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Abstract

In this paper, the conditions for the superposition operators were provided to map the space bvp into bvq, where
1 ≤ p, q <∞. Additionally, we presented the necessary and sufficient conditions under which superposition operators
become bounded, continuous and uniformly continuous on the sequence space bvp.

Keywords: Bounded, Continuity modulus, Locally Bounded, Sequence spaces, Superposition operator
2020 MSC: 46E15

1 Introduction and preliminaries

Superposition operators on sequence spaces have not studied widely, while there are lots of studies have been focused
on spaces of functions [2, 3, 5]-[8, 12]. Dedagic and Zabrejko [9] have investigated the continuity of superposition
operators on the sequence spaces ℓp for 1 ≤ p < ∞. P luciennik [13] characterized continuous superposition operators
from ω0 into ℓ1, where ω0 is the space of all sequences or all functions Cesaro strongly summable to zero. In some other
sequence spaces, the continuity of superposition operators, including Orlicz sequence spaces, was studied in [14, 15].

Let N and R denote the set of all-natural numbers and the set of all real numbers, respectively. Let ω be the vector
space of all real sequences x = (xs) = (xs)s∈N . By the term sequence space, we shall mean any linear subspace of ω.

Let λ and µ be two sequence spaces and let f : N × R → R be a real function with f(s, 0) = 0 for s ∈ N. A
superposition operator Ff : λ→ µ is defined by

Ff (x) = f(s, x(s)) = f(s, xs), x = x(s) = (xs) ∈ λ. (1)

Sequence spaces have various applications in several branches of functional analysis, in particular, the theory of
functions, the theory of locally convex spaces, matrix transformations, as well as the theory of summability invariably
depends upon the study of sequences and series. We recall here some of the familiar sequence spaces.

Let us recall some definitions and results. Let x1 and x2 be the functions of the sequence space ω, then x1 and x2
are called difference disjoint, if

(
x1(s) − x1(s− 1)

)(
x2(s) − x2(s− 1)

)
= 0, for each s ∈ N.
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We shall denote by ℓp, for 1 ≤ p < ∞, the space of functions x : N → R (real sequences), for which the following
norm makes sense and is finite

∥x∥p :=
( ∞∑

s=1

|x(s)|p
) 1

p

.

For 1 ≤ p <∞, we shall denote by bvp the space of functions x : N → R (real sequences) of all functions (sequences)
of p-bounded variation, for which

bvp =
{
x = x(s) ∈ w :

∞∑
s=1

|x(s) − x(s− 1)|p <∞
}
,

where x(0) = 0, bvp is a Banach space with the following norm:

∥x∥bvp :=
( ∞∑

s=1

|x(s) − x(s− 1)|p
) 1

p

.

It was proved that bvp is linearly isomorphic to the space ℓp and the inclusion bvp ⊃ ℓp strictly holds (see [4, 11]).

The operator PD denotes the multiplication operator which is defined by characteristic function χD of the set
D ⊂ N, i.e.,

PDx(s) = χD(s)x(s), s ∈ N.

We denote by τ the set of all x ∈ bvp which satisfy

|x(s) − x(s− 1)| ≤ 1, s ∈ N.

In many situations, the investigation of the basic properties of the superposition operator (1) does not involve any
particular difficulties. But this is not always so. In fact, at the beginning of nonlinear analysis it was often tacitly
assumed that ”nice”properties of a function carry over to the corresponding superposition operator; this turned out
to be false even in well-known classical function spaces. A typical example of this phenomenon is the behaviour of the
superposition operator in Lebesgue spaces. For instance, the smoothness (and even the analyticity) of a function does
not imply the smoothness of corresponding superposition operator, considered as an operator between two Lebesgue
spaces [2]. These facts are rather surprising; they show that many of the important properties of a function do not
imply analogous properties of the corresponding superposition operator, or vice versa.

Classical mathematical analysis mainly dealt with spaces of continuous or differentiable functions already Lebesgue
spaces arose only in special fields, e.g. Fourier series, approximation theory, probability theory. In modern nonlinear
analysis, however, the arsenal of available function spaces has been considerably enlarged. In this connection, one
should mention Sobolev spaces and their generalizations which are simply indispensable for the study of partial
differential equations [1, 12], Orlicz spaces which are the natural tool in the theory of both linear and nonlinear
integral equations [14, 16], Holder spaces and their generalizations which are basic for the investigation of singular
integral equations [5, 10], and special classes of spaces of differentiable or smooth functions which frequently occur in
the theory of ordinary or partial differential equations and variational calculus [2]. The usefulness of all these spaces
in various fields of mathematical analysis emphasizes the need for a systematic study of the superposition operator
(1), considered as an operator from one such space into another.

In this study, for every 1 ≤ p, q < ∞, we present necessary and sufficient conditions under which superposition
operator maps the space bvp into bvq. In addition, we provide the necessary and sufficient conditions under which
superposition operators become bounded, continuous and uniformly continuous on the bounded variation sequence
spaces bvp for 1 ≤ p <∞.

The present paper was organized with the following sections. In section 2 we provided necessary and sufficient
conditions under which superposition operator to map the space bvp into bvq, where 1 ≤ p, q < ∞. In section 3 we
presented the necessary and sufficient conditions under which superposition operators become bounded, continuous
and uniformly continuous on the sequence space bvp.

2 Superposition operators on the sequence spaces bvp

In this section, we present necessary and sufficient conditions under which superposition operator maps the space
bvp into bvq, where 1 ≤ p, q <∞.
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Theorem 2.1. Let 1 ≤ p, q <∞, and f : N×R → R be a real function. Then the following conditions are equivalent:

1) the superposition operator Ff , generated by function f , maps bvp into bvq,

2) for u ∈ bvp there exists a function a ∈ bvq and constants δ > 0, n ∈ N and b ≥ 0 such that

|f(s, u(s)) − f(s− 1, u(s− 1))| ≤ (a(s) − a(s− 1)) + b|u(s) − u(s− 1)|
p
q , (s ≥ n, |u(s) − u(s− 1)| < δ),

3) for u ∈ bvp and each ε > 0 there exist a function aε ∈ bvq and constants δε > 0, nε ∈ N and bε ≥ 0 such that
∥aε∥bvq < ε and

|f(s, u(s)) − f(s− 1, u(s− 1))| ≤ (aε(s) − aε(s− 1)) + bε|u(s) − u(s− 1)|
p
q , (3)

holds, where s ≥ nε and |u(s) − u(s− 1)| < δε.

We need the following technical lemma which is used to prove Theorem 2.1.

Lemma 2.2. Let x ∈ bvp. Then x ∈ τ if and only if function x can be represented in the form

x = x1 + . . .+ xm (2)

where x1, . . . , xm are pairwise difference disjoint functions from the unit sphere in bvp and m ≤ 2∥x∥pbvp
+ 1.

Proof . At first, we suppose that for pairwise difference disjoint functions xi, where i = 1, . . . ,m, in the unit sphere
of the space bvp, and for each 1 ≤ i, j ≤ m that i ̸= j̇ and s ∈ N, we have

xi ̸= xj and
(
xi(s) − xi(s− 1)

)(
xj(s) − xj(s− 1)

)
= 0,

and the function x be written in the form
x = x1 + . . .+ xm.

We assert that x ∈ τ . Since xi are pairwise difference disjoint functions and ∥xi∥bvp
≤ 1, for each 1 ≤ i ≤ m, s ∈ N

and 1 ≤ p <∞, then only for one j,

|x(s) − x(s− 1)|p = |(x1(s) − x1(s− 1))) + . . .+ (xi(s) − xi(s− 1)) + . . .+ (xm(s) − xm(s− 1)))|p

= |xj(s) − xj(s− 1)|p

≤ ∥xj∥pbvp
≤ 1,

therefore |x(s) − x(s− 1)| ≤ 1.
Conversely, let x ∈ τ . We can produce a finite partition Ω = {Ω1,Ω2, . . . ,Ωm} of the set N such that the functions

PΩj
: bvp −→ bvp be defined by PΩj

x(s) = χΩj
(s)x(s), where PΩj

x, for 1 ≤ j ≤ m, are pairwise difference disjoint
functions. Therefore, we have

∥PΩjx∥
p
bvp

=

∞∑
s=1

|PΩjx(s) − PΩjx(s− 1)|p

=

∞∑
s=1

|χΩj
(s)x(s) − χΩj

(s− 1)x(s− 1)|p ≤ 1,

where 1 ≤ j ≤ m and so PΩj
x ∈ bvp. Now for each 1 ≤ j ≤ m, put xj := PΩj

x. From the sum of xj , (2) is satisfied.
Moreover, without loss of generality we claim that for each 1 ≤ j ≤ m except for one of j we have 2||xj ||pbvp

> 1,
otherwise, for example, if for j = 1, 2 we have

2||x1||pbvp ≤ 1 and 2||x2||pbvp
≤ 1,

then
||x1 + x2||pbvp

≤ ||x1||pbvp
+ ||x2||pbvp

≤ 1,
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so we can replace x1 and x2 with x1 + x2 in (2), which is disjoint from the other elements and this is in contradiction
with the representation of x in the form m of the distinct element. So if in (2) we had for all the terms except one
the inequality 2||xj ||pbvp

> 1, then

∥x∥pbvp
=

m∑
j=1

∥xj∥pbvp ≥ 1

2

m−1∑
j=1

1 = (m− 1)2−1,

therefore we have
m ≤ 2∥x∥pbvp + 1.

□

We now present the proof of Theorem 2.1.

Proof . [Proof of Theorem 2.1] Proof of state 3) −→ 2) is obvious. We present the proofs of states 2) −→ 1) and
1) −→ 3).(

2) −→ 1)
)
: Assume that condition 2) holds. We show that the operator Ff : bvp −→ bvq is well defined. For this

purpose, for u ∈ bvp and s ∈ N, we have

∥Ff (u)∥qbvq =

∞∑
s=1

|Ff (u)(s) − Ff (u)(s− 1)|q

≤
n−1∑
s=1

|f(s, u(s)) − f(s− 1, u(s− 1))|q +

∞∑
s=n

|f(s, u(s)) − f(s− 1, u(s− 1))|q

≤
n−1∑
s=1

|f(s, u(s)) − f(s− 1, u(s− 1))|q +

∞∑
s=n

|a(s) − a(s− 1)|q + bq
∞∑
s=n

|u(s) − u(s− 1)|p

≤
n−1∑
s=1

|f(s, u(s)) − f(s− 1, u(s− 1))|q + ∥a∥qbvq
+ bq∥u∥pbvp

<∞,

therefore Ff (u) ∈ bvq, and the proof 2) −→ 1) is completed.

Now, it suffices to prove that 1) −→ 3). for this reason, assume that x ∈ bvp and condition 1) holds. Let us first
prove that for each ε > 0 there exist δε > 0 and nε ∈ N, such that ∥x∥bvp

≤ δε then ∥Ff (Pnε
x)∥bvq

≤ ε, where
Pn := P{n+1,n+2,...}.

Indeed, if we assume that the contrary of the above relation is established, that is, for some ε > 0 and any n ∈ N,
we can find xn ∈ bvp such that ∥xn∥bvp

< 2−n and ∥Ff (Pnxn)∥bvq > ε. Since for m > n we have

||Ff ((Pn − Pm)xn)||bvq =
( ∞∑

s=1

|Ff ((Pn − Pm)xn)(s) − Ff ((Pn − Pm)xn)(s− 1)|q
) 1

q

=
( m∑

s=n+1

|Ff (xn)(s) − Ff (xn)(s− 1)|q
) 1

q

,

therefore

lim
m→∞

||Ff ((Pn − Pm)xn)||bvq = lim
m→∞

( m∑
s=n+1

|Ff (xn)(s) − Ff (xn)(s− 1)|q
) 1

q

= ||Ff (Pnxn)||bvq .

Then for every n ∈ N there exists n
′
> n such that ||Ff ((Pn − Pn′ )xn)||bvq

> ε. By induction, we produce the

sequence nk of natural numbers such that n1 = 1 and nk+1 = (nk)
′

for k = 1, . . . ,m. Then we have

||(Pnk
− Pnk+1

)xnk
||bvp ≤ 2−k,

and
||Ff ((Pnk

− Pnk+1
)xnk

)||bvq > ε.
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Put x̃ :=
∑∞

k=1(Pnk
− Pnk+1

)xnk
. Hence, we have

||x̃||bvp
=

( ∞∑
s=1

|x̃(s) − x̃(s− 1)|p
) 1

p

=
( ∞∑

s=1

∣∣ ∞∑
k=1

(Pnk
− Pnk+1

)xnk
(s) −

∞∑
k=1

(Pnk
− Pnk+1

)xnk
(s− 1)

∣∣p) 1
p

≤
∞∑
k=1

( nk+1∑
s=nk+1

|xnk
(s) − xnk

(s− 1)|p
) 1

p

=

∞∑
k=1

||(Pnk
− Pnk+1

)xnk
||bvp

≤
∞∑
k=1

2−k <∞,

so x̃ ∈ bvp. On the other hand,

∥Ff (x̃)∥bvq =
( ∞∑

s=1

|Ff (x̃)(s) − Ff (x̃)(s− 1)|q
) 1

q

=
( ∞∑

s=1

|f(s, x̃(s)) − f(s− 1, x̃(s− 1))|q
) 1

q

=
( ∞∑

s=1

|f(s,

∞∑
k=1

(Pnk
− Pnk+1

)xnk
(s)) − f(s− 1,

∞∑
k=1

(Pnk
− Pnk+1

)xnk
(s− 1))|q

) 1
q

=
( ∞∑

k=1

nk+1∑
s=nk+1

|f(s, xnk
(s)) − f(s− 1, xnk

(s− 1))|q
) 1

q

≥
( ∞∑

k=1

εq
) 1

q

= ∞,

and thus Ff (x̃) /∈ bvq, which contradicts the assumption. Now, for each ε > 0 and u ∈ bvp, we consider

|fε(s, u(s)) − fε(s− 1, u(s− 1))| = max{0, |f(s, u(s)) − f(s− 1, u(s− 1))| − 2
1
q δ

− p
q

ε ε|u(s) − u(s− 1)|
p
q }. (4)

Furthermore, for every function x ∈ bvp, which is satisfied in condition |Pnε
x(s) − Pnε

x(s− 1)| < δε, we put

D(x) := {s > nε; |f(s, x(s)) − f(s− 1, x(s− 1))| > 2
1
q δ

− p
q

ε ε|x(s) − x(s− 1)|
p
q }, (5)

and
y := PD(x)x.

Hence, for every s ∈ N we have

|y(s) − y(s− 1)| = |PD(x)x(s) − PD(x)x(s− 1)| ≤ δε.

According to Lemma 2.2, the function y can be represented in the form of pairwise difference disjoint terms
y1, ..., ym, such that

m ≤ 2δ−p
ε ∥y∥pbvp + 1 and ∥yj∥bvp < δε,
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where j = 1, . . . ,m. Then

∞∑
s=nε+1

|fε(s, x(s)) − fε(s− 1, x(s− 1))|q =

∞∑
s=nε+1

|fε(s, y(s)) − fε(s− 1, y(s− 1))|q

=

m∑
j=1

∞∑
s=nε+1

|fε(s, yj(s)) − fε(s− 1, yj(s− 1))|q

≤
m∑
j=1

( ∞∑
s=nε+1

|f(s, yj(s)) − f(s− 1, yj(s− 1))|q

−
∞∑

s=nε+1

2δ−p
ε εq|yj(s) − yj(s− 1)|q

)
≤ mεq − 2δ−p

ε εq∥y∥pbvp

≤ 2δ−p
ε εq∥y∥pbvp + εq − 2δ−p

ε εq∥y∥pbvp
= εq.

So it follows from |x(s) − x(s− 1)| ≤ δε that

∞∑
s=nε+1

|fε(s, x(s)) − fε(s− 1, x(s− 1))|q ≤ εq.

Now, we put

(aε(s) − aε(s− 1)) =

{
0 s ≤ nε

sup|u(s)−u(s−1)|≤δε |fε(s, u(s)) − fε(s− 1, u(s− 1))| s > nε.

Then we obtain

||aε||qbvq =

∞∑
s=nε+1

|aε(s) − aε(s− 1)|q

= sup
|u(s)−u(s−1)|≤δε

( ∞∑
s=nε+1

|fε(s, u(s)) − fε(s− 1, u(s− 1))|q
)
≤ εq.

But from (4) and (5) it follows that

(aε(s) − aε(s− 1)) ≥ |fε(s, u(s)) − fε(s− 1, u(s− 1))|

≥ |f(s, u(s)) − f(s− 1, u(s− 1))| − 2
1
q δ

− p
q

ε ε|u(s) − u(s− 1)|
p
q , (s > nε, |u(s) − u(s− 1)| ≤ δε),

then

|f(s, u(s)) − f(s− 1, u(s− 1))| ≤ (aε(s) − aε(s− 1)) + 2
1
q δ

− p
q

ε ε|u(s) − u(s− 1)|
p
q .

If we put bε = 2
1
q δ

− p
q

ε ε, the proof is complete. □

3 Continuity and boundedness of the superposition operators

In this section, we provide the necessary and sufficient conditions under which superposition operators become
bounded, continuous and uniformly continuous on the sequence spaces bvp, where 1 ≤ p <∞.

By Theorem 2.1, the operator Ff : bvp −→ bvq is neither locally bounded nor continuous function. Therefore, in
the following theorem, we provided conditions for continuity of the superposition operators on the sequence spaces
bvp.

Theorem 3.1. Let 1 ≤ p, q <∞ and f : N×R → R be a real function. Then superposition operator Ff : bvp −→ bvq,
generated by function f , is continuous if and only if for each s ∈ N all functions f(s, ·) are continuous.
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Proof . Let for each s ∈ N, the functions f(s, ·) be continuous and x0 ∈ bvp. Furthermore, let ε > 0 be an arbitrary
number and δε and nε are numbers corresponding to aε (||aε||bvq

≤ ε) and bε ≥ 0, then we have inequality (3). Put

γ =
δε
2

. We show that the operator superposition Ff is continuous on the sphere with center x0 and radius γ. Indeed,

let there exists a natural number ñ such that ñ ≥ nε and ||Pñx0||bvp ≤ γ, (b−1
ε ε)

q
p . Then for ||x−x0||bvp ≤ γ and s > ñ

we have |x(s) − x(s− 1)| ≤ δε, and hence according to (3),

|f(s, x0(s)) − f(s− 1, x0(s− 1))| ≤ (aε(s) − aε(s− 1)) + bε|x0(s) − x0(s− 1)|
p
q ,

and
|f(s, x(s)) − f(s− 1, x(s− 1))| ≤ (aε(s) − aε(s− 1)) + bε|x(s) − x(s− 1)|

p
q .

From the above, it follows that

∥Ff (x) − Ff (x0)∥bvq
=

( ∞∑
s=1

|
(
Ff (x) − Ff (x0)

)
(s) −

(
Ff (x) − Ff (x0)

)
(s− 1)|q

) 1
q

=
( ∞∑

s=1

|
(
f(s, x(s)) − f(s, x0(s))

)
−

(
f(s− 1, x(s− 1)) − f(s− 1, x0(s− 1))

)
|q
) 1

q

≤
( ñ∑

s=1

|f(s, x(s)) − f(s, x0(s))|q
) 1

q

+
( ñ∑

s=1

|f(s− 1, x(s− 1)) − f(s− 1, x0(s− 1))|q
) 1

q

+
( ∞∑

s=ñ+1

|f(s, x(s)) − f(s− 1, x(s− 1))|q
) 1

q

+
( ∞∑

s=ñ+1

|f(s, x0(s)) − f(s− 1, x0(s− 1))|q
) 1

q

≤
( ñ∑

s=1

|f(s, x(s)) − f(s, x0(s))|q
) 1

q

+
( ñ∑

s=1

|f(s− 1, x(s− 1)) − f(s− 1, x0(s− 1))|q
) 1

q

+
( ∞∑

s=ñ+1

|aε(s) − aε(s− 1)|q
) 1

q

+ bε

( ∞∑
s=ñ+1

|x(s) − x(s− 1)|q
) 1

q

+
( ∞∑

s=ñ+1

|aε(s) − aε(s− 1)|q
) 1

q

+ bε

( ∞∑
s=ñ+1

|x0(s) − x0(s− 1)|q
) 1

q

=
( ñ∑

s=1

|f(s, x(s)) − f(s, x0(s))|q
) 1

q

+
( ñ∑

s=1

|f(s− 1, x(s− 1)) − f(s− 1, x0(s− 1))|q
) 1

q

+ 2||aε||bvq + bε||Pñx||
p
q

bvp
+ bε||Pñx0||

p
q

bvp

≤
( ñ∑

s=1

|f(s, x(s)) − f(s, x0(s))|q
) 1

q

+
( ñ∑

s=1

|f(s− 1, x(s− 1)) − f(s− 1, x0(s− 1))|q
) 1

q

+ 2ε+ ε+ bε
(
(b−1

ε ε)
q
p + ||x− x0||bvp

) p
q .

Since the functions f(s, ·), for each s ∈ N, are continuous, we can consider µ ∈ (0, γ) such that for ||x−x0||bvp ≤ µ,
we have ( ñ∑

s=1

|f(s, x(s)) − f(s, x0(s))|q
) 1

q ≤ ε

and ( ñ∑
s=1

|f(s− 1, x(s− 1)) − f(s− 1, x0(s− 1))|q
) 1

q ≤ ε,

in addition, without loss of generality we can assume that bε
(
(b−1

ε ε)
q
p +||x−x0||bvp

) p
q ≤ 2ε. Therefore, for ||x−x0||bvp ≤

µ, we have
∥Ff (x) − Ff (x0)∥bvq

≤ 7ε,

and hence the operator superposition Ff is continuous at the point x0.
Conversely, Suppose that the superposition operator Ff : bvp −→ bvq is continuous. Let is : R −→ bvp be the
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embedding defined for each t ∈ R by is(t) = tχ{s} ∈ bvp and the surjective function πs : bvq −→ R for every v ∈ bvq
defined by πs(v) = v(s). Then for each s ∈ N the function f(s, ·) factors as follows

R f(s,·)−→ R
is

y xπs
bvp −→

Ff

bvq.

Since the functions is and πs are continuous, the continuity of the operator Ff : bvp −→ bvq implies the continuity
of the function f(s, ·). The theorem is proved. □

By Theorems 3.1, we can easily obtain locally boundedness for superposition operators.

Corollary 3.2. Let 1 ≤ p, q <∞ and f : N×R → R be a real function. Then superposition operator Ff : bvp −→ bvq,
generated by function f , is locally bounded if and only if for each s ∈ N all functions f(s, ·) are bounded.

Example 3.3. Let f : N×R → R can be defined by f(s, x(s)) = (x(s))s and superposition operator Ff : bvp −→ bvq
generated by the function f . Then clearly the superposition operator Ff is continuous. However, it is not bounded
on any sphere with radius greater than 1.

In the following theorem, we give necessary and sufficient conditions for the boundedness of a superposition operator.

Theorem 3.4. Let 1 ≤ p, q <∞ and f : N×R → R be a real function. Then superposition operator Ff : bvp −→ bvq,
generated by function f, is bounded if and only if for u ∈ bvp and each r > 0 there exists a function ar ∈ bvq and
br ≥ 0 such that

|f(s, u(s)) − f(s− 1, u(s− 1))| ≤
(
ar(s) − ar(s− 1)

)
+ br|u(s) − u(s− 1)|

p
q , (6)

where |u(s) − u(s− 1)| ≤ r. Furthermore,

ϕf (r) ≤ ψf (r) ≤ ∥Ff (0)∥bvq + (2
1
q + 1)ϕf (r),

where ϕf (r) = sup||u||bvp≤r ∥Ff (u)∥bvq
, and for |u(s) − u(s− 1)| ≤ r,

ψf (r) = inf{||a||bvq
+ br

p
q : |f(s, u(s)) − f(s− 1, u(s− 1))|

≤ (a(s) − a(s− 1)) + b|u(s) − u(s− 1)|
p
q }.

Proof . Suppose that for r > 0, (6) is satisfied and for u ∈ bvp we have ||u||bvp ≤ r, then

∥Ff (u)∥bvq
=

( ∞∑
s=1

|Ff (u)(s) − Ff (u)(s− 1)|q
) 1

q

=
( ∞∑

s=1

|f(s, u(s)) − f(s− 1, u(s− 1))|q
) 1

q

≤
( ∞∑

s=1

|ar(s) − ar(s− 1)|q
) 1

q

+ br

( ∞∑
s=1

|u(s) − u(s− 1)|q
) 1

q

= ||ar||bvq
+ br||u||

p
q

bvp

≤ ||ar||bvq
+ brr

p
q ,

and therefore ∥Ff (u)∥bvq ≤ ψf (r), and hence ϕf (r) ≤ ψf (r). Now suppose that the superposition operator Ff is
bounded. Define the function

|fr(s, u(s)) − fr(s− 1, u(s− 1))| = max{0, |f(s, u(s)) − f(s− 1, u(s− 1))| − |f(s, 0) − f(s− 1, 0)|

− 2
1
q r−

p
q ϕf (r)|u(s) − u(s− 1)|

p
q }. (7)
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Moreover, for every function x ∈ bvp, in order to satisfy the condition |x(s) − x(s− 1)| ≤ r, put

D(x) := {s ∈ N; |f(s, x(s)) − f(s− 1, x(s− 1))| > |f(s, 0) − f(s− 1, 0)| + 2
1
q r−

p
q ϕf (r)|x(s) − x(s− 1)|

p
q },

and
y := PD(x)x.

According to Lemma 2.2, the function y can be represented in the form of pairwise difference disjoint functions
y1, ..., ym, such that m ≤ 2r−p||y||pbvp

+ 1 and ||yj ||bvp ≤ r, where j = 1, . . . ,m. Then

∞∑
s=1

|fr(s, x(s)) − fr(s− 1, x(s− 1))|q =

∞∑
s=1

|fr(s, y(s)) − fr(s− 1, y(s− 1))|q

=

∞∑
s=1

|fr(s,

m∑
j=1

yj(s)) − fr(s− 1,

m∑
j=1

yj(s− 1))|q

≤
m∑
j=1

( ∞∑
s=1

|f(s, yj(s)) − f(s− 1, yj(s− 1))|q

−
∞∑
s=1

|f(s, 0) − f(s− 1, 0))|q − 2r−pϕqf (r)

∞∑
s=1

|yj(s) − yj(s− 1)|p
)

≤ (2r−p||y||pbvp
+ 1)ϕqf (r) − 2r−pϕqf (r)||y||pbvp .

Therefore, it follows from x ∈ bvp and |x(s) − x(s− 1)| ≤ r that

∞∑
s=1

|fr(s, x(s)) − fr(s− 1, x(s− 1))|q ≤ ϕqf (r).

Hence, as in the proof of Theorem 2.1, for |u(s) − u(s− 1)| ≤ r, we have

|fr(s, u(s)) − fr(s− 1, u(s− 1))|q ≤ ar(s) − ar(s− 1), (8)

where ||ar||bvq ≤ ϕf (r). Then it follows from (7) and (8) that

|f(s, u(s)) − f(s− 1, u(s− 1))| ≤ |f(s, 0) − f(s− 1, 0))| +
(
ar(s) − ar(s− 1)

)
+ 2

1
q r−

p
q ϕf (r)|u(s) − u(s− 1)|

p
q ,

if we put br := 2
1
q r−

p
q ϕf (r). Hence

|f(s, u(s)) − f(s− 1, u(s− 1))| ≤ ar(s) − ar(s− 1) + br|u(s) − u(s− 1)|
p
q .

Moreover, for each r > 0, we have

ψf (r) ≤ ||ar||bvq
+ brr

p
q ≤ ∥Ff (0)∥bvq + ||ar||bvq + brr

p
q

= ∥Ff (0)∥bvq + ||ar||bvq + 2
1
q r−

p
q ϕf (r)r

p
q

≤ ∥Ff (0)∥bvq + (2
1
q + 1)ϕf (r).

The proof is complete. □

In the following example, it is shown that a continuous superposition operator is not necessarily uniformly contin-
uous.

Example 3.5. Let f : N × R → R can be defined by f(s, x(s)) = x(s)sinπsx(s), where x is a real function of the
space bv1 on N. Then the operator Ff : bv1 −→ bv1, defined by Ff (x)(s) = f(s, x(s)), is a continuous superposition
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operator. But it is not uniformly continuous, since for the sequences un :=
2n+ 1

2n
χ{n} and vn :=

2n− 1

2n
χ{n} we have

||un||bv1 =

∞∑
s=1

∣∣2n+ 1

2n
χ{n}(s) − 2n+ 1

2n
χ{n}(s− 1)

∣∣
=

2n+ 1

2n

( ∞∑
s=1

∣∣χ{n}(s) − χ{n}(s− 1)
∣∣)

=
2n+ 1

2n
||χ{n}||bv1 ≤ 3

2
,

and

||vn||bv1 =

∞∑
s=1

∣∣2n− 1

2n
χ{n}(s) − 2n− 1

2n
χ{n}(s− 1)

∣∣
=

2n− 1

2n

( ∞∑
s=1

∣∣χ{n}(s) − χ{n}(s− 1)
∣∣)

=
2n− 1

2n
||χ{n}||bv1

< 1,

then un, vn ∈ bv1, and thus

||un − vn||bv1
=

∞∑
s=1

∣∣(un − vn)(s) − (un − vn)(s− 1)
∣∣

=

∞∑
s=1

∣∣(2n+ 1

2n
χ{n}(s) − 2n− 1

2n
χ{n}(s)

)
−

(2n+ 1

2n
χ{n}(s− 1) − 2n− 1

2n
χ{n}(s− 1)

)∣∣
=

1

n

( ∞∑
s=1

∣∣χ{n}(s) − χ{n}(s− 1)
∣∣) =

1

n
.

But we have

∥Ff (un) − Ff (vn)∥bv1 =

∞∑
s=1

∣∣(Ff (un) − Ff (vn))(s) − (Ff (un) − Ff (vn))(s− 1)
∣∣

=

∞∑
s=1

∣∣(f(s, un(s)) − f(s, vn(s))) − (f(s− 1, un(s− 1)) − f(s− 1, vn(s− 1)))
∣∣

=

∞∑
s=1

∣∣(un(s)sinπsun(s) − vn(s)sinπsvn(s)
)

−
(
un(s− 1)sinπ(s− 1)un(s− 1) − vn(s− 1)sinπ(s− 1)vn(s− 1)

)∣∣
=

∞∑
s=1

∣∣∣(2n+ 1

2n
χ{n}(s)sinπs

2n+ 1

2n
χ{n}(s) − 2n− 1

2n
χ{n}(s)sinπs

2n− 1

2n
χ{n}(s)

)
−
(2n+ 1

2n
χ{n}(s− 1)sinπ(s− 1)

2n+ 1

2n
χ{n}(s− 1)

− 2n− 1

2n
χ{n}(s− 1)sinπ(s− 1)

2n− 1

2n
χ{n}(s− 1)

)∣∣∣
= 2

( ∞∑
s=1

∣∣χ{n}(s) − χ{n}(s− 1)
∣∣) = 2.

Let the operator Ff : bvp −→ bvq, generated by function f , is the superposition operator on bvp for 1 ≤ p, q <∞.
Then for r, δ ≥ 0, ωf (r, δ) is the continuity modulus of the operator Ff and is defined by

ωf (r, δ) = sup
||u||bvp ,||v||bvp≤r,||u−v||bvp≤δ

∥Ff (u) − Ff (v)∥bvq
,
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where u, v ∈ bvp, also for the function a ∈ bvq and constants b, c, d ≥ 0, νf (r, δ) is the function defined by

νf (r, δ) = inf
{
||a||bvq

+ (b+ c)r
p
q + dδ

p
q :

∣∣(f(s, u(s)) − f(s− 1, u(s− 1))) −
(
f(s, v(s)) − f(s− 1, v(s− 1))

)∣∣
≤

(
a(s) − a(s− 1)

)
+ b

∣∣u(s) − u(s− 1)
∣∣ p
q + c

∣∣v(s) − v(s− 1)
∣∣ p
q + d

∣∣(u− v)(s) − (u− v)(s− 1)
∣∣ p
q
}
,

where |u(s) − u(s− 1)|, |v(s) − v(s− 1)| ≤ r and
∣∣(u− v)(s) − (u− v)(s− 1)

∣∣ ≤ δ.
In the following, we give necessary and sufficient conditions for the uniformly continuity of a superposition operator
and we compare the functions ωf (r, δ) with νf (r, δ).

Theorem 3.6. Let 1 ≤ p, q <∞ and f : N×R → R be a real function. Then superposition operator Ff : bvp −→ bvq,
generated by function f , is uniformly continuous if and only if for u, v ∈ bvp and each r, δ ≥ 0 and ε > 0 there exists
a function ar,δ ∈ bvq such that∣∣(f(s, u(s)) − f(s− 1, u(s− 1))

)
−
(
f(s, v(s)) − f(s− 1, v(s− 1))

)∣∣
≤
(
ar,δ(s) − ar,δ(s− 1)

)
+ br,δ

∣∣u(s) − u(s− 1)
∣∣ p
q + cr,δ

∣∣v(s) − v(s− 1)
∣∣ p
q + dr,δ

∣∣(u− v)(s) − (u− v)(s− 1)
∣∣ p
q . (9)

where ||ar,δ||bvq
+(br,δ+cr,δ)r

p
q ≤ ε, dr,δ ≥ 0 and |u(s)−u(s−1)|, |v(s)−v(s−1)| ≤ r and

∣∣(u−v)(s)−(u−v)(s−1)
∣∣ ≤ δ.

Furthermore,

ωf (r, δ) ≤ νf (r, δ) ≤ (2
1+q
q + 1) ωf (r, δ).

Proof . Let for each r, δ ≥ 0, (9) is satisfied. Then for u, v ∈ bvp such that ||u||bvp , ||v||bvp ≤ r, and ||u − v||bvp ≤ δ,
we have

∥Ff (u) − Ff (v)∥bvq
=

( ∞∑
s=1

∣∣(Ff (u) − Ff (v)
)
(s) −

(
Ff (u) − Ff (v)

)
(s− 1)|q

) 1
q

=
( ∞∑

s=1

∣∣(f(s, u(s)) − f(s, v(s))
)
−
(
f(s− 1, u(s− 1)) − f(s− 1, v(s− 1))

)∣∣q) 1
q

=
( ∞∑

s=1

∣∣(f(s, u(s)) − f(s− 1, u(s− 1))
)
−
(
f(s, v(s)) − f(s− 1, v(s− 1))

)∣∣q) 1
q

≤
( ∞∑

s=1

|ar,δ(s) − ar,δ(s− 1)|q
) 1

q

+ br,δ

( ∞∑
s=1

|u(s) − u(s− 1)|q
) 1

q

+ cr,δ

( ∞∑
s=1

|v(s) − v(s− 1)|q
) 1

q

+ dr,δ

( ∞∑
s=1

|(u− v)(s) − (u− v)(s− 1)|q
) 1

q

≤ ||ar,δ||bvq
+ (br,δ + cr,δ)r

p
q + dr,δδ

p
q .

Hence, according to the above inequality, we have

∥Ff (u) − Ff (v)∥bvq ≤ νf (r, δ).

Therefore the operator superposition Ff is uniformly continuous and ωf (r, δ) ≤ νf (r, δ).

Conversely, suppose that the operator superposition Ff , for u ∈ bvp, is uniformly continuous on ||u||bvp ≤ r.
Consider the function

gr,δ(s, u(s)) − gr,δ(s− 1, u(s− 1)) = sup
|t(s)−t(s−1)|≤δ,−r−u≤t≤r−u

max
{

0,
∣∣(f(s, (u+ t)(s)) − f(s− 1, (u+ t)(s− 1))

)
−
(
f(s, u(s)) − f(s− 1, u(s− 1))

)∣∣− 2
1
q δ−

p
q ωf (r, δ)|t(s) − t(s− 1)|

p
q
}
. (10)

By repeating the arguments given in the proof of Theorem 3.4, it can be easily shown that the superposition
operator is bounded on ||u||bvp ≤ r by ωf (r, δ). Once again, using arguments similar in the proof of Theorem 3.4, for
|u(s) − u(s− 1)| ≤ r, we have

|gr,δ(s, u(s)) − gr,δ(s− 1, u(s− 1))| ≤ (ar,δ(s) − ar,δ(s− 1)) + 2
1
q r−

p
q ωf (r, δ)|u(s) − u(s− 1)|

p
q , (11)
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where ||ar,δ||bvq
≤ ωf (r, δ). Hence, it follows from (10) and (11) that∣∣(f(s, (u+ t)(s)) − f(s− 1, (u+ t)(s− 1))

)
−
(
f(s, u(s)) − f(s− 1, u(s− 1))

)∣∣
≤

(
ar,δ(s) − ar,δ(s− 1)

)
+ 2

1
q r−

p
q ωf (r, δ)|u(s) − u(s− 1)|

p
q

+ 0|(u+ t)(s) − (u+ t)(s− 1)|
p
q + 2

1
q δ−

p
q ωf (r, δ)|t(s) − t(s− 1)|

p
q .

If we put v := u + t and br,δ = 2
1
q r−

p
q ωf (r, δ), cr,δ = 0, dr,δ = 2

1
q δ−

p
q ωf (r, δ). Then inequality (9) is established.

Moreover, for each r, δ > 0, we have

νf (r, δ) ≤ ||ar,δ||bvq + (br,δ + cr,δ)r
p
q + dr,δδ

p
q

≤ ωf (r, δ) + 2
1
q r−

p
q r

p
q ωf (r, δ) + 2

1
q δ−

p
q δ

p
q ωf (r, δ)

=
(

1 + 2
q+1
q

)
ωf (r, δ).

This ends the proof. □
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