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Abstract

In this paper, we convert the fourth-order differential equations with two-point boundary conditions into a differential
equation with homogeneous boundary conditions. Because the decomposition methods are closely related to the
McLaren series, the McLaren series has a higher accuracy for points close to zero. Then we use Adomian decomposition
and homotopy perturbation methods to solve three linear and nonlinear examples.
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1 Introduction

A perturbation method is widely used in the analysis of nonlinear engineering problems [14]. To solve this problem,
other techniques such as homotopy analysis method [3, 9, 12, 16] and Adomian decomposition method [1, 2, 19] were
studied by researchers. Fourth order boundary value problems occur in various fields of applied mathematics such as
solid mechanics, chemical kinetics, quantum mechanics, engineering, physical sciences, etc. Two-point and multi-point
boundary value problems for fourth order ordinary differential equations have attracted a lot of attention.

In this paper, we consider the fourth-order boundary value problems of the type:

y(4) = f(x, y, y′, y′′, y′′′) (1.1)

with two-point boundary conditions:

y(a) = A1, y′(a) = A2, y(b) = B1, y′(b) = B2,

where f is continuous function on [a, b] and the parameters Ai, i = 1, 2 and Bj , j = 1, 2 are real constants. Determined
solution of a system of fourth order boundary value problem using cubic non-polynomial spline method [17]. used
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RKM for the solution of fourth order singularly perturbed boundary value problem. And also used RKM for the
solution of fifth order boundary value problem [8]. Adomian decomposition method has been used to solve linear and
nonlinear ordinary differential equations [13]. This method provides the solution in a rapid convergent series with
computable terms. However, for the solution of boundary value problems using ADM, it is necessary to determine
some unknown parameters and therefore, it is required to solve nonlinear algebraic differential equations. Geng and
Cui proposed a method for solving nonlinear second order two-point BVP by the combination of ADM and RKM
[7]. Geng and Cui [6] presented a method for solving nonlinear multi-point boundary value problems by combining
homotopy perturbation and variational iteration methods. Dehghan and Tatari [18] used the Adomian decomposition
method for solving multi-point boundary value problems. Recently, Cui and Geng [5, 4] have presented RKM for
singular linear two-point boundary value problem, singular nonlinear two-point periodic boundary value problem.
However, for numerical methods for solving singular multi-point BVPs, few works are available. In this paper, we
convert the fourth-order differential equations with two-point boundary value into a simpler equation by changing the
variable, and then solve the problem using the methods of Adomian decomposition and homotopy perturbation.

2 The idea of the method [11]

We first rewrite equation 1.1 with the given boundary values as follows.

y(4)(x) = f(x, y(x), y′(x), y′′(x), y′′′(x)), (2.1)

assuming variable change x = a+ (b− a)t, and that y(x) = w(t) and h = b− a, we have from relation 2.1:

w(4)(t) = g(t, w(t), w′(t), w′′(t), w′′′(t)), (2.2)

w(0) = A1, w′(0) = A2, w(1) = B1, w′(1) = B2,

where in
g(t, w(t), w′(t), w′′(t), w′′′(t)) = h4f(a+ (b− a)t, w(t), h−1w′(t), h−2w′′(t), h−3w′′′(t)).

If w(x) is the answer to problem 2.2, then the answer to problem 2.1 is as follows:

y(x) = w(
x− a

b− a
).

Now to adjust the problem 2.2 with the assumption:

w(t) = z(t) +A1 + (B1 −A1)t,

from its placements and derivatives in relation 2.2 we have:

z(4)(t) = h(t, z(t), z′(t), z′′(t), z′′′(t)), (2.3)

z(0) = 0, z′(0) = A2 −B1 +A1, z(1) = 0, z′(1) = B2 −B1 +A1,

where in
h(t, z(t), z′(t), z′′(t), z′′′(t)) = g(t, z(t) +A1 + (B1 −A1)t, z

′(t) +B1 −A1, z
′′(t), z′′′(t)).

That problem 2.3 is more suitable for solving the proposed methods.

3 Numerical examples of the present study

In this section, we consider three linear and nonlinear examples for the application of the ADM and HPM, and we
compare the results at the end of each example.

Example 3.1. Consider the fourth-order linear differential equation [17]:

y(4) = y + y′′ + ex(x− 3), 1 ≤ x ≤ 2, (3.1)

with the boundary conditions:

y(1) = 0, y′(1) = −e, y(2) = −e2, y′(2) = −2e2,
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the analytic solution is y = (1− x)ex. Assuming

x = a+ (b− a)t = 1 + t, y(x) = z(t),

then by changing the variable z = w + A1 + (B1 − A1)t = w − e2t and the relation 3.1, we obtain the equation with
the following homogeneous boundary conditions:

w(4) = w + w′′ + et+1(t− 2)− e2t, 0 ≤ x ≤ 1, (3.2)

w(0) = 0, w(1) = 0, w′(0) = −e+ e2, w′(1) = −e2,

the exact solution is w = −tet+1 + e2t. Now we use methods ADM and HPM to solve problem 3.2. The results are
shown in Table 1.
1.1. ADM method

w = 521.9101110− 192ex+1 + 15xex+1 + 485.8066579x+ 217.4625450x2 + 65.23876201x3+

14.49751423x4 + 2.537064492x5 + .3624214310x6 + · · · ·

1.2. HPM method

w = 521.9101110− 192ex+1 + 15xex+1 + 485.8066578x+ 217.4625469x2 + 65.23876379x3+

14.49750256x4 + 2.537062972x5 + .3624383132x6 + · · · ·

Table 1: Example 3.1 erorr estimates

xi y(exact) erorr(ADM) erorr(HPM)

0.0 0.0000000000 3.300000e-07 0.000000e+00
0.1 0.4384890075 4.687000e-07 7.110000e-08
0.2 0.8137878354 1.224800e-06 9.620000e-08
0.3 1.1159278300 6.090000e-07 2.100000e-07
0.4 1.3335424530 6.960000e-07 1.160000e-07
0.5 1.4536835150 8.160000e-07 9.300000e-08
0.6 1.4616142050 9.720000e-07 1.210000e-07
0.7 1.3405760950 1.390000e-07 3.190000e-07
0.8 1.0715269080 2.900000e-08 2.330000e-07
0.9 0.6328454910 1.210000e-07 6.990000e-08
1.0 0.0000000000 1.220729e-06 1.895773e-07

Note: To solve examples 3.2 and 3.3, we use polynomials He for nonlinear terms [18]. The polynomial relation He for
its nonlinear part is as:

Nu =

∞∑
i=0

Ai(u0, u1, · · · , ui),

which polynomials An were defined by

An(u0, u1, · · · , un) = [
1

n!

dn

dpn
N(

∞∑
i=0

piui)]p=0, n = 0, 1, 2, · · · .

Example 3.2. Consider the fourth-order nonlinear differential equation [17]:

y(4) = y2 − x10 + 4x9 − 4x8 − 4x7 + 8x6 − 4x4 + 120x− 48, (3.3)

with the boundary conditions
y(1) = 1, y′(1) = 1, y(2) = 8, y′(2) = 24,
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the analytic solution is y = x5 − 2x4 + 2x2. Assuming

x = a+ (b− a)t = 1 + t, y(x) = z(t),

then by changing the variable z = w+A1 +(B1 −A1)t = w+1+7t and the relation 3.3, we obtain the equation with
the following homogeneous boundary conditions.

w(4) = (w + 1 + 7t)2 − (1 + t)10 + 4(1 + t)9 − 4(1 + t)8 − 4(1 + t)7 + 8(1 + t)6−

4(1 + t)4 + 120(1 + t)− 48,

w(0) = 0, w(1) = 0, w′(0) = −6, w′(1) = 17, (3.4)

the exact solution is w = (1 + t)5 − 2(1 + t)4 + 2(1 + t)2 − 1 − 7t. The results of solving equation 3.4 are shown in
Table 2.
2.1. ADM method

w = −6.000000001x+ 1.1222× 10−8x2 + 1.999999990x3 + 3x4 + x5 − 1.635× 10−9x6+

3.03× 10−10x7 − 6.225× 10−9x8 + 1.0214× 10−8x9 − 4.941× 10−9x10 + · · · ·

2.2. HPM method

w = −6x− 1.31926866× 10−7x2 + 2.000000191x3 + 3x4 + x5 − 2.27169166× 10−8x6+

+4.39188126× 10−9x7 − 4.6964831× 10−7x8 + 8.3015109× 10−7x9 − 4.6475871× 10−7x10 + · · · ·

Table 2: Example 3.2 erorr estimates

xi y(exact) erorr(ADM) erorr(HPM)

0.0 0.0000000000 0.000000e+00 0.000000e+00
0.1 -0.5976900000 2.000000e-10 1.100000e-09
0.2 -1.1788800000 1.000000e-09 3.000000e-09
0.3 -1.7192700000 1.000000e-09 7.000000e-09
0.4 -2.1849600000 2.000000e-09 9.000000e-09
0.5 -2.5312500000 1.000000e-09 9.000000e-09
0.6 -2.7014400000 1.000000e-09 1.000000e-08
0.7 -2.6256300000 1.000000e-09 1.000000e-08
0.8 -2.2195200000 1.000000e-09 4.000000e-09
0.9 -1.3832100000 1.000000e-09 0.000000e+00
1.0 0.0000000000 5.224692e-10 2.019360e-10

Example 3.3. Consider the fourth-order nonlinear differential equation [17]:

u(4) = sinx+ sin2x− (u′′)2, (3.5)

with the boundary conditions

u(0) = 0, u′(0) = 1, u(1) = sin(1), u′(1) = cos(1),

the analytic solution is u = sinx. Assuming

x = a+ (b− a)t = t, u(x) = z(t),

then by changing the variable z = w + A1 + (B1 − A1)t = w + sin(1)t and the relation 3.5, we obtain the equation
with the following homogeneous boundary conditions:

w(4) = sint+ sin2t− (w′′)2, (3.6)
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w(0) = 0, w′(0) = 1− sin(1), w(1) = 0, w′(1) = cos(1)− sin(1),

the exact solution is w = sint− sin(1)t. The results of solving equation 3.6 are shown in Table 3.
3.1. ADM method

w = −9.345397sin(x)− .479451cos(x)− 0.001872sin(2x) + 0.021253cos(2x) + 0.001543sin(3x)−

0.000030cos(4x)− .119862xsin(x) + 4xcos(x) + 0.000936xcos(2x) + 0.015625xsin(2x)−
0.00390cos(2x)x2 + .5sin(x)x2 + .45822 + 5.50210x− .10513x2 − .21768x3 − 0.00083x4 − · · · ·

3.2. HPM method

w = −6.846703cos(x) + .936442sin(x)− 0.026744sin(2x) + 0.000496cos(2x) + 0.0625sin2(x)−

1.7116xsin(x) + 0.0133xcos(2x) + 6.8462− .7377x− 1.7731x2 − 0.0195x3 + 0.2054x4 − · · · ·

Table 3: Example 3.3 erorr estimates

xi y(exact) erorr(ADM) erorr(HPM)

0.0 0.0000000000 8.532000e-10 0.000000e+00
0.1 0.0156863182 5.320000e-08 5.110000e-09
0.2 0.0303751338 2.120500e-07 3.053000e-08
0.3 0.0430789113 7.981000e-07 7.182000e-08
0.4 0.0528299484 2.260000e-07 1.073100e-07
0.5 0.0586900462 6.694000e-07 1.226600e-07
0.6 0.0597598825 7.041000e-07 1.061600e-07
0.7 0.0551879978 3.890000e-07 6.083000e-08
0.8 0.0441793031 2.782000e-07 1.319000e-08
0.9 0.0260030233 1.263000e-07 6.350000e-09
1.0 0.0000000000 1.178000e-07 5.173000e-11

4 Conclusions

In this paper, we convert the fourth-order differential equations with two-point boundary value problem into a
special case of with homogeneous boundary conditions. Because Adomian decomposition and homotopy perturbation
methods are closely related to the McLaren series, solving a new problem with these methods is more accurate and
stable than shown in the examples.
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