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Abstract

In this paper, we have introduced a computational method for a class of two-dimensional nonlinear Volterra integral
equations, based on the expansion of the solution as a series of Haar functions. To achieve this aim it is necessary to
define the integral operator. The Banach fixed point theorem guarantees that under certain assumptions this operator
has a unique fixed point, we have introduced an orthogonal projection and by interpolation property, we have achieved
an operational matrix of integration. Also, by using the Banach fixed point theorem, we get an upper bound for
the error of our method. Since our examples in this article are selected from different references, so should be the
numerical results obtained here can be compared with other numerical methods.
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1 Introduction and preliminaries

The base of our work is to apply the Rationalized Haar wavelet (RHW) for approximating the two-dimensional
linear Volterra integral equations(VIE). In fact, the wavelet theory has been opened a new and powerful area in
mathematical research, science, and engineering, such as Darboux equation, Painleve equations, telegraph equations,
consolidation equation [29, 13, 14, 15, 27]. A Haar wavelet is a group of square waves with magnitude −2j/2, 2j/2 and
0 for j = 0, 1, ..., and the simplest type of wavelet, that was proposed in 1909 by Alfred Haar[28]. One of the pioneering
researchers in developing of the HW is Ülo Lepik. He introduced the integration techniques for the HWM [21, 22].
Lynch and Reis’s [20] have Rationalized the Haar transform by deleting the irrational numbers and introducing the
integral powers of two, and are composed of only three amplitude +1, −1, and 0. Recently, several articles have been
published to approximate some equations containing integral operators using RHW method[17, 16]. An Eextension of
RHW to the multidimensional cases is also introduced in [1, 3, 2]. Brunner and Kauthen in [8], One of the pioneering
researchers for introduced collocation and iterated collocation methods for the solution of VIE. For approximating
the solution of two-dimensional integral equations several methods have been used such as: the meshless scheme [4],
the Bernstein collocation method [23], the Haar wavelet in [6, 12], using Legendre polynomials[26], Extrapolation

∗Corresponding author
Email addresses: erfaniyan@uoz.ac.ir (Majid Erfanian), h.zeidabadi@yahoo.com (Hamed Zeidabadi)

Received: March 2022 Accepted: September 2022

http://dx.doi.org/10.22075/ijnaa.2022.7226


96 Erfanian, Zeidabadi

method[18].
In this work we approximating the solution of nonlinear second-kind VIE as follows:

u(t, s) = f(t, s) +

∫ s

0

∫ t

0

W1(t, s, x, y, u(x, y))dxdy + α

∫ s

0

W2(t, s, y, u(t, y))dy + β

∫ t

0

W3(t, s, x, u(x, s))dx, (1.1)

that α, β ∈ R and unknown function to be determined. Also,

f : [0, 1]2 → R2, t, s ∈ [0, 1],

W1 : [0, 1]4 × R2 → R2, x, y ∈ [0, 1],

W2,W3 : [0, 1]3 × R2 → R2, (1.2)

are assumed to be known continuous functions satisfying the Lipschitz condition

|W1(t, s, x, y, v1(x, y))−W1(t, s, x, y, v2(x, y))| ⩽M1|v1 − v2|,

|W2(t, s, y, v1(t, y))−W2(t, s, y, v2(x, y))| ⩽M2|v1 − v2|,

|W3(t, s, x, v1(x, s))−W3(t, s, x, v2(x, y))| ⩽M3|v1 − v2|,

where v1, v2 ∈ R2, and M1,M2,M3 ⩾ 0.
At first, we give two real examples of the applications of this equation.

Darboux problem

the Darboux problem has been considered for a, b, a0, b0 ∈ [0,∞) as [19]

Dxyz(x, y) = f(x, y, z(x, y)), (x, y) ∈ E = (0, a]× (0, b],

z(x, y) = ϕ(x, y) for (x, y) ∈ ([−a0, a]× [−b0, b]) \ E,

Dxyz =
∂2z

∂x∂y
, B = [−a0, 0]× [−b0, b].

and

f : E × C(B,R) → R, z : E0 ∪ E → R,

If E = (0, 1]× (0, 1] this problem is equivalent to[11]

u(t, s) = u(t, 0) + u(0, s) +

∫ s

0

∫ t

0

W (x, y, u(x, y))dxdy − u(0, 0). (1.3)

Telegraph equation
Another example can be cited as a telegraph equation

utt + (α+ β)ut + αβu = c2uxx,

where c2 = 1
LC , α = G

C , β = R
L , which consists of a resistor of resistance Rdx, a coil of inductance, Ldx, a resistor of

conductance Gdx or a capacitor of capacitance Cdx.
In [25] it has been shown that the telegraph equation can be reduced to an equation of the form (1), if α, β ̸= 0, and

W1(t, s, x, y, u(x, y)) = g1(x, y, u(x, y)),

W2(t, s, y, u(t, y)) = g2(t, y, u(t, y)),

W3(t, s, x, u(x, s)) = g3(x, s, u(x, s)).
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2 Properties of the Rationalized Haar functions

In this section, we introduce briefly the RHWs and then construct the operational matrices of iteration for the
RHWs set.

Definition 2.1. The RH wavelet is the function defined on the real line R as follows:

H(t) =

 1, 0 < t ≤ 1
2 ,

−1, 1
2 < t < 1,

0, otherwise.
(2.1)

Definition 2.2. The RH functions hn(t) for any n = 1, 2, . . . , where n = 2i+j, for i = 0, 1, . . . and j = 0, 1, . . . , 2i−1,
are defined by

hn(t) = H(2it− j) =

 1 j.2−i ≤ t < (j + 1
2 )2

−i

−1 (j + 1
2 )2

−i ≤ t < (j + 1)2−i

0 otherwise.

Also, we can expand for any function such as f(t) ∈ C[0, 1] with RH function as

f(t) =

∞∑
n=0

anhn(t), (2.2)

where

an = 2j
∫ 1

0

f(t)hn(t)dx.

Thus the series
∑

n 2
j⟨f, hn⟩hn, will converge to f , see e.g. [29], if (2.2) truncated up to its first m terms that

m = 2λ+1, λ = 0, 1, ... where j = 0, 1, ..., λ then:

f(t) =

m−1∑
n=0

anhn(t) = ATh(t), (2.3)

where A = [a0, a1, ..., am−1]
T , and h(t) = [h0(t), h1(t), . . . , hm−1(t)]

T . Also, for any function f(t, s) we can approxi-
mated by RH functions as

f(t, s) =

m−1∑
i=0

m−1∑
j=0

fijhij(t, s) = FTh(t, s), (2.4)

that
hij(t, s) = hi(t)hj(s),

and

F(t, s) = [f00, f01, ..., fm−1,m−1]
T , h(t, s) = [h00, h01, ..., hm−1,m−1]

T . (2.5)

In addition, fij are defined in (2.4) are given by

fij =
⟨f(t, s), hij(t, s)⟩

∥hij(t, s)∥22
.

3 Numerical approximation of the solution

In this section for achieve it is necessary to define the integral operator, T : (X, ∥.∥∞) → (X, ∥.∥∞). By applying
this operator in Eq (1), we have

T (u(t, s)) = f(t, s) +

∫ s

0

∫ t

0

W1(t, s, x, y, u(x, y))dxdy + α

∫ s

0

W2(t, s, y, u(t, y))dy + β

∫ t

0

W3(t, s, x, u(x, s))dx. (3.1)
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In book of Atkinson by using of Banach fixed point theorem he is proved under certain assumptions T has an unique
fixed point [5]. Since, in general it is not possible to calculate u explicitly from the sequence of functions {Tn(u)}n∈N,
so we define a new sequence of functions, denoted by {ui}i∈N, obtained recursively by using interpolation and RH
basis.

ui(t, s) = f(t, s) +

∫ s

0

∫ t

0

W1(t, s, x, y, ui−1(x, y))dxdy + α

∫ s

0

W2(t, s, y, ui−1(t, y))dy + β

∫ t

0

W3(t, s, x, ui−1(x, s))dx.

(3.2)
In this section we assume:

ψ
(i−1)
1 (t, s, x, y) :=W1(t, s, x, y, ui−1(x, y)), (3.3)

ψ
(i−1)
2 (t, s, y) :=W2(t, s, y, ui−1(t, y)), (3.4)

ψ
(i−1)
3 (t, s, x) :=W3(t, s, x, ui−1(x, s)), (3.5)

we can expand ψ
(i−1)
i for i = 1, 2, 3 in terms of RH functions as

ψ
(i−1)
1 (t, s, x, y) = hT (t, s)K1h(x, y),

ψ
(i−1)
2 (t, s, y) = hT (t, s)K2h(t, y),

ψ
(i−1)
1 (t, s, x) = hT (t, s)K3h(x, s),

if Qm is an orthogonal projection with following interpolation property we have

Qm(ψ
(i−1)
1 (t, s, x, y)) =

m−1∑
i=0

m−1∑
j=0

m−1∑
r=0

m−1∑
q=0

k1ijrqhij(t, s)hrq(x, y), (3.6)

Qm(ψ
(i−1)
2 (t, s, y)) =

m−1∑
i=0

m−1∑
j=0

m−1∑
r=0

m−1∑
q=0

k2ijrqhij(t, s)hrq(t, y), (3.7)

Qm(ψ
(i−1)
3 (t, s, x)) =

m−1∑
i=0

m−1∑
j=0

m−1∑
r=0

m−1∑
q=0

k3ijrqhij(t, s)hrq(x, s). (3.8)

Thus K1,K2,K3 are block matrices of the form

Ks = [K(i,j)
s ]m−1

i,j=0, s = 1, 2, 3, (3.9)

where
K(i,j)

s = [Ks
ijrq]

m−1
i,j,r,q=0, s = 1, 2, 3, (3.10)

and for coefficients Ks
ijrq, s = 1, 2, 3 we have:

k1ijrq =
⟨W1(t, s, x, y, u(x, y)), hrq(x, y)⟩, hij(t, s)⟩
⟨hij(t, s), hij(t, s)⟩⟨hrq(x, y), hrq(x, y)

, (3.11)

k2ijrq =
⟨W2(t, s, y, u(t, y)), hrq(t, y)⟩, hij(t, s)⟩
⟨hij(t, s), hij(t, s)⟩⟨hrq(t, y), hrq(t, y)

, (3.12)

k3ijrq =
⟨W3(t, s, x, u(x, s)), hrq(x, s)⟩, hij(t, s)⟩
⟨hij(t, s), hij(t, s)⟩⟨hrq(x, s), hrq(x, s)

. (3.13)

The row vector below has been introduced by Chen and Hsiao [10]

h(t) = [h0(t), h1(t), . . . , hm−1(t)]
T . (3.14)

Now we have ∫ t

0

h(s)ds = Ph(t), (3.15)

Chen and Hsiao in [10] shown that the following recursive formula for operational matrix of integration Pm×m are
holds

Pm×m =
1

2m

(
2k P(m

2 )×(m
2 ) − Φ̂(m

2 )×(m
2 )

Φ̂−1
(m

2 )×(m
2 ) 0

)
, (3.16)
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and

Φ̂m×m = [h(
1

2m
),h(

3

2m
), . . . ,h(

2m− 1

2m
)]. (3.17)

For example

Φ̂8×8 =


h0(t)
h1(t)
...

h7(t)

 =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


. (3.18)

Which Φ̂1×1 = [1], P1×1 = [ 12 ], and

Φ̂−1
k×k = (

1

k
).Φ̂T

k×k.diag
(
1, 1, 2, 2, 22, . . . , 22︸ ︷︷ ︸

22

, 23, . . . , 23︸ ︷︷ ︸
23

, . . . ,
k

2
, . . . ,

k

2︸ ︷︷ ︸
k
2

)
. (3.19)

Thus for the nonlinear second-kind VIE we have:

ui(t, s) = f(t, s)+

∫ s

0

∫ t

0

Qm(ψ
(i−1)
1 (t, s, x, y))dxdy+α

∫ s

0

Qm(ψ
(i−1)
2 (t, s, y))dy+β

∫ t

0

Qm(ψ
(i−1)
3 (t, s, x))dx. (3.20)

4 Error analysis

Suppose that, two-dimensional function u(t, s) : [0, 1]2 → R2 be an arbitrary continuous function, we define

||u||∞ = sup{|u(t, s)|; (t, s) ∈ [0, 1]× [0, 1]}. (4.1)

So, in this section, by using the Banach fixed point theorem, we proved our method is convergence and the order of
method is 2

Lemma 4.1. Let W1 ∈ C([0, 1]4 × R2), and W2,W3 ∈ C([0, 1]3 × R2) are Lipschitz functions with respect to their
fifth and fourth variables, with Lipchitz constants M1, M2 and M3, then T has an unique fixed point and for all
u0 ∈ C([0, 1]2)

∥u− T i(u0)∥∞ ≤ ∥T (u0)− u0∥∞ ×
∞∑
j=i

qj , (4.2)

where q = max{M1, |α|M2, |β|M3} < 1
4 , and u is the fixed point of T .

Proof: For u, v ∈ C([0, 1]2), we have:

|T (u(t, s))− T (v(t, s))| = |
∫ s

0

∫ t

0

(W1(t, s, x, y, u(x, y))−W1(t, s, x, y, v(x, y)))dxdy

+ α

∫ s

0

(W2(t, s, y, u(t, y))−W2(t, s, y, v(t, y)))dy + β

∫ t

0

(W3(t, s, x, u(x, s))−W3(t, s, x, v(x, s)))dx|

≤
∫ s

0

∫ t

0

|W1(t, s, x, y, u(x, y))−W1(t, s, x, y, v(x, y))|dxdy + |α|
∫ s

0

|W2(t, s, y, u(t, y))−W2(t, s, y, v(t, y))|dy

+|β|
∫ t

0

|W3(t, s, x, u(x, s))−W3(t, s, x, v(x, s))|dx

≤M1

∫ s

0

∫ t

0

|u(x, y)− v(x, y)|dxdy +M2|α|
∫ s

0

|u(t, y)− v(t, y)|dy +M3|β|
∫ t

0

|u(x, s)− v(x, s)|dx

≤M1||u− v||∞ +M2|α|||u− v||∞ + |β|M3||u− v||∞ ≤ (M1 + |α|M2 + |β|M3)||u− v||∞.
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By induction, for all n ∈ N we have

∥Tn(u)− Tn(v)∥∞ ≤ qn∥u− v∥∞,

since q < 1 we have:

∞∑
n=1

∥Tn(u)− Tn(v)∥∞ <∞.

Then T has a unique fixed point and (3.1) has a unique solution. □

Theorem 4.2. Assume that ψ
(i−1)
1 ∈ C([0, 1]4), and ψ

(i−1)
2 , ψ

(i−1)
3 ∈ C([0, 1]3) and {ui}i≥1 is a subset of C([0, 1]2),

and W1 ∈ C([0, 1]4 × R2), and W2,W3 ∈ C([0, 1]3 × R2) are Lipschitz functions with respect to their fifth and fourth
variables, then we have

∥u− ui∥∞ ≤ ∥T (u0)− u0∥∞
∞∑
j=i

qj +

i∑
j=1

qi−jεj , (4.3)

Proof: If

Li−1 = max{∥
∂ψi−1

k

∂t
∥∞, ∥

∂ψi−1
k

∂s
∥∞ ∥

∂ψi−1
k

∂x
∥∞, ∥

∂ψi−1
k

∂y
∥∞}, (4.4)

for k = 1, 2, 3 and m = 2i+1 for i = 1, . . ., then

∥T (ui−1)− ui∥∞ ≤ ∥
∫ s

0

∫ t

0

ψ
(i−1)
1 (t, s, x, y)−Qm(ψ

(i−1)
1 (t, s, x, y))dxdy∥∞

+|α| ∥
∫ s

0

ψ
(i−1)
2 (t, s, y)−Qm(ψ

(i−1)
2 (t, s, y))dy∥∞

+|β| ∥
∫ t

0

ψ
(i−1)
3 (t, s, x)−Qm(ψ

(i−1)
3 (t, s, x))dx∥∞

≤∥ψi−1
1 −Qm(ψi−1

1 )∥∞ + |α| ∥ψi−1
2 −Qm(ψi−1

2 )∥∞ + |β| ∥ψi−1
3 −Qm(ψi−1

3 )∥∞.

If we define
g(t, s, x, y) := ψi−1 −Qm(ψi−1),

by using interpolating property and the mean-value theorem for four variables with t0, s0, x0, y0 = 0 and

ti =
1

2n1+1
+

v1
2n1

, for i = 2n1 + v1,

sj =
1

2n2+1
+

v2
2n2

, for j = 2n2 + v2,

xk =
1

2n3+1
+

v3
2n3

, for k = 2n3 + v3,

yl =
1

2n4+1
+

v4
2n4

, for l = 2n4 + v4,
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where n1, n2, n3, n4 ≥ 1, and i, j, k, l ≤ m− 1, we have

∥ψi−1 −Qm(ψi−1)∥∞ =∥g(ti, sj , xk, yl) +
∂g

∂t
(ξ, γ, τ, υ)(ξ − ti) +

∂g

∂s
(ξ, γ, τ, υ)(γ − sj)+

∂g

∂x
(ξ, γ, τ, υ)(τ − xk) +

∂g

∂y
(ξ, γ, τ, υ)(υ − yl)∥∞

=∥(I −Qm)
∂ψi−1

∂t
(ξ, γ, τ, υ) + (I −Qm)

∂ψi−1

∂s
(ξ, γ, τ, υ)

+(I −Qm)
∂ψi−1

∂x
(ξ, γ, τ, υ) + (I −Qm)

∂ψi−1

∂y
(ξ, γ, τ, υ)∥∞

max{∥ξ − ti∥∞, ∥γ − sj∥∞, ∥τ − xk∥∞, ∥υ − yl∥∞}

≤ 2

2i
∥(I −Qm)∥∞∥∥∂ψ

i−1

∂t
(ξ, γ, τ, υ) +

∂ψi−1

∂s
(ξ, γ, τ, υ)

+
∂ψi−1

∂x
(ξ, γ, τ, υ) +

∂ψi−1

∂y
(ξ, γ, τ, υ)∥∞ ≤ 8Li−1

2i
.

The same proof holds for ψi−1
k for k = 2, 3. We have

∥T (ui−1)− ui∥∞ ≤ (4 + 3|α|+ 3|β|)2Li−1

2i
. (4.5)

For certain constants ε1, ε2, . . . , εi > 0 that i ≥ 1, if

(4 + 3|α|+ 3|β|)2Li−1

2i
< εk for k = 1, 2, ..., i,

we have

∥T (ui−1)− ui∥∞ < εi, i ≥ 1. (4.6)

By applying the triangle inequality, we achieve

∥u− ui∥∞ ≤ ∥u− T i(u0)∥∞ +

i∑
j=1

qj∥T (uj−1)− uj∥∞. (4.7)

From (4.2) and (4.6) we conclude

∥u− ui∥∞ ≤ ∥T (u0)− u0∥∞
∞∑
j=i

qj +

i∑
j=1

qi−jεj . (4.8)

Also, since q < 1
4 , the geometric series

∑∞
j=n q

j = qn

1−q is convergent. we set

q =
1

4
− 1

2l+2
<

1

4
, l ∈ N, (4.9)

By using Eqs. (4.9), (4.8), and (4.5), we have

∥u− ui∥∞ ≤ ∥Tu0 − u0∥∞
qi

1− q
+

i∑
j=1

(
1

4
− 1

2l+2
)i−j(4 + 3|α|+ 3|β|)2Lj−1

2j

= ∥Tu0 − u0∥∞
qi

1− q
+

i∑
j=1

(
1

4
− 1

2l+2
)i(

1

4
− 1

2l+2
)−j(4 + 3|α|+ 3|β|)2Lj−1

2j

= ∥Tu0 − u0∥∞
qi

1− q
+ 2(4 + 3|α|+ 3|β|)(1

4
− 1

2l+2
)i

i∑
j=1

(
1

4
− 1

2l+2
)−j Lj−1

2j
, (4.10)
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in which, from Eq. (4.4), the sequence Lj−1 for any j ∈ N is uniformly bounded. Therefore, for every 1 ≤ j ≤ n, there
exists N <∞ such that |Lj−1| ≤ N . Thus from Eq. (4.10), we have

∥u− ui∥∞ ≤ ∥Tu0 − u0∥∞
qi

1− q
+ 2(4 + 3|α|+ 3|β|)(q)i

i∑
j=1

(
1

4
− 1

2l+2
)−jN

2j

= ∥Tu0 − u0∥∞
qi

1− q
+ 2(4 + 3|α|+ 3|β|)N(q)i

i∑
j=1

(1 +
1

2l − 1
)j2j . (4.11)

Since (1 + 1
2l−1

) ≤ 2 for any l ∈ N and by using (4.11), we have

∥u− ui∥∞ ≤ ∥Tu0 − u0∥∞
qi

1− q
+ 2(4 + 3|α|+ 3|β|)N(q)i

i∑
j=1

2j

≤ ∥Tu0 − u0∥∞
qi

1− q
+ 2(4 + 3|α|+ 3|β|)N(q)ii4i. (4.12)

If n→ ∞ and q < 1
4 , then the last summand of the right-hand side of (4.12) vanishes, and so we have

∥u− ui∥∞ ≤ 2(4 + 3|α|+ 3|β|)Ni(4q)i. (4.13)

Thus the rate of convergence of our method is O(i(4q)
i
).

5 Numerical examples

In this section we solve three examples with our method. for this purpose we lets (xi, ti) = ( 1
2i ,

1
2i ) for i = 1, 2, ...6,

and numerical results obtained here can be compare with another numerical methods.

Example 5.1. For the first example, consider the special case of Cauchy problem equation on X = [0, 1]× [0, 1] (see
[25])

u(x, t) =
1

4

∫ t

0

∫ x

0

sin(u(y, z))cos(
y − z

2
)sin(

y + z

2
) + cos(u(y, z))sin(

y − z

2
)cos(

y + z

2
)dydz

−1

4

∫ x

0

sin(u(y, t)) + cos(u(y, t))− sin(u(y, 0))− cos(u(y, 0))dy

+
1

4

∫ t

0

cos(u(x, z)) + cos(u(x, z))− cos(u(0, z)) + sin(u(0, z))dz

+sin2(
x

2
)− sin2(

t

2
),

with exact solution u(x, t) = sin(x+t
2 )sin(x−t

2 ). Numerical results for Example 1 are displayed in Table 1.

Table 1. Numerical results for Example 1.
(x, t) Legendre polynomials method([26]) Presented method Presented method

M = 6 m = 16 m = 32
(0.0,0.2) 1.5 × 10−6 0 0
(0.2,0.4) 6.4 × 10−6 2.19 × 10−6 5.89 × 10−7

(0.3,0.6) 5.6 × 10−6 2.93 × 10−6 7.36 × 10−7

(0.4,0.8) 3.5 × 10−6 3.53 × 10−6 9.29 × 10−7

(0.8,1.0) 3.3 × 10−6 2.80 × 10−6 7.26 × 10−7

Example 5.2. Let us consider the nonlinear two dimensional Volterra integral equation of the second kind (see
[26],[7]).
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Figure 1: Absolute errors for Example 1 with grid=[20,20]

u(x, t) = x+ t− 1

12
xt(x3 + 4x2t+ 4xt2 + t3) +

∫ t

0

∫ x

0

(x+ t− y − z)u2(y, z)dydz, (5.1)

with exact solution u(x, t) = x+ t, and 0 ≤ x, t < 1. Numerical results for Example 2 are displayed in Table 2.

Table 2. Numerical results for Example 2.
(x, t) = ( 1

2i ,
1
2i ) Legendre polynomials method ([26]) Haar wavelet method ([7]) Presented method

M = 2 m = 32 m = 16
i=1 3.5 × 10−3 3.1 × 10−2 2.15 × 10−4

i=2 4.5 × 10−4 3.1 × 10−2 6.71 × 10−4

i=3 6.1 × 10−4 3.1 × 10−2 2.08 × 10−5

i=4 5.7 × 10−4 3.1 × 10−2 6.38 × 10−7

i=5 3.6 × 10−4 3.1 × 10−2 1.73 × 10−8

i=6 2.0 × 10−4 2.2 × 10−9 7.76 × 10−10

Figure 2: Absolute errors for Example 2 with grid=[20,20]

Example 5.3. Finally let us, consider the following nonlinear two-dimensional Volterra integral equation (see [24],[18],[7])

u(x, t) = x2 + t2 − 1

45
xt(9x4 + 10x2t2 + 9t4) +

∫ t

0

∫ x

0

u2(y, z)dydz, (5.2)

with exact solution u(x, t) = x2 + t2, and 0 ≤ x, t < 1. Numerical results for Example 3 are displayed in Table 3.



104 Erfanian, Zeidabadi

Table 3. Numerical results for Example 3.
(x, t) = ( 1

2i ,
1
2i ) 2D-BPFs method([24]) Haar wavelet method ([7]) Presented method

m = 32 m = 32 m = 32
i=2 1.0 × 10−1 1.6 × 10−2 5.90 × 10−5

i=3 7.0 × 10−2 8.5 × 10−3 9.06 × 10−7

i=4 5.8 × 10−2 4.6 × 10−3 1.29 × 10−8

i=5 5.3 × 10−2 2.6 × 10−3 1.43 × 10−10

i=6 2.1 × 10−4 1.6 × 10−4 2.00 × 10−12

Figure 3: Absolute errors for Example 3 with grid=[20,20]

6 Conclusions

In this work we used RHW function for solving two-dimensional nonlinear Volterra integral equations. One of
the advantages of the proposed method is the use of operational matrices for single and double integration of basic
functions without the need for direct integration. In addition, the numerical estimation of the order of convergence of
the results are provided. In section Numerical examples, we solve three examples of some references and we compare
with another methods. Absolute error for all examples are shown.
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