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Abstract

This paper is devoted to proper linear mappings on generalized matrix algebras and by obtaining their general form,
we could obtain good results for commuting mappings and Lie centralizer and Lie triple centralizers, which are clearly
established for triangular algebras and nest algebras as well.
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1 Introduction

Let R be an unital commutative ring, A be an unital algebra on R and Z(A) be the center of A. We determine the
Lie product of elements x, y ∈ A by [x, y] = xy − yx. A linear mapping ϕ : A → A is called commuting if the identity

[ϕ(x), x] = 0

holds for all x ∈ A. Commuting mappings have been studied by many authors (see [5, 6, 16, 22]). Each mapping with
the rang in Z(A) and the identity map are two easy examples of commuting mappings. A Lie centralizer mapping
ϕ : A → A is a linear mapping such that the identity

ϕ[x, y] = [ϕ(x), y]

holds for all x, y ∈ A. It is well-known that Lie centralizers are very important both theoretically and practically and
have therefore been studied intensively (see [2, 8, 9, 13, 14, 15, 17]). A linear mapping ϕ : A → A is called Lie triple
centralizer if the identity

ϕ([[x, y], z]) = [[ϕ(x), y], z]

holds for all x, y, z ∈ A. Obviously, each Lie centralizer is a Lie triple centralizer, but the converse is not generally
correct (see [8, Example 1.2]). In Remark 1.1, we will give an example of Lie triple centralizer. A Lie triple derivation
δ : A → A is a linear mapping such that

δ[[x, y], z] = [[δ(x), y], z] + [[x, δ(y)], z] + [[x, y], δ(z)]
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for all x, y, z ∈ A. A linear mapping δ : A → A is called to be a generalized Lie triple derivation related to a Lie triple
derivation α : A → A if

δ([[x, y], z]) = [[δ(x), y], z] + [[x, α(y)], z] + [[x, y], α(z)]

for all x, y, z ∈ A.

Remark 1.1. A linear mapping δ : A → A is a generalized Lie triple derivation related to a Lie triple derivation
α : A → A if and only if

(δ − α)([[x, y], z]) = [[(δ − α)(x), y], z]

for all x, y, z ∈ A.

We now introduce the properness of linear mappings. A linear mapping ϕ : A → A is called proper if there exist
λ ∈ Z(A) and a linear mapping τ : A → Z(A) such that

ϕ(x) = λx+ τ(x)

for all x ∈ A. It is easy to investigate that every such a map is a commuting map, which is called a proper commuting
map. The main question, however, is that when a commuting map is proper. Cheung [6] was the first who studied
proper commuting mappings on triangular algebras. Furthermore, by specifying the exact form of the commuting
mappings, Xiao and Wei [22] obtained sufficient conditions for these mappings to be proper on generalized matrix
algebras. Jabeen [15] has also studied properness for Lie centralizers on the generalized matrix algebras.

2 Preliminaries and Tools

Let us start by introducing the generalized matrix algebras provided by a Morita context [20]. A Morita context
includes two algebras A and B, two bimodules AMB and BNA, and two bimodule homomorphisms ζMN : M⊗

B
N → A

and ψNM : N ⊗
A
M → B which satisfy by the following commutative diagrams:

M⊗
B
N ⊗

A
M

ζMN⊗IM //

IM⊗ψNM

��

A⊗
A
M

∼=

��
M⊗

B
B

∼= //M

and N ⊗
A
M⊗

B
N

ψNM⊗IN //

IN⊗ζMN

��

B ⊗
B
N

∼=

��
N ⊗

A
A

∼= // N

Consider a Morita context (A,B,M,N , ζMN , ψNM), then the set

G(A,M,N ,B) =
[
A M
N B

]
=

{[
a m
n b

]
: a ∈ A,m ∈ M, n ∈ N , b ∈ B

}
by applying addition and multiplication of a matrix, it forms an algebra, which we call generalized matrix algebra.

These algebras were first introduced by Sands [21] to study radicals of rings in Morita contexts. When N = 0, the
algebra G(A,M, 0,B) is called triangular algebra.

Generalized matrix algebras contain a wide range of algebras, such as full matrix algebras and nest algebras, etc,
so they are of great importance in mathematics. Therefore, we decided to investigate proper linear mappings on these
algebras, to get good results for those algebras as well.

As mentioned in [4, 10], we introduce weaker conditions than faithfulness on a generalized matrix algebra. A
generalized matrix algebra G(A,M,N ,B) is called weakly faithful if

aM = 0,Na = 0 =⇒ a = 0

Mb = 0, bN = 0 =⇒ b = 0

for all a ∈ A and b ∈ B. When a generalized matrix algebra is weakly faithful , its center is simplified as follows
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Lemma 2.1. ([3, Proposition 2.1]) Consider a generalized matrix algebra G(A,M,N ,B) is weakly faithful. The
center of G is as follows

Z(G) =
{[
a 0
0 b

]
, am = mb, na = bn, for all m ∈ M, n ∈ N

}
In addition, there is a unique algebra isomorphism η :πA(Z(G))−→πB(Z(G)) such that am = mη(a) and na = η(a)n
for all m ∈ M and n ∈ N .

Considering that many authors tried to show properness����� for different mappings, in section 3, we essentially char-
acterize this type of mapping on generalized matrix algebras to obtain the necessary and sufficient conditions under
which a mapping to be valid in this property. In Proposition 3.1, we obtain these conditions, and in the sequel, the
properties are found that the elements of a mapping must have to be proper.

In section 4, we deal with commuting mappings and create the conditions of Theorem 3.4 for these maps on the
generalized matrix algebras so that we can conclude [22, Theorem 3.6].

Section 5 is dedicated to examining the maps that apply to the property (⋆) as follows

xy = yx = 0 ⇒ [Φ(x), y] ∈ Z(G) (⋆)

for all x, y ∈ A, and provides sufficient conditions for these maps to be proper. Characterization of maps through
commutative zero products are recentally studied by some authors (see [1, 7, 11, 12] and references therein).

At last, in section 6, we obtain some results about commuting maps, Lie centralizers and Lie triple centralizer
which are the main results of [6, 8, 15].

3 Proper linear mappings on generalized matrix algebras

Let us begin this section by characterizing proper linear mappings on generalized matrix algebras.

Proposition 3.1. Let Φ be a linear mapping on generalized matrix algebra G. Φ is proper if and only if Φ is of
following form

Φ

[
a m
n b

]
=

[
f1(a) + g1(m) + h1(n) + k1(b) cm

nc f4(a) + g4(m) + h4(n) + k4(b)

]
,

where fi, gi, hi and ki, i ∈ {1, 4}, are linear mappings on A,M,N and B, respectively, and there exists c ∈ πA(Z(G))
such that

(i)

[
g1(m) + h1(n) 0

0 g4(m) + h4(n)

]
∈ Z(G),

(ii)

[
f1(a)− ca 0

0 f4(a)

]
∈ Z(G),

(iii)

[
k1(b) 0
0 k4(b)− η(c)b

]
∈ Z(G),

for all a ∈ A,m ∈ M, n ∈ N and b ∈ B.

Proof . Each linear mapping Φ : G → G is of the followoing form,

Φ

[
a m
n b

]
=

[
f1(a) + g1(m) + h1(n) + k1(b) f2(a) + g2(m) + h2(n) + k2(b)
f3(a) + g3(m) + h3(n) + k3(b) f4(a) + g4(m) + h4(n) + k4(b)

]
,

where fi, gi, hi and ki, 1 ≤ i ≤ 4, are linear mappings on A,M,N and B, respectively.
Let Φ(x) = λx+ τ(x) for all x ∈ G where λ ∈ Z(G) and τ(G) ⊆ Z(G). λ and τ are of the following forms

λ =

[
c 0
0 η(c)

]
and

τ

[
a m
n b

]
=

[
F1(a) +G1(m) +H1(n) +K1(b) 0

0 F4(a) +G4(m) +H4(n) +K4(b)

]
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where Fi, Gi, Hi and Ki, i = 1, 4, are linear mappings on A,M,N and B, respectively. so for each a ∈ A,m ∈ M, n ∈
N and b ∈ B, we have

Φ

[
a m
n b

]
= λ

[
a m
n b

]
+ τ

[
a m
n b

]
=

[
ca cm

η(c)n η(c)b

]
+

[
F1(a) +G1(m) +H1(n) +K1(b) 0

0 F4(a) +G4(m) +H4(n) +K4(b)

]
therefore

f3 = g3 = k3 = f2 = h2 = k2 = 0,

and [
g1(m) + h1(n) 0

0 g4(m) + h4(n)

]
∈ Z(G)

and
g2(m) = cm, h3(n) = η(c)n = nc,

for all a ∈ A,m ∈ M, n ∈ N and b ∈ B.

From

[
f1(a) 0
0 f4(a)

]
=

[
F1(a) + ca 0

0 F4(a)

]
and

[
F1(a) 0
0 F4(a)

]
∈ Z(G), we get

[
f1(a)− ca 0

0 f4(a)

]
∈ Z(G) for

all a ∈ A.

From

[
k1(b) 0
0 k4(b)

]
=

[
K1(b) 0

0 K4(b) + η(c)b

]
and

[
K1(b) 0

0 K4(b)

]
∈ Z(G), we get

[
k1(b) 0
0 k4(b)− η(c)b

]
∈

Z(G), for all b ∈ B.
The converse is obviously achieved. □

In the following, we describe the properties of proper linear mappings on weakly faithful generalized matrix algebras.

Proposition 3.2. Let a generalized matrix algebra G be weakly faithful. A linear mapping Φ : G → G is proper if
and only if Φ is of the following form

Φ

([
a m
n b

])
=

[
f1(a) + g1(m) + h1(n) + k1(b) g2(m)

h3(n) f4(a) + g4(m) + h4(n) + k4(b)

]
for all a ∈ A,m ∈ M, n ∈ N and b ∈ B where f1 : A→ A, g1 : M → Z(A), h1 : N → Z(A), k1 : B → Z(A), g2 : M →
M, h3 : N → N , f4 : A→ Z(B), g4 : M → Z(B), h4 : N → Z(B) and k4 : B → B are linear mappings such that

(i) g1(m)m′ = m′g4(m), ng1(m) = g4(m)n,

(ii) h1(n)m = mh4(n), n′h1(n) = h4(n)n
′,

(iii) f4(A) ⊆ πB(Z(G)), k1(B) ⊆ πA(Z(G)),
(iv) h3(bn) = k4(b)n− nk1(b), h3(na) = nf1(a)− f4(a)n,

(v) g2(am) = f1(a)m−mf4(a), g2(mb) = mk4(b)− k1(b)m,

for all a ∈ A,m ∈ M, n ∈ N and b ∈ B.

Proof . =⇒ Let Φ(X) = λX + τ(X) for all X ∈ G, where λ ∈ Z(G) and τ(G) ⊆ Z(G).
We know that (i, ii) are deduced by Proposition 3.1(i), and (iii) is concluded by Proposition 3.1(ii, iii).

From Proposition 3.1(ii), we have f1(a)− ca = η−1(f4(a)) or f1(a)− η−1(f4(a)) = ca, by puttying a = 1A, we get

f1(1A)− η−1(f4(1A)) = c. (3.1)

and so
f1(a)− η−1(f4(a)) = (f1(1A)− η−1(f4(1A)))a (3.2)

for all a ∈ A.
From Proposition 3.1(iii), we have k4(b)− η(c)b = η(k1(b)) or k4(b)− η(k1(b)) = η(c)b, by puttying b = 1B, we get

k4(1B)− η(k1(1B)) = η(c). (3.3)
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and so
k4(b)− η(k1(b)) = (k4(1B)− η(k1(1B)))b (3.4)

for all b ∈ B.
Therefore the equalities 3.1 and 3.3 imply that[

f1(1A)− η−1(f4(1A)) 0
0 k4(1B)− η(k1(1B))

]
∈ Z(G), (3.5)

therefore Proposition 3.1(1) and the relations 3.1, 3.4 and 3.5, induce that

h3(bn) = bnc = bn(f1(a)− η−1(f4(a))) = (k4(1B)− η(k1(1B)))bn

= (k4(b)− η(k1(b)))n = k4(b)n− nk1(b)

for all n ∈ N and b ∈ B.
By Proposition 3.1(1) and the fact that c ∈ Z(A) and relations 3.1 and 3.2, we have

h3(na) = nac = n(f1(1A)− η−1(f4(1A)))a = n(f1(a)− η−1(f4(a)))

= nf1(a)− f4(a)n

for all a ∈ A and n ∈ N .

From Proposition 3.1(1) and the relations 3.1, 3.4 and 3.5 we have

g2(mb) = cmb = (f1(1A)− η−1(f4(1A)))mb = m(k4(1B)− η(k1(1B)))b

= m(k4(b)− η(k1(b))) = mk4(b)− k1(b)m,

for all m ∈ M and b ∈ B.
By Proposition 3.1(1) and 3.1 and 3.2 we have

g2(am) = (f1(1A)− η−1(f4(1A)))am = (f1(a)− η−1(f4(a)))m = f1(a)m−mf4(a)

for all a ∈ A and m ∈ M.

⇐= At first, the equalities (i, ii) imply Proposition 3.1(2).

From (iii, iv) we have h3(bn) = (k4(b) − η(k1(b))n by putting b = 1B we get h3(n) = (k4(1B) − η(k1(1B))n, then
replacing n by bn, we have h3(bn) = (k4(1B)− η(k1(1B))bn therefore we get

(k4(1B)− η(k1(1B))bn = (k4(b)− η(k1(b))n (3.6)

From (iii, iv) we have h3(na) = n(f1(a)− η−1(f4(a)) by putting a = 1A we get h3(n) = n(f1(1A)− η−1(f4(1A))),
then replacing n by na, we have h3(na) = na(f1(1A)− η−1(f4(1A))) therefore we get

na(f1(1A)− η−1(f4(1A))) = n(f1(a)− η−1(f4(a)) (3.7)

From (iii, v) we have g2(am) = (f1(a)−η−1(f4(a)))m by putting a = 1A we get g2(m) = (f1(1A)−η−1(f4(1A)))m,
then replacing m by am, we have g2(am) = (f1(1A)− η−1(f4(1A)))am therefore we get

(f1(1A)− η−1(f4(1A)))am = (f1(a)− η−1(f4(a)))m (3.8)

From (iii, v) we have g2(mb) = m(k4(b)− η(k1(b))) by putting b = 1B we get g2(m) = m(k4(1B)− η(k1(1B))), then
replacing m by mb, we have g2(mb) = mb(k4(1B)− η(k1(1B))) therefore we get

mb(k4(1B)− η(k1(1B))) = m(k4(b)− η(k1(b))) (3.9)

By 3.7 and 3.8 and using weakly faithfulness of G, we have

(f1(1A)− η−1(f4(1A))a = f1(a)− η−1(f4(a))
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so η−1(f4(a)) = f1(a)− (f1(1A)− η−1(f4(1A))a and by considering c = f1(1A)− η−1(f4(1A) we have[
f1(a)− (f1(1A)− η−1(f4(1A))a 0

0 f4(a)

]
=

[
f1(a)− ca 0

0 f4(a)

]
∈ Z(G)

By 3.6 and 3.9 and using weakly faithfulness of G we have

b(k4(1B)− η(k1(1B))) = k4(b)− η(k1(b))

so η(k1(b)) = k4(b)− b(k4(1B)− η(k1(1B))) and by considering η(c) = k4(1B)− η(k1(1B)) we have[
k1(b) 0
0 k4(b)− b(k4(1B)− η(k1(1B)))

]
=

[
k1(b) 0
0 k4(b)− bη(c)

]
∈ Z(G)

□

Remark 3.3. In Proposition 3.2, we have

(i) h3(n) = k4(1B)n− nk1(1B) = nf1(1A)− f4(1A)n,

(ii) h3(bn) = bh3(n), h3(na) = h3(n)a,

(iii) g2(m) = f1(1A)m−mf4(1A) = mk4(1B)− k1(1B)m,

(iv) g2(mb) = g2(m)b, g2(am) = ag2(m),

(v) we can replace the condition Proposition 3.2(iii) by

f4(1A) ⊆ πB(Z(G)), k1(1B) ⊆ πA(Z(G))

Proof . (i)-(iv) come from the following equalities, respectively.

h3(bn) = bnf1(1A)− f4(1A)bn = b(nf1(1A)− f4(1A)n) = bh3(n),

h3(na) = k4(1B)na− nak1(1B) = (k4(1B)n− nk1(1B))a = h3(n)a,

g2(mb) = f1(1A)mb−mbf4(1A) = (f1(1A)m−mf4(1A))b = g2(m)b,

g2(am) = amk4(1B)− k1(1B)am = a(mk4(1B)− k1(1B)m) = ag2(m),

To prove (v), let f4(1A) ∈ πB(Z(G)). By Proposition 3.2(v), we have

g2(am) = f1(a)m−mf4(a) = (f1(1A)− η−1(f4(1A)))am,

so
(f1(a)− (f1(1A)− η−1(f4(1A)))a)m = mf4(a). (3.10)

for all m ∈ M.

In addition, from Proposition 3.2(iv), we have

h3(na) = nf1(a)− f4(a)n = na(f1(1A)− η−1(f4(1A))),

so
n(f1(a)− a(f1(1A)− η−1(f4(1A)))) = f4(a)n. (3.11)

for all a ∈ A, n ∈ N .

From 3.10 and 3.11, we get f4(A) ⊆ πB(Z(G)). Similarily, it is deduced that k1(B) ⊆ πA(Z(G)).
□

Now the proper mappings on weakly faithful generalized matrix algebras are presented in the simplest way.

Theorem 3.4. Let a generalized matrix algebra G be weakly faithful. A linear mapping Φ : G → G is proper if and
only if Φ is of the following form

Φ

([
a m
n b

])
=

[
f1(a) + g1(m) + h1(n) + k1(b) f1(1A)m−mf4(1A)

k4(1B)n− nk1(1B) f4(a) + g4(m) + h4(n) + k4(b)

]
for all a ∈ A,m ∈ M, n ∈ N and b ∈ B where f1 : A → A, g1 : M → Z(A), h1 : N → Z(A), k1 : B → Z(A), f4 : A →
Z(B), g4 : M → Z(B), h4 : N → Z(B) and k4 : B → B are linear mappings such that
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(i) g1(m)m′ = m′g4(m), ng1(m) = g4(m)n,

(ii) h1(n)m = mh4(n), n′h1(n) = h4(n)n
′,

(iii) f4(1A) ∈ πB(Z(G)), k1(1B) ∈ πA(Z(G)),
(iv) k4(b)n− nk1(b) = b(k4(1B)n− nk1(1B)),

nf1(a)− f4(a)n = ((k4(1B)n− nk1(1B))a,

(v) f1(a)m−mf4(a) = a(f1(1A)m−mf4(1A)),
mk4(b)− k1(b)m = (f1(1A)m−mf4(1A))b,

for all a ∈ A,m,m′ ∈ M, n ∈ N and b ∈ B.

4 Proper commuting mappings

As we know, proper commuting mappings has been studied in many articles, including [5], [6] and [22]. In this
section, to show that Theorem 3.4 has many applications, we state it’s result for the commuting mappings on the
generalized matrix algebras. By considering the characterization [22, proposition 3.3] and imposing some conditions
on the generalized matrix algebras and using the Lemma 4.1 and Corollaries 4.3 and 4.5, the conditions of Theorem
3.4 arise, and thus sufficient conditions are obtained for commuting mappins on generalized matrix algebras to be
proper, therefore Theorem 3.4 conclude [22, Theorem 3.6].

Lemma 4.1. Let G(A,M,N ,B) be a generalized matrix algebra and m0 ∈ M, n0 ∈ N be available such that

Z(G) =
{[
a 0
0 b

]
|a ∈ Z(A), b ∈ Z(B), am0 = m0b, n0a = bn0

}
.

Suppose that linear mappings r : M → Z(A), s : M → Z(B), t : N → Z(A) and u : N → Z(B) satisfying in the
following equalities

r(m)m = ms(m), nr(m) = s(m)n, t(n)m = mu(n), nt(n) = u(n)n,

for all m ∈ M, n ∈ N , therefore we get[
r(m) 0
0 s(m)

]
∈ Z(G),

[
t(n) 0
0 u(n)

]
∈ Z(G),

for all m ∈ M, n ∈ N .

Proof . We only prove

[
r(m) 0
0 s(m)

]
∈ Z(G) and the proof of

[
t(n) 0
0 u(n)

]
∈ Z(G) is calculated similarly.Using the

definition of Z(G) and the given condition, it suffices to show that r(m)m0 = m0s(m), for all m ∈ M.

According to the assumptions, r(m0)m0 = m0s(m0), n0r(m0) = s(m0)n0, therefore

[
r(m0) 0

0 s(m0)

]
∈ Z(G), so

r(m0)m = ms(m0), for all m ∈ M. On the other hand,

r(m+m0)(m+m0) = (m+m0)s(m+m0)

= ms(m) +m0s(m) +ms(m0) +m0s(m0),

and

r(m+m0)(m+m0) = r(m)m+ r(m)m0 + r(m0)m+ r(m0)m0

= ms(m) + r(m)m0 + r(m0)m+m0s(m0),

consequently, r(m)m0 = m0s(m) for all m ∈ M, that is our desired result.

□

Proposition 4.2. Consider M as a faithful left A−module or N as a faithful right A−module and we have

1) a(f1(1A)m−mf4(1A)) = f1(a)m−mf4(a),
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2) (nf1(1A)− f4(1A)n)a = nf1(a)− f4(a)n,

for all a ∈ A and m ∈ M, n ∈ N , then
[a, f1(1A)] ∈ Z(A) for all a ∈ A, if and only if [A,A] ⊆ f−1

4 (πB(Z(G)))

Proof .

we have
a′a(f1(1A)m−mf4(1A)) = f1(a

′a)m−mf4(a
′a) = a′(f1(a)m−mf4(a)),

for all a, a′ ∈ A and m ∈ M, then

f1(a
′a)m−mf4(a

′a)− a′(f1(a)m−mf4(a)) = 0. (4.1)

for all a, a′ ∈ A and m ∈ M. On the other hand,

aa′(f1(1A)m−mf4(1A)) = f1(aa
′)m−mf4(aa

′),

for all a, a′ ∈ A and m ∈ M, and

a(f1(1A)a
′m− a′mf4(1A)) = f1(a)a

′m− a′mf4(a),

for all a, a′ ∈ A and m ∈ M, imply that

a[a′, f1(1A)]m = f1(aa
′)m−mf4(aa

′)− f1(a)a
′m+ a′mf4(a). (4.2)

for all a, a′ ∈ A and m ∈ M. The equation 4.1 and 4.2 imply that

(a[a′, f1(1A)]− f1([a, a
′]− [a′, f1(1A)]))m = mf4([a

′, a]). (4.3)

for all a, a′ ∈ A and m ∈ M.

In the sequel, we have

(nf1(1A)− f4(1A)n)aa
′ = nf1(aa

′)− f4(aa
′)n = (nf1(a)− f4(a)a

′

for all a, a′ ∈ A and n ∈ N , then

nf1(aa
′)− f4(aa

′)n− (nf1(a)− f4(a)a
′) = 0. (4.4)

for all a, a′ ∈ A and n ∈ N . On the other hand,

(nf1(1A)− f4(1A)n)a
′a = nf1(a

′a)− f4(a
′a)n,

for all a, a′ ∈ A and n ∈ N , and

(na′f1(1A)− f4(1A)na
′)a = na′f1(a)− f4(a)na

′

therefore
n[a′, f1(1A)]a = −nf1(a′a) + f4(a

′a)n+ na′f1(a)− f4(a)na
′ (4.5)

The equalities 4.4 and 4.5 deduce that

n([a′, f1(1A)]a− f1([a, a
′]− [a′, f1(1A)])) = f4([a

′, a])n, (4.6)

□

By substituting condition weakly faithfulness of G(A,M,N ,B) in Proposition 4.2 instead of condition ”faithful-
ness”, we will have the following result.

Corollary 4.3. Suppose that a generalized matrix algebra G is weakly faithful and we have

1) a(f1(1A)m−mf4(1A)) = f1(a)m−mf4(a),
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2) (nf1(1A)− f4(1A)n)a = nf1(a)− f4(a)n,

3) [a, f1(1A)] ∈ Z(A),

for all a ∈ A,m ∈ M and n ∈ N , then [A,A] ⊆ f−1
4 (πB(Z(G)))

As Proposition 4.2, the following proposition is proved similarly.

Proposition 4.4. Consider M as a faithful right B−module or N as a faithful left B−module and we have

1) k4(b)n− nk1(b) = b(k4(1B)n− nk1(1B)),

2) mk4(b)− k1(b)m = (mk4(1B)− k1(1B)m)b,

for all a ∈ A and m ∈ M, n ∈ N , then
[b, k4(1B)] ∈ Z(A) for all b ∈ B, if and only if [B,B] ⊆ k−1

1 (πA(Z(G))).

When G(A,M,N ,B) be weakly faithful, the following corollary is deduced.

Corollary 4.5. Suppose that generalized matrix algebra G(A,M,N ,B) is weakly faithful and we have

1) k4(b)n− nk1(b) = b(k4(1B)n− nk1(1B)),

2) mk4(b)− k1(b)m = (mk4(1B)− k1(1B)m)b,

3) [b, k4(1B)] ∈ Z(B)

for all m ∈ M, n ∈ N and b ∈ B, then [B,B] ⊆ k−1
1 (πA(Z(G))).

Let us recall [22, proposition 3.3] in which commuting mappings on generalized matrix algebras are completely char-
acterized, that was shown commuting mappings satisfy the conditions (iv) and (v) of Theorem 3.4.

Proposition 4.6. ([22, proposition 3.3]) Each commuting mapping Φ on generalized matrix algebra G(A,M,N ,B)
is of the following form

Φ

([
a m
n b

])
=

[
f1(a) + g1(m) + h1(n) + k1(b) f1(1A)m−mf4(1A)

k4(1B)n− nk1(1B) f4(a) + g4(m) + h4(n) + k4(b)

]
for all a ∈ A,m ∈ M, n ∈ N and b ∈ B where f1 : A → A, g1 : M → Z(A), h1 : N → Z(A), k1 : B → Z(A), f4 : A →
Z(B), g4 : M → Z(B), h4 : N → Z(B) and k4 : B → B are linear mappings such that

(i) f1 and k4 are commuting mapping on A and B, repectively.
(ii) f1(a)m−mf4(a) = a(f1(1A)m−mf4(1A)),

f4(a)n− nf1(a) = (nk1(1B)− k4(1B)n)a.
(iii) k1(b)m−mk4(b) = (mf4(1A)− f1(1A)m)b,

k4(b)n− nk1(b) = b(k4(1B)n− nk1(1B)).
(iv) g1(m)m = mg4(m), h1(n)m = mh4(n).
(v) h4(n)n = nh1(n), g4(m)n = ng1(m).

By using Lemma 4.1, the conditions (iv) and (v), imply the conditions (i) and (ii) of Theorem 3.4 and since in
commuting mappings, f1(1A) ∈ Z(A) and k4(1B) ∈ Z(B), from Corollaries 4.3, 4.5 , we can conclude the following
result.

Theorem 4.7. ([22, Theorem 3.6]) Let generalized matrix algebra G(A,M,
N ,B) is weakly faithful and the following three conditions are met

1. Z(A) = πA(Z(G)), or [A,A] = A.
2. Z(B) = πB(Z(G)), or [B,B] = B.
3. m0 ∈ M and n0 ∈ N are available such that

Z(G) =
{[
a 0
0 b

]
: a ∈ Z(A), b ∈ Z(B), am0 = m0b, n0a = bn0

}
,

then each commuting map Φ on G is proper.
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5 Linear mappings satisfying (⋆)

In this section, we study linear mappings on generalized matrix algebras satisfying (⋆) and sufficient condition
are given under which these mappings are proper. Before proving the next proposition, we present two orthogonal
elements of a genealized matrix algebra G(A,M,N ,B).[

a am
−na −nam

] [
mbn mb
−bn −b

]
=

[
mbn mb
−bn −b

] [
a am

−na −nam

]
= 0 (5.1)

for all a ∈ A,m ∈M,n ∈ N and b ∈ B.
In order to examine the properties of the mappings satistying in (⋆), we will first charaterize the structure of these

mappingss in the following statement.

Proposition 5.1. Each linear mapping Φ : G → G satisfying

XY = Y X = 0 =⇒ [Φ(X), Y ] ∈ Z(G) (⋆)

for all X,Y ∈ G, is of the following form

Φ

([
a m
n b

])
=

[
f1(a) + g1(m) + h1(n) + k1(b) g2(m)

h3(n) f4(a) + g4(m) + h4(n) + k4(b)

]
for all a ∈ A,m ∈ M, n ∈ N and b ∈ B where f1 : A→ A, g1 : M → Z(A), h1 : N → Z(A), k1 : B → Z(A), g2 : M →
M, h3 : N → N , f4 : A→ Z(B), g4 : M → Z(B), h4 : N → Z(B) and k4 : B → B are linear mapping such that

(i) aa′ = a′a = 0 ⇒ [f1(a), a
′] = 0, bb′ = b′b = 0 ⇒ [k4(b), b

′] = 0,

(ii) g1(m)m′ = m′g4(m), ng1(m) = g4(m)n.

(iii) h1(n)m = mh4(n), n
′h1(n) = h4(n)n

′,

(iv) h3(bn) = k4(b)n− nk1(b), h3(na) = nf1(a)− f4(a)n,

(v) g2(am) = f1(a)m−mf4(a), g2(mb) = mk4(b)− k1(b)m,

(vi) naf1(mbn) = namh3(bn) + f4(mbn)na, f1(mbn)am = g2(mb)nam+ amf4(mbn),

(vii) k4(nam)bn = bnk1(nam) + h3(na)mbn,mbk4(nam) = k1(nam)mb+mbng2(am),

(viii)

[
f1(a)mbn− g2(am)bn−mbnf1(a) +mbh3(na) 0

0 −h3(na)mb+ k4(nam)b+ bng2(am)− bk4(nam)

]
∈ Z(G),

(ix)

[
f1(mbn)a− g2(mb)na− af1(mbn) + amh3(bn) 0

0 −h3(bn)am+ k4(b)nam+ nag2(mb)− namk4(b)

]
∈ Z(G),

for all a, a′ ∈ A,m ∈ M, n ∈ N and b, b′ ∈ B.

Proof . Each linear mapping Φ : G → G is of the form

Φ

[
a m
n b

]
=

[
f1(a) + g1(m) + h1(n) + k1(b) f2(a) + g2(m) + h2(n) + k2(b)
f3(a) + g3(m) + h3(n) + k3(b) f4(a) + g4(m) + h4(n) + k4(b)

]
,

where fi, gi, hi and ki, 1 ≤ i ≤ 4, are linear mappings on A,M,N and B, respectively.

Since

[
0 m
0 0

] [
0 m′

0 0

]
=

[
0 m′

0 0

] [
0 m
0 0

]
= 0, for all m,m′ ∈M and the relation (⋆), we get

[[
g1(m) g2(m)
g3(m) g4(m)

]
,

[
0 m′

0 0

]]
=

[
−m′g3(m) g1(m)m′ −m′g4(m)

0 g3(m)m′

]
∈ Z(G),

therefore g1(m)m′ = m′g4(m) for all m,m′ ∈ M.

Since

[
a 0
0 0

] [
0 0
0 b

]
=

[
0 b
0 0

] [
a 0
0 0

]
= 0, for all a ∈ A and b ∈ B, and by (⋆), we get

[[
f1(a) f2(a)
f3(a) f4(a)

]
,

[
0 0
0 b

]]
=

[
0 f2(a)b

−bf3(a) f4(a)b− bf4(a)

]
∈ Z(G),
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k1(b) k2(b)
k3(b) k4(b)

]
,

[
a 0
0 0

]]
=

[
k1(b)a− ak1(b) −ak2(b)

k3(b)a 0

]
∈ Z(G),

therefore f2 = f3 = 0, f4(A) ⊆ Z(B), and k2 = k3 = 0, k1(B) ⊆ Z(A), respectively.

Since

[
0 0
n 0

] [
0 0
n′ 0

]
=

[
0 0
n′ 0

] [
0 0
n 0

]
= 0, for all n, n′ ∈ N , and the relation (⋆), we get

[[
h1(n) h2(n)
h3(n) h4(n)

]
,

[
0 0
n′ 0

]]
=

[
h2(n)n

′ 0
h4(n)n

′ − n′h1(n) n′h2(n)

]
∈ Z(G),

therefore h4(n)n
′ = n′h1(n) for all n, n

′ ∈ N .

From 5.1 and (⋆), we get

H=

[[
f1(a) + g1(am) + h1(−na) + k1(−nam) g2(am) + h2(−na)
g3(am) + h3(−na) f4(a) + g4(am) + h4(−na) + k4(−nam)

]
,

[
mbn mb
−bn −b

]]
∈Z(G),

thus

H11 = (f1(a) + g1(am) + h1(−na) + k1(−nam))mbn− (g2(am) + h2(−na))bn

−mbn(f1(a) + g1(am) + h1(−na) + k1(−nam))−mb(g3(am) + h3(−na)),

H21 = (g3(am) + h3(−na))mbn− (f4(a) + g4(am) + h4(−na) + k4(−nam))bn

+ bn(f1(a) + g1(am) + h1(−na) + k1(−nam)) + b(g3(am) + h3(−na)),

H12 = (f1(a) + g1(am) + h1(−na) + k1(−nam))mb− (g2(am) + h2(−na))b

−mbn(g2(am) + h2(−na))−mb(f4(a) + g4(am) + h4(−na) + k4(−nam)),

H22 = (g3(am) + h3(−na))mb− (f4(a) + g4(am) + h4(−na) + k4(−nam))b

+ bn(g2(am) + h2(−na)) + b(f4(a) + g4(am) + h4(−na) + k4(−nam)),

such that

[
H11 H12

H21 H22

]
∈ Z(G) which implies that H12 = H21 = 0 and

[
H11 0
0 H22

]
∈ Z(G).

From

[
H11 0
0 H22

]
∈ Z(G), we get

g4(M) ⊆ Z(B), h4(N ) ⊆ Z(B),[
f1(a)mbn− g2(am)bn−mbnf1(a) +mbh3(na) 0

0 −h3(na)mb+ k4(nam)b+ bng2(am)− bk4(nam)

]
∈ Z(G).

for all a ∈ A,m ∈ M, n ∈ N and b ∈ B.
Since H21 = 0, we have

k4(nam)bn = bnk1(nam) + h3(na)mbn,

h3(na) = nf1(a)− f4(a)n,

ng1(m) = g4(m)n,

g3 = 0.

Due to H12 = 0, we get

mbk4(nam) = k1(nam)mb+mbng2(am),

g2(am) = f1(a)m−mf4(a),

h1(n)m = mh4(n),

h2 = 0,

From 5.1 and (⋆), we get

K=

[[
f1(mbn) + g1(mb) + h1(−bn) + k1(−b) g2(mb)

h3(−bn) f4(mbn) + g4(mb) + h4(−bn) + k4(−b)

]
,

[
a am

−na −nam

]]
∈Z(G),
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thus

K11 =(f1(mbn) + g1(mb) + h1(−bn) + k1(−b))a− g2(mb)na

− a(f1(mbn) + g1(mb) + h1(−bn) + k1(−b)) + amh3(bn),

K21 =h3(−bn)a− (f4(mbn) + g4(mb) + h4(−bn) + k4(−b))na

+ na(f1(mbn) + g1(mb) + h1(−bn) + k1(−b)) + namh3(−bn),

K12 =(f1(mbn) + g1(mb) + h1(−bn) + k1(−b))am− g2(mb)nam

− ag2(mb)− am(f4(mbn) + g4(mb) + h4(−bn) + k4(−b)),

K22 =h3(−bn)am− (f4(mbn) + g4(mb) + h4(−bn) + k4(−b))nam

+ nag2(mb) + nam(f4(mbn) + g4(mb) + h4(−bn) + k4(−b)),

such that

[
K11 K12

K21 K22

]
∈ Z(G) which implies that K12 = K21 = 0 and

[
K11 0
0 K22

]
∈ Z(G).

From

[
K11 0
0 K22

]
∈ Z(G), we get

g1(M) ⊆ Z(A), h1(N ) ⊆ Z(A),[
f1(mbn)a− g2(mb)na− af1(mbn) + amh3(bn) 0

0 −h3(bn)am+ k4(b)nam+ nag2(mb)− namk4(b)

]
∈ Z(G),

for all a ∈ A,m ∈ M, n ∈ N and b ∈ B.
Since K21 = 0, we have

naf1(mbn) = f4(mbn)na+ namh3(bn),

h3(bn) = k4(b)n− nk1(b),

for all a ∈ A,m ∈ M, n ∈ N and b ∈ B.
Due to K12 = 0, we get

f1(mbn)am = g2(mb)nam+ amf4(mbn),

g2(mb) = mk4(b)− k1(b)m,

for all a ∈ A,m ∈ M, n ∈ N and b ∈ B. □
From Proposition 3.2 and Proposition 5.1, the following theorem is deduced for each linear mapping Φ : G → G

satisfying in (⋆).

Theorem 5.2. Let generalized matrix algebra G(A,M,N ,B) is weakly faithful. Let Φ : G → G be a linear mapping
which satisfies in (⋆) and is as follows

Φ

([
a m
n b

])
=

[
f1(a) + g1(m) + h1(n) + k1(b) f1(1A)m−mf4(1A)

nf1(1A)− f4(1A)n f4(a) + g4(m) + h4(n) + k4(b)

]
,

for all a ∈ A,m ∈ M, n ∈ N and b ∈ B. Then Φ is proper if and only if k1(1B) ∈ πA(Z(G)), f4(1A) ∈ πB(Z(G)).

Now, we are ready to present some conditions on generalized matrix algebra G(A,M,N ,B) under which each linear
mapping satisfying (⋆) is proper.

Theorem 5.3. Let generalized matrix algebra G(A,M,N ,B) be weakly faithful and πA(Z(G)) = Z(G) and πB(Z(G)) =
Z(B). Then each linear mapping Φ : G → G satisfying (⋆) is proper.

6 Some applications

Each linear mapping sitisfying XY = Y X = 0 =⇒ [Φ(X), Y ] = 0 for all x, y ∈ G, holds in (⋆), so Theorem 5.1
can get the following result.



More on proper commuting and Lie mappings 323

Theorem 6.1. Suppose that generalized matrix algebra G(A,M,N ,B) is weakly faithful. Let Φ : G → G be a linear
mapping which satisfies

XY = Y X = 0 =⇒ [Φ(X), Y ] = 0

and is as follows

Φ

([
a m
n b

])
=

[
f1(a) + g1(m) + h1(n) + k1(b) f1(1A)m−mf4(1A)

nf1(1A)− f4(1A)n f4(a) + g4(m) + h4(n) + k4(b)

]
,

for all a ∈ A,m ∈ M, n ∈ N and b ∈ B. Then the followings are equivalent:

1) Φ is proper.

2) k1(B) ⊆ πA(Z(G)), f4(A) ⊆ πB(Z(G));
3) k1(1B) ∈ πA(Z(G)), f4(1A) ∈ πB(Z(G)).

Consequently, the following result is deduced.

Theorem 6.2. Let generalized matrix algebra G(A,M,N ,B) be weakly faithful and πA(Z(G)) = Z(A) and πB(Z(G)) =
Z(B). Then each linear mapping Φ : G → G satisfies

XY = Y X = 0 =⇒ [Φ(X), Y ] = 0

if and only if Φ is proper.

Since each Lie centralizer is true in (⋆) and also has the conditions of Corollaries 4.3 and 4.5, the following result can
be obtained which is an extension of [15, Theorem 3.4].

Corollary 6.3. Let generalized matrix algebra G(A,M,N ,B) be weakly faithful and we have

1. Z(A) = πA(Z(G)), or [A,A] = A,
2. Z(B) = πB(Z(G)), or [B,B] = B,

then each Lie centralizer mapping Φ : G → G is proper.

In the sequel, we deal with the proper form of Lie triple centralizer mappings. To present the condition that a
proper mapping should have to be a Lie triple centralizer, the following lemma is given which is easily proved.

Lemma 6.4. Consider a proper linear mapping Φ : G → G, i.e. there exist λ ∈ Z(G) and linear mapping τ : G →
Z(G) such that Φ(x) = λx + τ(x) for all x ∈ G. Φ is Lie triple centralizer if and only if τ([[x, y], z]) = 0, for each
x, y, z ∈ G.

Each Lie triple centralizer satisfies in (⋆), therefore the next corollary is concluded from Theorem 5.2 as follows.

Corollary 6.5. ([8, Theorem 3.3]) Suppose that generalized matrix algebra G(A,M,N ,B) is weakly faithful. Each
Lie triple centralizer Φ : G → G is as follows

Φ

([
a m
n b

])
=

[
f1(a) + g1(m) + h1(n) + k1(b) f1(1A)m−mf4(1A)

nf1(1A)− f4(1A)n f4(a) + g4(m) + h4(n) + k4(b)

]
,

for all a ∈ A,m ∈ M, n ∈ N and b ∈ B. Then the followings are equivalent:

1) Φ is proper.

2) k1(B) ⊆ πA(Z(G)), f4(A) ⊆ πB(Z(G));
3) k1(1B) ∈ πA(Z(G)), f4(1A) ∈ πB(Z(G)).

Since Lie triple centralizers satisfy in [a, f1(1A)] ∈ Z(A) and [b, k4(1B)] ∈ Z(B), for all a ∈ A and b ∈ B, from
Corollaries 4.3, 4.5 and 6.5, we can conclude the following result.

Corollary 6.6. ([8, Corollary 3.4]) Let a generalized matrix algebra G(A,M,
N ,B) is weakly faithful and we have
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1. Z(A) = πA(Z(G)), or [A,A] = A.
2. Z(B) = πB(Z(G)), or [B,B] = B.

Then each Lie triple centralizer Φ : G → G is proper Lie triple centralizer.

One knows that generalized matrix algebras contain the n×n upper triangular matrix algebras and nest algebras,
according to what Cheung has given in [6], we can use Theorem 4.7 for this kind of algebras.

Corollary 6.7. ([6, Corollary 6]) Each commuting mapping on the n×n upper triangular matrix algebras is proper.

Corollary 6.8. ([6, Corollary 7]) Each commuting mapping on the nest algebras is proper.

Similarly, by using Corollary 6.6, we can obtain the following corollaries.

Corollary 6.9. Each Lie triple centralizer on the n× n upper triangular matrix algebras is proper.

Corollary 6.10. Each Lie triple centralizer on the nest algebras is proper.
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