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Abstract

In this article, we study the nonlocal p(x)-Laplacian problem of the following form M
( ∫

Ω
1

p(x) (|∇u|
p(x) + |u|p(x)) dx

)(
− div(|∇u|p(x)−2∇u+ |u|p(x)−2u

)
= λf(x, u) in Ω,

M
( ∫

Ω
1

p(x) (|∇u|
p(x) + |u|p(x)) dx

)
|∇u|p(x)−2∇∂u

∂ν = µg(x, u) on ∂Ω,

By means of a direct variational approach and the theory of the variable exponent Sobolev spaces, we establish
conditions ensuring the existence and multiplicity of solutions for the problem.

Keywords: Generalized Lebesgue-Sobolev spaces, Nonlocal condition, Mountain pass theorem, Fountain theorem,
Dual fountain theorem
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1 Introduction

In this paper, we are concerned with the following problem M
( ∫

Ω
1

p(x) (|∇u|
p(x) + |u|p(x)) dx

)(
− div(|∇u|p(x)−2∇u+ |u|p(x)−2u

)
= λf(x, u) in Ω,

M
( ∫

Ω
1

p(x) (|∇u|
p(x) + |u|p(x)) dx

)
|∇u|p(x)−2∇∂u

∂ν = µg(x, u) on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, ∂
∂Ω is the outer unit normal derivative, p(x) ∈

C(Ω), p(x) > 1, ∀x ∈ Ω and λ, µ ∈ R. Throughout the paper, we assume that λ2 + µ2 ̸= 0. The operator −∆p(x)u =

div(|∇u|p(x)−2∇u) is said to be the p(x)-Laplacian, and becomes p-Laplacian when p(x) ≡ p (a constant). An essential
difference between them is that the p-Laplacian operator is (p−1)-homogeneous, that is, △p(λu) = λp−1△pu for every
λ > 0, but the p(x)-Laplacian operator, when p(x) is not a constant, is not homogeneous. The study of problems
involving variable exponent growth conditions has a strong motivation due to the fact that they can model various
phenomena which arise in the study of elastic mechanics [28], electrorheological fluids [5] or image restoration [6].

Problem (1.1) is called nonlocal because of the presence of the term M , which implies that the equation in (1.1) is
no longer pointwise identities. This provokes some mathematical difficulties which make the study of such a problem
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particulary interesting. For the physical and biological meaning of the nonlocal coefficients we refer the reader to
[1, 2, 3, 7, 19, 20, 22] and the references therein.

2 Notations and preliminaries

For the reader’s convenience, we recall some necessary background knowledge and propositions concerning the
generalized Lebesgue-Sobolev spaces. We refer the reader to [9, 10, 13, 14].

Let Ω be a bounded domain of RN , denote

C+(Ω) = {p(x); p(x) ∈ C(Ω), p(x) > 1, ∀x ∈ Ω};
p+ = max{p(x); x ∈ Ω}, p− = min{p(x); x ∈ Ω};

Lp(x)(Ω) =
{
u; u is a measurable real-valued function such that

∫
Ω

|u(x)|p(x) dx <∞
}
,

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf
{
λ > 0;

∫
Ω

|u(x)
λ

|p(x) dx ≤ 1
}
,

with

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω)},

endowed with the natural norm

∥u∥W 1,p(x)(Ω) = |u(x)|Lp(x)(Ω) + |∇u(x)|Lp(x)(Ω).

We remember that (W 1,p(x)(Ω), ∥ · ∥) is a reflexive and separable Banach space. In this paper we will use the following
equivalent norm on W 1,p(x)(Ω):

∥u∥ = inf
{
λ > 0;

∫
Ω

|∇u(x)|p(x) + |u|p(x)

λp(x)
dx ≤ 1

}
.

Proposition 2.1 (See [9, 14]). (i)The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω), where 1
p(x) + 1

p′(x) = 1. For any

u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have∫
Ω

|uv| dx ≤
( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x)

(ii)If p1(x), p2(x) ∈ C +Ω, p1(x) ≤ p2(x), ∀x ∈ Ω, then Lp2(x)(Ω) ↪→ Lp1(x)(Ω) and the embedding is continuous.

Proposition 2.2 (See [12, 14]). If f : Ω× R → R is a Caratheodory function and satisfies

|f(x, s) ≤ a(x) + b|s|
p1(x)

p2(x) , ∀x ∈ Ω, s ∈ R,

where p1(x), p2(x) ∈ C+(Ω), a(x) ∈ Lp2(x)(Ω), a(x) ≥ 0 and b ≥ 0 is a constant, then the Nemytsky operator from
Lp1(x)(Ω) to Lp2(x)(Ω) defined by (Nf (u))(x) = f(x, u(x)) is a continuous and bounded operator.

Proposition 2.3 (See [11]). Set ρ(u) =
∫
Ω
|∇u(x)|p(x) + |u|p(x) dx, then for u, uk ∈W 1,p(x)(Ω); we have

(1) ∥u∥ < 1 (respectively= 1;> 1) ⇐⇒ ρ(u) < 1 (respectively= 1;> 1);

(2) for u ̸= o, ∥u∥ = λ⇐⇒ ρ(uλ ) = 1;

(3) if ∥u∥ > 1, then ∥u∥p− ≤ ρ(u) ≤ ∥u∥p+

;

(4) if ∥u∥ < 1, then ∥u∥p+ ≤ ρ(u) ≤ ∥u∥p−
;

(5) ∥u∥ → 0 (respectively → ∞) ⇐⇒ ρ(u) → 0(respectively → ∞).
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Let us define, for every x ∈ Ω,

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

Proposition 2.4 (See [14]). If q ∈ C+(Ω) and q(x) ≤ p∗(x) (q(x) < p∗(x)) for x ∈ Ω, then there is a continuous
(compact) embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Proposition 2.5 (See [25]). If we denote

p∗(x) =

{
(N−1)p(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N,

then the embedding fromW 1,p(x)(Ω) ↪→ Lq(x)(∂Ω) is compact and continuous, where q(x) ∈ C+(∂Ω) and q(x) < p∗(x)
for x ∈ ∂Ω.

3 Existence of solutions

In this paper, we denote by X =W 1,p(x)(Ω); X∗ = (W 1,p(x)(Ω))∗, the dual space and ⟨·, ·⟩, the dual pair.

Lemma 3.1 (See [15]). Denote

I(u) =

∫
Ω

1

p(x)
(|∇u|p(x) + |u|p(x)) dx, ∀u ∈ X,

then I(u) ∈ C1(X,R) and the derivative operator I ′ of I is

⟨I ′(u), v⟩ =
∫
Ω

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv) dx, ∀u, v ∈ X,

and we have

(1) I is a convex functional.

(2) I ′ : X → X∗ is a bounded homeomorphism and strictly monotone operator,

(3) I ′ is a mapping of type (S+), namely: un ⇀ u and lim supn→+∞ I ′(un)(un − u) ≤ 0, implies un → u.

The Euler-Lagrange functional associated to (1.1) is given by

J(u) = M̂
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x)) dx

)
− λ

∫
Ω

F (x, u) dx− µ

∫
∂Ω

G(x, u) dσ,

where M̂(t) =
∫ t

0
M(τ)dτ. Under proper assumptions on f and g, then

⟨J ′(u), v⟩ =M
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x)) dx

)∫
Ω

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv) dx

−λ
∫
Ω

f(x, u)v dx− µ

∫
∂Ω

g(x, u)v dσ,

for all u, v ∈ X, then we know that the weak solution of (1.1) corresponds to the critical point of the functional J ,
where F and G are denoted by

F (x, t) =

∫ t

0

f(x, s) ds, G(x, t) =

∫ t

0

g(x, s) ds.

Hereafter, f(x, t), g(x, t) and M(t) are always supposed to verify the following assumption:
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(f0) f : Ω× R → R satisfies the Caratheodory condition and there exist two constants C1 ≥ 0, C2 ≥ 0 such that

|f(x, t)| ≤ C1 + C2|t|α(x)−1, ∀(x, t) ∈ Ω× R

where α(x) ∈ C+(Ω) and α(x) < p∗(x) for all x ∈ Ω,

(f1) There exist M1 > 0, θ1 >
p+

1−µ such that for all x ∈ Ω and all t ∈ R with |t| ≥M1,

0 < θ1F (x, t) ≤ tf(x, t),

where µ comes from (m1) below.

(f2) f(x, t) = o(|t|p+−1) as t→ 0 uniformly with respect to x ∈ Ω.

(f3) f(x,−t) = −f(x, t), for all x ∈ Ω and t ∈ R.
(g0) g : ∂Ω× R → R satisfies the Caratheodory condition and there exist two constants C ′

1 ≥ 0, C ′
2 ≥ 0 such that

|g(x, t)| ≤ C ′
1 + C ′

2|t|β(x)−1, ∀(x, t) ∈ ∂Ω× R

where β(x) ∈ C+(Ω) and β(x) < p∗(x) for all x ∈ ∂Ω,

(g1) There exist M2 > 0, θ2 >
p+

1−µ such that for all x ∈ ∂Ω and all t ∈ R with |t| ≥M2,

0 < θ2G(x, t) ≤ tg(x, t),

where µ comes from (m1) below.

(g2) g(x, t) = o(|t|p+−1) as t→ 0 uniformly with respect to x ∈ ∂Ω.

(g3) g(x,−t) = −g(x, t), for all x ∈ ∂Ω and t ∈ R.
(m0) There exists m0 > 0, such that M(t) ≥ m0.

(m1) There exists 0 < µ < 1 such that M̂(t) ≥ (1− µ)M(t)t.

Remark 3.2. Under the conditions f0 and g0, the functional J is of class C1(X,R).

Remark 3.3. For simplicity, we use C, M, K, Ki, to denote the general nonnegative or positive constant ( the exact
value may change from line to line).

Theorem 3.4. If M satisfies (m0) and (f0), (g0) hold and α+, β+ < p−, then (1.1) has a weak solution.

Proof . From (m0) we have M̂(t) ≥ m0t. For (un) ∈ X such that ∥un∥ → +∞, we have

J(un) = M̂
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

)
− λ

∫
Ω

F (x, u) dx− µ

∫
∂Ω

G(x, u) dσ

≥ m0

∫
Ω

1

p(x)
(|∇un|p(x) + |un|p(x)) dx− |λ|

∫
Ω

C(1 + |un|α(x)) dx

− |µ|
∫
∂Ω

C(1 + |un|β(x)) dσ

≥ m0

p+
∥un∥p

−
− |λ|C∥un∥α

+

− |µ|C∥un∥β
+

−M → ∞ as ∥un∥ → ∞,

so J is coercive since α+, β+ < p−.

By Propositions 2.4 and 2.5, it is easy to verify that J is weakly lower semicontinuous. So J has a minimum point
u in X and u is a weak solution of (1.1). □

Corollary 3.5. Under the assumptions in Theorem 3.4 and (m1), if one of the following conditions hold, (1.1) has a
nontrivial weak solution.

(1) If λ, µ ̸= 0, there exist two positive constants d1, d2 <
p−

1−µ such that

lim inft→0
sgn(λ)F (x,t)

|t|d1 > 0, for x ∈ Ω uniformly,

lim inft→0
sgn(µ)G(x,t)

|t|d2 > 0, for x ∈ Ω uniformly,
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(2) If λ = 0, µ ̸= 0, there exists a positive constant d2 <
p−

1−µ such that

lim inft→0
sgn(µ)G(x,t)

|t|d2 > 0, for x ∈ Ω uniformly,

(3) If λ ̸= 0, µ = 0, there exists a positive constant d1 <
p−

1−µ such that

lim inft→0
sgn(λ)F (x,t)

|t|d1 > 0, for x ∈ Ωuniformly.

Proof . From Theorem 3.4, we know J has a global minimum point u. We just need to show u is nontrivial. We only
consider the case λ, µ ̸= 0 here. From (1), we know that for 0 < t < 1 small enough, there exists a positive constant
C such that

sgn(λ)F (x, t) ≥ C|t|d1 , sgn(µ)G(x, t) ≥ C|t|d2 .

When t > t0 from (m1) we can easily obtain that

M̂(t) ≤ M̂(t0)

t
1

(1−µ)

0

:= Ct
1

(1−µ) ,

where t0 is an arbitrary positive constant. Choose u0 > 0. For 0 < t < 1 small enough, we have

J(tu0) ≤ C
(∫

Ω

1

p(x)
(|t∇u0|p(x) + |tu0|p(x))dx

) 1
(1−µ) − |λ|

∫
Ω

sgn(λ)F (x, tu0) dx

− |µ|
∫
∂Ω

sgn(µ)G(x, tu0) dσ

≤ C
( tp−

p−

∫
Ω

|u0|p(x)dx
) 1

(1−µ) − |λ|
∫
Ω

C|tu0|d1 dx

− |µ|
∫
∂Ω

C|tu0|d2 dσ

= K1t
p−
1−µ − |λ|K2t

d1 − |µ|K3t
d2 .

Since d1, d2 <
p−

1−µ , there exists 0 < t0 < 1 small enough such that J(t0u0) < 0. So the global minimum point u of J
is nontrivial. □

Definition 3.6. We say that J satisfies (PS) condition in X, if any sequence (un) such that J(un) is bounded and
J ′(un) → 0 as n→ ∞, has a convergent subsequence, where (PS) means Palais-Smale.

Remark 3.7. We know that if we denote

ϕ(u) = −λ
∫
Ω

F (x, u) dx, ψ(u) = −µ
∫
∂Ω

G(x, u) dσ,

then by Propositions 2.2, 2.4 and 2.5, they are both weakly continuous and their derivative operators are compact. By
Lemma 3.1, we deduce that J ′ = I ′ +ϕ′ +ψ′ is also of type (S+). By [15], to verify that J satisfies the (PS) condition
on X, it is enough to verify that any (PS) sequence is bounded.

Lemma 3.8. If (f0), (f1), (g0), (g1), (m0), (m1) hold and λ, µ ≥ 0, then J satisfies the (PS) condition.

Proof . Suppose that (un) ⊂ X, |J(un)| ≤ C and J ′(un) → o. Then

C + 1 ≥ J(un)−
1

θ
⟨J ′(un), un⟩+

1

θ
⟨J ′(un), un⟩

= M̂
(∫

Ω

1

p(x)
(|∇un|p(x) + |un|p(x)) dx

)
− λ

∫
Ω

F (x, un)dx− µ

∫
∂Ω

G(x, un)dσ

− 1

θ

[
M

(∫
Ω

1

p(x)
(|∇un|p(x) + |un|p(x)) dx

)∫
Ω

(|∇un|p(x) + |un|p(x)) dx

− λ

∫
Ω

f(x, un)undx− µ

∫
∂Ω

g(x, un)undσ
]
+

1

θ
⟨J ′(un), un⟩
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≥ (1− µ)M
(∫

Ω

1

p(x)
(|∇un|p(x) + |un|p(x)) dx

)∫
Ω

1

p(x)
(|∇un|p(x) + |un|p(x)) dx

− λ

∫
Ω

F (x, un)dx− µ

∫
∂Ω

G(x, un)dσ − 1

θ

[
M

(∫
Ω

1

p(x)
(|∇un|p(x) + |un|p(x))dx

)
− λ

∫
Ω

f(x, un)un dx− µ

∫
∂Ω

g(x, un)un dσ
]
+

1

θ
⟨J ′(un), un⟩

≥ m0

(1− µ

p+
− 1

θ

)
∥un∥p

−
− 1

θ
∥J ′(un)∥X∗∥un∥ − C

≥ m0

(1− µ

p+
− 1

θ

)
∥un∥p

−
− 1

θ
∥un∥ − C,

where θ = min{θ1, θ2} and we have supposed that ∥un∥ > 1 for convenience. Since θ > p+

1−µ , we know that (un) is
bounded in X. □

Theorem 3.9. If M satisfies (m0), (m1) and (f0), (f1), (f2), (g0), (g1), (g2) hold and α−, β− > p+; λ, µ ≥ 0, then
(1.1) has a nontrivial weak solution.

Proof . Let us show that J satisfies the conditions of Mountain Pass Theorem (see Theorem 2.10 of [23]). By Lemma
3.8, J satisfies (PS) condition in X. Since

p+ < α− ≤ α(x) < p∗(x), ∀x ∈ Ω; p+ < β− ≤ β(x) < p∗(x), ∀x ∈ ∂Ω,

we have X ↪→ Lp+

(Ω), X ↪→ Lp+

(∂Ω). Then there exists a constant C > 0 such that

|u|Lp+ (Ω) ≤ C∥u∥, |u|Lp+ (∂Ω) ≤ C∥u∥, ∀u ∈ X.

From (f0), (f2) and (g0), (g2), we have there exist an arbitrary constant 0 < t < 1 and two positive constants (both
denoted by C(ϵ)) such that

|F (x, t)| ≤ ϵ|t|p
+

+ C(ϵ)|t|α(x), for all (x, t) ∈ Ω× R,

|G(x, t)| ≤ ϵ|t|p
+

+ C(ϵ)|t|β(x), for all (x, t) ∈ ∂Ω× R.

In view of (m0) and above inequalities, for ∥u∥ sufficiently small, noting Proposition 2.3, we have

J(u) ≥ m0

p+
∥u∥p

+

− λ

∫
Ω

F (x, u) dx− µ

∫
∂Ω

G(x, u) dσ

≥ m0

p+
∥u∥p

+

− λ

∫
Ω

(ϵ|u|p
+

+ C(ϵ)|u|α(x)) dx− µ

∫
∂Ω

(ϵ|u|p
+

+ C(ϵ)|u|β(x)) dσ

≥ m0

p+
∥u∥p

+

− (λϵC + µϵC)∥u∥p
+

− λC(ϵ)∥u∥α
−
− µC(ϵ)∥u∥β

−
.

Choose ϵ > 0 so small that 0 < λϵC + µϵC < m0

2p+ , we obtain

J(u) ≥ m0

2p+
∥u∥p

+

− C(λ, µ, ϵ)C(∥u∥α
−
+ ∥u∥β

−
).

Since α−, β− > p+, there exist r > 0 small enough and δ > 0 such that J(u) ≥ δ > 0 as ∥u∥ = r.

On the other hand, we have known that the assumption (f1), (g1) implies the following assertion:

F (x, t) ≥ C|t|θ1 −M, ∀(x, t) ∈ Ω× R,
G(x, t) ≥ C|t|θ2 −M, ∀(x, t) ∈ ∂Ω× R.

For t > 1 large enough, we have

J(tũ) = M̂
(∫

Ω

tp(x)

p(x)
(|∇ũ|p(x) + |ũ|p(x)) dx

)
− λ

∫
Ω

F (x, ũ) dx− µ

∫
∂Ω

G(x, ũ) dσ,

≤
( tp+

p−

) 1
1−µ

(∫
Ω

(|∇ũ|p(x) + |ũ|p(x)) dx
) 1

1−µ − λCtθ
∫
Ω

|ũ|θ dx− µCtθ
∫
∂Ω

|û|θ dσ + C

→ −∞ as t→ +∞,
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due to θ = min{θ1, θ2} > p+

1−µ . □

Since X is a reflexive and separable Banach space, then X∗ is too. There exist (see [27]) {ej} ⊂ X and {e∗j} ⊂ X∗

such that

X = span {ej : j = 1, 2, ...}, X∗ = span {e∗j : j = 1, 2, ...},

and

⟨ei, e∗j ⟩ =
{

1 if i = j,
0 if i ̸= j,

where ⟨·, ·⟩ denote the duality product between X and X∗. We define

Xj = span {ej}, Yk =

k⊕
j=1

Xj , Zk =

∞⊕
j=k

Xj .

Lemma 3.10. (Fountain Theorem, see [23]). Let J ∈ C1(X,R) be an even functional, where (X, ∥ · ∥) is a separable
and reflexive Banach space. Suppose that for every k ∈ N, there exist ρk > rk > 0 such that

(A1) inf{J(u) : u ∈ Zk, ∥u∥ = rk} → +∞ as k → +∞.

(A2) max{J(u) : u ∈ Yk, ∥u∥ = ρk} ≤ 0.

(A3) J satisfies the (PS) condition for every c > 0.

Then J has an unbounded sequence of critical points.

Lemma 3.11 (See [16]). If α(x) ∈ C+(Ω), α(x) < p∗(x), ∀x ∈ Ω and β(x) ∈ C+(∂Ω), β(x) < p∗(x), ∀x ∈ ∂Ω,
denote

αk = sup{|u|Lα(x)(Ω); ∥u∥ = 1, u ∈ Zk} βk = sup{|u|Lβ(x)(∂Ω); ∥u∥ = 1, u ∈ Zk},

then limk→∞ αk = 0, limk→∞ βk = 0.

Theorem 3.12. If (m0), (m1), (f0), (f1), (f3), (g0), (g1), (g3) hold and α−, β− > p+, λ, µ > 0, then (1.1) has a
sequence of solutions (±uk,±vk) such that J(±uk,±vk) → +∞ as k → +∞.

Proof . According to the assumptions on f and g, Remark 3.7, Lemma 3.8, J is an even functional and satisfies
Palais-Smale condition. We will prove that if k is large enough, then there exist ρk > rk > 0 such that (A1) and (A2)
holding. Thus, the conclusion can be obtained from Fountain theorem.

(A1) For any (u) ∈ Zk, ∥u∥ > 1, we have

J(u) = M̂
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x)) dx

)
− λ

∫
Ω

F (x, u) dx− µ

∫
∂Ω

G(x, u) dσ

≥ m0

p+
∥u∥p

−
− λ

∫
Ω

C(1 + |u|α(x)) dx− µ

∫
∂Ω

C(1 + |u|β(x))dσ

≥ m0

p+
∥u∥p

−
− λCmax{|u|α

+

Lα(x)(Ω), |u|
α−

Lα(x)(Ω)} − µCmax{|u|β
+

Lβ(x)(Ω)
, |u|β

−

Lβ(x)(Ω)
} − C

≥ m0

p+
∥u∥p

−
− C(λ, µ)max{|u|α

+

Lα(x)(Ω), |u|
α−

Lα(x)(Ω), |u|
β+

Lβ(x)(Ω)
, |u|β

−

Lβ(Ω)
} − C.

If max{|u|α+

Lα(x)(Ω)
, |u|α−

Lα(x)(Ω)
, |u|β

+

Lβ(x)(Ω)
, |u|β

−

Lβ(Ω)
} = |u|α+

Lα(x)(Ω)
, we have

J(u) ≥ m0

p+
∥u∥∥u∥p

−
− C(λ, µ)αα+

k ∥u∥α
+

− C.

At this stage, we fix rk as follows:

rk =
(α+C(λ, µ)αα+

k

m0

) 1

p−−α+

→ +∞ as k → +∞.
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Consequently, if ∥u∥ = rk then

J(u) ≥ m0

( 1

p+
− 1

α+

)
rp

−

k − C → +∞ as k → +∞,

due to α+ > α− > p+.

(A2) From (m1), (f1) and (g1), we have

M̂(t) ≤ Ct
1

1−µ ,

F (x, t) ≥ C|t|θ1 −M, ∀(x, t) ∈ Ω× R,
G(x, t) ≥ C|t|θ2 −M, ∀(x, t) ∈ ∂Ω× R.

Therefore, for any u ∈ Yk we have

J(u) = M̂
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x)) dx

)
− λ

∫
Ω

F (x, u)dx− µ

∫
∂Ω

G(x, u) dσ

≤
( 1

p−

) 1
1−µ ∥u∥

p+

1−µ − λ

∫
Ω

(C|u|θ1 −M)− µ

∫
∂Ω

(C|u|θ2 −M) dσ

≤
( 1

p−

) 1
1−µ ∥u∥

p+

1−µ − λC

∫
Ω

|u|θ1 dx− µC

∫
∂Ω

|u|θ2dσ +K → −∞ as ∥u∥ → ∞,

since θ1, θ2 >
p+

1−µ and dimYk < ∞. So (A2) holds. From the proofs of (A1) and (A2), we can choose ρk > rk > 0.
The proof is completed. □

4 The case of concave-convex nonlinearity

In this section, we will obtain much better results with f and g in a special form. We have the following theorem:

Theorem 4.1. Assume the conditions (m0) and (m1) hold. And let α(x) ∈ C+(Ω), β(x) ∈ C+(∂Ω), α(x) < p∗(x)

for any x ∈ Ω, β(x) < p∗(x) for any x ∈ ∂Ω with α− > p+

1−µ , β
+ < p− and f(x, t) = |t|α(x)−2t, g(x, t) = |t|β(x)−2t,

then we have

(i) For every λ > 0, µ ∈ R, (1.1) has a sequence of weak solutions (±uk) such that J(±uk) → +∞ as k → +∞.

(ii) For every µ > 0, λ ∈ R, (1.1) has a sequence of weak solutions (±vk) such that J(±vk) → 0 as k → +∞.

We will use Lemma 3.10 to prove Theorem 4.1 (i) and the following ”Dual fountain theorem” to prove Theorem 4.1
(ii), respectively.

Lemma 4.2. (Dual Fountain Theorem, see [23]). Assume (A1) is satisfied and there is k0 > 0 so that, for each
k ≥ k0, there exist ρk > rk > 0 such that

(B1) ak = inf{J(u) : u ∈ Zk, ∥u∥ = ρk} ≥ 0.

(B2) bk = max{J(u) : u ∈ Yk, ∥u∥ = rk} < 0.

(B3) dk = inf{J(u) : u ∈ Zk, ∥u∥ ≤ ρk} → 0 as k → +∞.

(B4) J satisfies the (PS)∗c condition for every c ∈ [dk0 , 0).

Then J has a sequence of negative critical values converging to 0.

Definition 4.3. We say that J satisfies the (PS)∗c condition (with respect to (Yn)), if any sequence {unj
} ⊂ X such

that nj → +∞, unj
∈ Ynj

, J(unj
) → c and (J |Ynj

)′(unj
) → 0, contain a subsequence converging to a critical point of

J .

Lemma 4.4. Assume that the conditions in Theorem 4.1 hold, then J satisfies the (PS)∗c condition.
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Proof . Suppose (unj
) ⊂ X such that nj → +∞, unj

∈ Ynj
and (J |Ynj

)′(unj
) → 0. Assume ∥unj

∥ > 1 for convenience.

If λ ≥ 0, for n large enough, we have

C + 1 ≥ J(unj
)− 1

α− ⟨J ′(unj
), (unj

)⟩+ 1

α− ⟨J ′(unj
), (unj

)⟩

= M̂
(∫

Ω

1

p(x)
(|∇unj |p(x) + |unj |p(x)) dx

)
− λ

∫
Ω

F (x, unj )dx− µ

∫
∂Ω

G(x, unj ) dσ

− 1

α−

[
M

(∫
Ω

1

p(x)
(|∇unj |p(x) + |unj |p(x)) dx

)
− λ

∫
Ω

f(x, unj )unj dx

− µ

∫
∂Ω

g(x,nj )unjdσ
]
+

1

α− ⟨J ′(unj ), unj ⟩

≥
(1− µ

p+
− 1

α−

)
M

(∫
Ω

1

p(x)
(|∇unj

|p(x) + |unj
|p(x)) dx

)∫
Ω

(|∇unj
|p(x) + |unj

|p(x)) dx

+ µ

∫
∂Ω

( 1

α− − 1

β(x)

)
|unj

|β(x) dσ

≥ m0

(1− µ

p+
− 1

α−

)
∥unj

∥p
−
−K∥unj

∥β
+

.

Since p− > β+ and α− > p+

1−µ , we deduce that (unj
) is bounded in X.

If λ < 0, for n large enough, we can consider the inequality below to get the boundedness of (unj
).

C + 1 ≥ J(unj
)− 1

α+
⟨J ′(unj

), unj
⟩+ 1

α+
⟨J ′(unj

), unj
⟩.

Going if necessary to a subsequence, we can assume unj ⇀ u in X. As X = ∪njYnj , we can choose vnj ∈ Ynj such
that vnj

→ u. Hence

lim
nj→+∞

⟨J ′(unj
), unj

− u⟩ = lim
nj→+∞

⟨J ′(unj
), unj

− vnj
⟩+ lim

nj→+∞
⟨J ′(unj

), vnj
− u⟩

= lim
nj→+∞

〈
(J |Ynj

)′(unj
), unj

− vnj

〉
= 0.

As J ′ is of type (S+), we can conclude unj → u, furthermore we have J ′(unj ) → J ′(u).
Let us prove J ′(u) = 0 below. Taking ωk ∈ Yk, notice that when nj ≥ k we have

⟨J ′(u), ωk⟩ = ⟨J ′(u)− J ′(unj
), ωk⟩+ ⟨J ′(unj

), ωk⟩

= ⟨J ′(u)− J ′(unj
), ωk⟩+

〈
(J |Ynj

)′(unj
), ωk

〉
.

Going to the limit on the right side of the above equation reaches

⟨J ′(u), ωk⟩ = 0, ∀ωk ∈ Yk,

so J ′(u) = 0, this show that J satisfies the (PS)∗c condition for every c ∈ R. □

Proof of Theorem 4.1

(i) The proof is similar to that of Theorem 3.12 if we use the Fountain theorem, and the proof of the boundedness
of (PS) sequence is same as in Lemma 4.4, we know that J satisfies (A1) and (B4), the assertion of conclusion can
be obtained from Dual fountain theorem. Now, it remains to prove that there exist ρk > rk > 0 such that if k is large
enough (B1), (B2) and (B3) are satisfied.
(B1) Let u ∈ Zk, then

J(u) ≥ m0

p+
∥u∥p

+

− |λ|
α−

∫
Ω

|u|α(x) dx− µ

β−

∫
∂Ω

|u|β(x) dσ

≥ m0

p+
∥u∥p

+

− C|λ|
α− ∥u∥α

−
− µ

β− max
{
|u|β

+

Lβ(x)(∂Ω)
, |u|β

−

Lβ(x)(∂Ω)

}
.
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There exists 0 < ρ1 < 1 small enough such that C|λ|
α− ∥u∥α− ≤ m0

p+ ∥u∥p+

as 0 < ρ = ∥u∥ ≤ ρ1. Then we have

J(u) ≥ m0

p+
∥u∥p

+

− µ

β− max
{
|u|β

+

Lβ(x)(∂Ω)
, |u|β

−

Lβ(x)(∂Ω)

}
.

If max
{
|u|β

+

Lβ(x)(∂Ω)
, |u|β

−

Lβ(x)(∂Ω)

}
= |u|β

+

Lβ(x)(∂Ω)
, then

J(u) ≥ m0

p+
∥u∥p

+

− µ

β− β
β+

k ∥u∥β
+

.

Choose ρk =
(

2p+µββ+

k

m0β−

) 1

p+−β+

, then

J(u) ≥ m0

2p+
(ρk)

p+

− m0

2p+
(ρk)

p+

= 0.

Since p− > β+, βk → 0, we know ρk → 0 as k → +∞. If max
{
|u|β

+

Lβ(x)(∂Ω)
, |u|β

−

Lβ(x)(∂Ω)

}
= |u|β

−

Lβ(x)(∂Ω)
, we can do the

same work as the case above. So (B1) is satisfied.
(B2) For u ∈ Yk with ∥u∥ ≤ 1, we have

J(u) = M̂
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x)) dx

)
− λ

∫
Ω

F (x, u) dx− µ

∫
∂Ω

G(x, u) dσ

≤M
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

)∫
Ω

1

p(x)
(|∇u|p(x) + |u|p(x)) dx− λ

∫
Ω

1

α(x)
|u|α(x) dx

− µ

∫
∂Ω

1

β(x)
|u|β(x) dσ

≤ C∥u∥p
−
+

|λ|
α−

∫
Ω

|u|α(x) dx− µ

β+

∫
∂Ω

|u|β(x) dσ.

Since dimYk = k, conditions β+ < p− and p+ < p+

1−µ < α− imply that there exists a rk ∈ (0, ρk) such that J(u) < 0

when ∥u∥ = rk. Hence bk = max{J(u) : u ∈ Yk, ∥u∥ = rk} < 0, so (B2) is satisfied.
(B3) Because Yk ∩ Zk ̸= ∅ and rk < ρk, we have

dk = inf{J(u) : u ∈ Zk, ∥u∥ ≤ ρk} ≤ bk = max{J(u) : u ∈ Yk, ∥u∥ = rk} < 0.

In view of the proof of (B1), we have J(u) ≥ − µ
β− β

β+

k ∥u∥β+

or − µ
β− β

β−

k ∥u∥β−
. Since βk → 0 and ρk → 0 as k → +∞,

(B3) is satisfied. The conclusion of Theorem 4.1 (ii) is reached by the Dual fountain theorem.
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