (t)|2 + 1

2
|ut (t)|2

)
dxdt

≤ c

T∫
S

E
m2−2

2 (t)
(
−E

′
(t)

)
dt

≤ cE
m2
2 (S)− E

m2
2 (T )

≤ cE
m2
2 (0)E (S) ≤ cE (S) (4.10)

For the last term of (4.7), we have

(3− θ1 − θ2)

T∫
S

E
m2−2

2 (t)

∫
Ω

|ut (t)|2 dxdt

≤ (3− θ1 − θ2)

T∫
S

E
m2−2

2 (t)

∫
Ω−

|ut (t)|2 dx+

∫
Ω+

|ut (t)|2 dx

 dt

≤ c

T∫
S

E
m2−2

2 (t)


∫

Ω−

|ut (t)|m2 dx

 2
m2

+

∫
Ω+

|ut (t)|m1 dx

 2
m1

 dt

≤ c

T∫
S

E
m2−2

2 (t)


∫

Ω

|ut (t)|m(x)
dx

 2
m2

+

∫
Ω

|ut (t)|m(x)
dx

 2
m1

 dt.

This implies

(3− θ1 − θ2)

T∫
S

E
m2−2

2 (t)

∫
Ω

|ut (t)|2 dxdt

≤ c

T∫
S

E
m2−2

2 (t)
(
−E

′
(t)

) 2
m2

dt+ c

T∫
S

E
m2−2

2 (t)
(
−E

′
(t)

) 2
m1

dt. (4.11)

First, we use Young’s inequality with λ1 = m2/ (m2 − 2) and λ2 = m2/2, we have

T∫
S

E
m2−2

2 (t)
(
−E

′
(t)

) 2
m2

dt ≤ εc

T∫
S

E
m2
2 (t) dt+ cε

T∫
S

(
−E

′
(t)

)
dt.

This implies
T∫
S

E
m2−2

2 (t)
(
−E

′
(t)

) 2
m2

dt ≤ εc

T∫
S

E
m2
2 (t) dt+ cεE (S) . (4.12)

On the other hand, we use the Young’s inequality λ1 = m1

m1−2 and λ2 = m1

2 , to obtain

T∫
S

E
m2−2

2 (t)
(
−E

′
(t)

) 2
m1

dt ≤ εc

T∫
S

E
m1(m2−2)

2(m1−2) (t) dt+ cε

T∫
S

(
−E

′
(t)

)
dt

≤ εc

T∫
S

E
m1(m2−2)

2(m1−2) (t) dt+ cεE (S) .
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We notice that m1(m2−2)
2(m1−2) = m2

2 + m2−m1

m1−2 , then

T∫
S

E
m2−2

2 (t)
(
−E

′
(t)

) 2
m1

dt ≤ εc (E (S))
m2−m1
m1−2

T∫
S

E
m2
2 (t) dt+ cεE (S)

≤ εc (E (0))
m2−m1
m1−2

T∫
S

E
m2
2 (t) dt+ cεE (S)

≤ εc

T∫
S

E
m2
2 (t) dt+ cεE (S) . (4.13)

We substituting (4.12) and (4.13) in (4.11), we obtain

(3− θ1 − θ2)

T∫
S

E
m2−2

2 (t)

∫
Ω

|ut (t)|2 dxdt ≤ εc

T∫
S

E
m2
2 (t) dt+ cεE (S) . (4.14)

By insert (4.8), (4.9), (4.10) and (4.14) in (4.7), we arrive at

γ

T∫
S

E
m2
2 (t) dt ≤ εc

T∫
S

E
m2
2 (t) dt+ cεE (S) .

Choosing ε small enough for that
T∫
S

E
m2
2 (t) dt ≤ cE (S) .

By taking T goes to ∞, we get
∞∫
S

E
m2
2 (t) dt ≤ cE (S) .

By Komornik’s integral inequality 2.4 yields the result. □

5 Numerical example

In this section, we present an application to illustrate numerically the stability result of Theorem 4.3. For this
purpose, we numerically solve problem (1.1), for n = 2 where the domain is taken to be Ω = [−1, 1]

2
. We chosen

u0 (x1, x2) = (x1 + 1) (x1 − 1) (x2 + 1) (x2 − 1) and u1 (x1, x2) = 0, where will be chosen such that E (0) > 0, we take
the exponent function r (x1, x2) = 4, and m (x1, x2) = x1

2 + x2
2 + 2.5 which satisfy condition (1.2), where m2 = 4.5.

We numerically verify that
E (t) ≤ C (1 + t)

−0.8
.

5.1 Numerical method

We first introduce a suitable numerical scheme to discretize (1.1) using finite differences for the time variable
t ∈ [0, T ] and the space variable x = (x1, x2) ∈ Ω. We subdivide the time interval [0, T ] into N equal subintervals
[tn−1, tn] , tn = n δt, n = 1, 2, ..., N + 1, where δt is the time step.

Let Un (x1, x2) = u (x1, x2, tn) , and use the finite-difference formulas: the first-order backward difference for

∂tU
n (x1, x2) =

Un (x1, x2)− Un−1 (x1, x2)

δt
.

and the second-order center difference for

∂ttU
n (x1, x2) =

Un+1 (x1, x2)− 2Un (x1, x2) + Un−1 (x1, x2)

(δt)
2 .
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Then the time discrete problem of (1.1) reads: Given u0 and u1, find
{
U2, U3, ..., Un+1

}
such that

Un+1

(δt)2
−∆Un+1 = 2Un−Un−1

(δt)2
− |∂tUn|m(x1,x2)−2

∂tU
n

−∆2Un + |Un|r(x1,x2)−2
Un, in Ω

Un+1 = 0, on ∂Ω
U0 = u0 (x1, x2) , U1 = U0 + (δt)u1 (x1, x2) , in Ω

(5.1)

Note that the above problem is linear in Un+1, which is achieved by using the history data Un and Un−1 in the
second side of the equation. Problem(5.1) is solved iteratively as for given regular Un, the solution Un+1 satisfies the
boundary-value problem: {

Un+1

(δt)2
−∆Un+1 = F

(
Un, Un−1

)
, in Ωh

Un+1 = 0, on ∂Ωh

(5.2)

where F
(
Un, Un−1

)
= 2Un−Un−1

(δt)2
−∆2Un − |∂tUn|m(x1,x2)−2

∂tU
n + |Un|r(x1,x2)−2

Un.

5.2 Numerical results

In this subsection, we present and discuss the stability results of the numerical scheme(5.1). The numerical results
are obtained using the Matlab codes.

Figure 1: Energy: E(t)
Figure 2: Polynomial decay:z=E(t)(1+t)0.8

The parameters that have been set up for numerical experiments are:

� Number of discretisation points is: 100;

� Time step is: δt = 0.01;

Figures. 1 and 2 presents the energy E(t) and E(t)(1 + t)0.8 respectively for the times tn ∈ {1, 2, ..., 100} . The
numerical solutions of problem (1.1) make the energy function E(t) satisfy

E(t)(1 + t)0.8 ≤ 9× 102.

In conclusion, the above numerical application verifies and agrees with the stability results of Theorem 4.3.
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