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Abstract

In this paper, we extend very recent fixed point theorems in the setting of ordered non-Archimedean fuzzy metric
spaces. We present some fixed point theorems for self-mappings satisfying generalized (ϕ, ψ)-contraction conditions
in partially ordered complete non-Archimedean fuzzy metric spaces. On the other hand, we consider a more general
class of auxiliary functions in the contractivity condition and we extend recently fixed point theorems for complete
ordered non-Archimedean fuzzy metric spaces. Also, we present a few examples to illustrate the validity of the results
obtained in the paper.
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1 Introduction

Fixed points of mappings satisfying contractive conditions in generalized metric spaces are highly useful in large
number of mathematical problems of pure and applied mathematics. In 1922, Banach created a famous result called
Banach contraction principle in the concept of the fixed point theory [3]. Later, most of the authors introduced
many works regarding the fixed point theory in various of spaces. Ran and Reuings [14] have extended the result
in this direction, discussed the existence of fixed points for certain maps in ordered metric space and also presented
some applications to matrix linear equations. The result of [14] has been extended by Nieto et al. [12] involving
nondecreasing mappings and used their results in obtaining a unique solution of a first order differential equation.

There are two well-known extensions of the notion of metric space to frameworks in which imprecise models are
considered: fuzzy metric spaces (see [15]) and probabilistic metric spaces [17, 18]. These two concepts are very similar,
but they are different in nature. The concept of a fuzzy metric space was introduced in different ways by some authors
(see [5, 6]). Gregori and Sapena [6] introduced the notion of fuzzy contractive mappings and gave some fixed point
theorems for complete fuzzy metric spaces in the sense of George and Veeramani, and also for Kramosil and Michalek’s
fuzzy metric spaces which are complete in Grabiec’s sense. Mihet [11] developed the class of fuzzy contractive mappings
of Gregori and Sapena, considered these mappings in non-Archimedean fuzzy metric spaces in the sense of Kramosil
and Michalek, and obtained a fixed point theorem for fuzzy contractive mappings. Lots of different types of fixed
point theorems has been presented by many authors by expanding the Banach’s result, simultaneously (see [19, 22]).
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Recently, Sun and Yang introduced the concept of fuzzy metric spaces and proved two common fixed point theorems
for four mappings (see [22]).

Recently, many fixed point theorems have been presented for probabilistic metric space (X,F, ∗), where F is a
distance distribution function. Many of them were inspired by the corresponding results on metric spaces. One of
the most attractive and effective ways to introduce contractivity conditions in the probabilistic framework is based on
considering some terms like in the following expression:

1

F (x, y, t)
− 1, where x, y ∈ X and t > 0

see [6, 11, 21], for more details. In this paper, we consider the more general contractivity conditions, replacing the
function t → 1

t − 1 by an appropriate function h to establish the existence of fixed points for a self-mapping and
common fixed points and coincidence points for two self-mappings in ordered complete fuzzy metric space. Our results
generalize Theorem 2.1 and 2.2 of [4] and the corollaries of [7, 20].

2 Preliminaries

Before giving our main results, we recall some basic concepts and results in metric space and fuzzy metric spaces.

Definition 2.1. [1] A point ν ∈ X, is called coincidence (common fixed) point for two self-mappings T and S, if
Tν = Sν (ν = Tν = Sν).

Definition 2.2. [10] A metric space X with a partially ordered relation ⪯ is called a partially ordered metric space
and is denoted by (X,⪯).

Definition 2.3. [10] Let (X,⪯) be a partially ordered metric space.
(i) If any two elements of X are comparable, then it is called a well-ordered set.
(ii) A self-mapping T on X is said to be monotone nondecreasing, if T (ν) ⪯ T (µ) for all ν, µ ∈ X with ν ⪯ µ.
(iii) Let T and S be two self-mappings on X. Then T is called monotone S-nondecreasing, if Tx ⪯ Ty for all x, y ∈ X
with Sx ⪯ Sy.

Definition 2.4. [9] Let (X, d) be a metric space.
(i) Two self-mappings T and S on X are called compatible, if for all sequence {xn} with lim

n→∞
Txn = lim

n→∞
Sxn, then

lim
n→∞

d(TSxn, STxn) = 0.

(ii) A pair of self-mappings (T, S) on X is called weakly compatible, if they commute at their coincidence points, i.e.
Tν = Sν implies TSν = STν.

Definition 2.5. [17] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular norm (in short,
continuous t−norm) if it satisfies the following conditions:

(TN-1) ∗ is commutative and associative,
(TN-2) ∗ is continuous,
(TN-3) ∗(a, 1) = a for all a ∈ [0, 1],
(TN-4) ∗(a, b) ≤ ∗(c, d) whenever a, b, c, d ∈ [0, 1] with a ≤ c, b ≤ d.

Definition 2.6. [22] A fuzzy metric space is a triple (X,F, ∗) where X is a nonempty set, ∗ is a continuous t−norm
and F is a fuzzy set on X2 × (0,∞) satisfying the following conditions for all x, y, z ∈ X:

(FM-1) F (x, y, t) > 0 for all t > 0,
(FM-2) F (x, y, t) = 1 for all t > 0 if and only if x = y,
(FM-3) F (x, y, t) = F (y, x, t) for all t > 0,
(FM-4) F (x, y, t+ s) ≥ F (x, z, s) ∗ F (z, y, t) for all s, t > 0,
(FM-5) F (x, y, .) : (0,∞) → [0, 1] is continuous.
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If the triangular inequality (FM-4) is replaced by

F (x, y,max{s, t}) ≥ F (x, z, s) ∗ F (z, y, t)

for all x, y, z ∈ X and all s, t > 0 or equivalently,

F (x, y, t) ≥ F (x, z, t) ∗ F (z, y, t), (2.1)

then the triple (X,F, ∗) is called a non-Archimedean fuzzy metric space [8].

Example 2.7. Let (X, d) be a metric space. Then the triple (X,F, ∗) is a fuzzy metric space on X where ∗(a, b) = ab
for all a, b ∈ [0, 1] and F (x, y, t) = t/(t+ d(x, y)) for all x, y ∈ X and all t > 0. We call this F as the standard fuzzy
metric induced by the metric d. Even if we define a ∗ b = min{a, b} for all a, b ∈ [0, 1], the triple (X,F, ∗) will be a
fuzzy metric space.

Definition 2.8. [22] Let {xn} be a sequence in a fuzzy (or a non-Archimedean fuzzy) metric space (X,F, ∗). We
say that:

� {xn} converges to x if and only if lim
n→∞

F (xn, x, t) = 1; i.e., for all t > 0 and all λ ∈ (0, 1), there exists n0 ∈ N
such that F (xn, x, t) > 1− λ for all n ≥ n0 (in such a case, we write {xn} → x);

� {xn} is a Cauchy sequence if and only if for all t > 0 and all λ ∈ (0, 1), there exists n0 ∈ N such that
F (xn, xm, t) > 1−λ for all n,m ≥ n0. {xn} is a G-Cauchy sequence if and only if for all t > 0 and all λ ∈ (0, 1),
there exists n0 ∈ N such that F (xn, xn+p, t) > 1− λ for all n ≥ n0 and p > 0 (i.e., lim

n→∞
F (xn, xn+p, t) = 1).

� The fuzzy (or the non-Archimedean fuzzy) metric space (X,F, ∗) is called complete (G-complete) if every Cauchy
(G-Cauchy) sequence is convergent.

Lemma 2.9. [22] Let (X,F, ∗) be a fuzzy metric space. Then F (x, y, t) is nondecreasing with respect to t for all
x, y ∈ X.

Lemma 2.10. [22] Let (X,F, ∗) be a fuzzy metric space. Then F is a continuous function on X2 × (0,∞).

It is easy to prove that a F (x, y, t) in a non-Archimedean fuzzy metric space (X,F, ∗) is also nondecreasing with
respect to t and continuous for all x, y ∈ X.

Definition 2.11. [22] A (complete) fuzzy metric space (X,F, ∗) with a partially ordered relation ⪯ is called a
(complete) partially ordered fuzzy metric space and denoted by (X,F, ∗,⪯).

The following families of auxiliary functions were considered in [16].

Definition 2.12. Let Φ be the family of all functions ϕ : [0,∞) → [0,∞) satisfying:
(1) ϕ(t) = 0 if and only if t = 0;
(2) lim

t→∞
ϕ(t) = ∞;

(3) ϕ is continuous at t = 0.

Definition 2.13. Let Ψ be the class of all functions ψ : [0,∞) → [0,∞) satisfying:
(1) ψ is nondecreasing;
(2) ψ(0) = 0
(3) for a sequence {an} in [0,∞) whit {an} → 0, {ψn(an)} → 0 (ψn denotes the nth-iterate of ψ)

It worths mentioning that ψ ∈ Ψ is continuous at t = 0. (Proposition 7 of [16])

The following family of auxiliary functions were considered in [16].
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Definition 2.14. Let H be the family of all functions h : (0, 1] → [0,∞) satisfying the following conditions,
(H1) for all sequence {an} in (0, 1], {an} → 1 if and only if {h(an)} → 0;
(H2) for all sequence {an} in (0, 1], {an} → 0 if and only if {h(an)} → ∞.

The previous conditions are guaranteed whenever h : (0, 1] → [0,∞) is a strictly decreasing bijection such that h
and h−1 are continuous (in a broad sense, it is sufficient to assume the continuities of h and h−1 on the extremes of
the respective domains). For instance, this is the case of the function h(t) = 1/t − 1 for all t ∈ (0, 1]. However, the
functions in H need not to be continuous nor monotone.

Proposition 2.15. [16] If h ∈ H, then h(1) = 0. Furthermore, h(t) = 0 if and only if t = 1.

3 Main results

In this section, we present an extension of fixed point theorems in several ways: the metric space is more general,
the contractivity condition is better and the involved auxiliary functions form a wider class.

Theorem 3.1. Let (X,F, ∗,⪯) be a partially ordered G-complete non-Archimedean fuzzy metric space and let T :
X → X be a continuous and nondecreasing mapping with regards to ⪯. Suppose that there exist c ∈ (0, 1), ϕ ∈ Φ, ψ ∈
Ψ and h ∈ H such that

h(F (Tx, Ty, ϕ(ct))) ≤ ψ(h(M(x, y))) (3.1)

for all x, y ∈ X with x ⪯ y and all t > 0 and

M(x, y) = max

{
F (x, y, ϕ(t)),

F (x, Tx, ϕ(t)) ∗ F (y, Ty, ϕ(t))
1 + F (Tx, Ty, ϕ(t))

}
. (3.2)

If there exists x0 ∈ X such that x0 ⪯ Tx0 and also lim
t→∞

F (x0, Tx0, t) = 1, then T has at least one fixed point in

X.

Proof . If there exists x0 ∈ X such that Tx0 = x0, then the proof is finished. Suppose x0 ∈ X, such that x0 ≺ Tx0
and lim

t→∞
F (x0, Tx0, t) = 1, then construct the sequence {xn} ⊂ X by xn+1 = Txn for n ≥ 0. Since T is nondecreasing,

by using mathematical induction, we get the following

x0 ≺ Tx0 = x1 ⪯ Tx1 = x2 ⪯ .... ⪯ Txn−1 = xn

⪯ Txn = xn+1 ⪯ ....
(3.3)

If for some n0 ∈ N, xn0
= xn0+1 = Txn0

then xn0
is a fixed point of T and we have nothing to prove. Suppose that

xn ̸= xn+1 for all n ≥ 0. Since xn ≻ xn−1 for all n ≥ 1, by (3.1) we have

h(F (xn, xn+1, ϕ(ct))) = h(F (Txn−1, Txn, ϕ(ct)))

≤ ψ(h(M(xn−1, xn))),
(3.4)

where

M(xn−1, xn) = max

{
F (xn−1, xn, ϕ(t)),

F (xn−1, Txn−1, ϕ(t)) ∗ F (xn, Txn, ϕ(t))
1 + F (Txn−1, Txn, ϕ(t))

}
= max

{
F (xn−1, xn, ϕ(t)),

F (xn−1, xn, ϕ(t)) ∗ F (xn, xn+1, ϕ(t))

1 + F (xn, xn+1, ϕ(t))

}
.

(3.5)

Since
F (xn−1, xn, ϕ(t)) ∗ F (xn, xn+1, ϕ(t))

1 + F (xn, xn+1, ϕ(t))
≤ F (xn−1, xn, ϕ(t)),

by (3.5) we have
M(xn−1, xn) = F (xn−1, xn, ϕ(t)),
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and hence from (3.4) again we have

h(F (xn, xn+1, ϕ(ct))) ≤ ψ(h(F (xn−1, xn, ϕ(t)))) (3.6)

for all t > 0 and all n ≥ 1. We claim that lim
n→∞

F (xn, xn+1, s) = 1 for all s > 0. In order to prove it, let s > 0 be

arbitrary. As lim
r→∞

crs = 0 and ϕ is continuous at t = 0, then lim
r→∞

ϕ(crs) = ϕ(0) = 0. Since s > 0, there exists r ∈ N
such that

ϕ(crs) ≤ s.

Let n ∈ N be such that n > r. Applying the contractivity (3.6), it follows that

h(F (xn, xn+1, ϕ(c
rs))) ≤ ψ(h(F (xn−1, xn, ϕ(c

r−1s)))). (3.7)

Repeating this argument, we find that

h(F (xn−1, xn, ϕ(c
r−1s))) ≤ ψ(h(F (xn−2, xn−1, ϕ(c

r−2s)))).

As ψ is nondecreasing, then

ψ(h(F (xn−1, xn, ϕ(c
r−1s)))) ≤ ψ2(h(F (xn−2, xn−1, ϕ(c

r−2s)))). (3.8)

Combining inequalities (3.7) and (3.8), we deduce that

h(F (xn, xn+1, ϕ(c
rs))) ≤ ψ(h(F (xn−1, xn, ϕ(c

r−1s))))

≤ ψ2(h(F (xn−2, xn−1, ϕ(c
r−2s)))).

By repeating this argument n times, we have

h(F (xn, xn+1, ϕ(c
rs))) ≤ ψn(h(F (x0, x1, ϕ(c

r−ns))))

≤ ψn(h(F (x0, x1, ϕ(
s

cn−r
)))),

(3.9)

for all n > r. As a consequence,

lim
n→∞

s

cn−r
= ∞ ⇒ lim

n→∞
ϕ(

s

cn−r
) = ∞

⇒ lim
n→∞

F (x0, x1, ϕ(
s

cn−r
)) = 1

⇒ lim
n→∞

h(F (x0, x1, ϕ(
s

cn−r
))) = 0.

As the sequence {an = h(F (x0, x1, ϕ(
s

cn−r )))} → 0 we have {ψn(an)} → 0. Since h ∈ H, by (3.9) we deduce that

lim
n→∞

h(F (xn, xn+1, ϕ(c
rs))) = 0.

In particular, as h ∈ H, condition (H1) implies that

lim
n→∞

F (xn, xn+1, ϕ(c
rs)) = 1.

Taking into account ϕ(crs) < s, we observe that

F (xn, xn+1, ϕ(c
rs)) ≤ F (xn, xn+1, s) ≤ 1.

Therefore,
lim
n→∞

F (xn, xn+1, s) = 1

which means that {xn} is a G-Cauchy sequence in X, [16, Lemma 15]. Since X is G-complete, there exists x ∈ X
such that {xn} → x. Also, the continuity of T implies that

Tx = T ( lim
n→∞

xn) = lim
n→∞

Txn = lim
n→∞

xn+1 = x.

Therefore, x is a fixed point of T in X. □
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Example 3.2. Let X = [0, 1), ∗(a, b) = min{a, b}, and

F (x, y, t) =

{
1, if x = y

1
1+max{x,y} , otherwise,

where x, y ∈ X and t > 0. It is easy to prove that (X,F, ∗,⪯) is a complete partially ordered non-Archimedean fuzzy
metric space with usual ordering. Define T : X → X by T (x) = x/2 for all x ∈ X. Assume that ψ(t) = ϕ(t) = t for
all t ∈ [0,∞) and let h : (0, 1] → [0,∞) be a strictly decreasing bijection between (0, 1] and [0,∞) such that h and
h−1 are continuous (for instance, h(t) = 1/t − 1, t ∈ (0, 1], but any other function verifying these properties yields
the same result). In this context, the contractivity conditions (3.1) and (3.2) are equivalent to h(F (Tx, Ty, ϕ(ct))) ≤
ψ(h(M(x, y))) if and only if h(F (Tx, Ty, ct)) ≤ h(M(x, y)) if and only if F (Tx, Ty, ct) ≥ M(x, y) ≥ F (x, y, t), for all
c ∈ (0, 1) and x, y ∈ X, whit x ̸= y and for all t > 0,

F (Tx, Ty, ct) = F (
x

2
,
y

2
, ct) =

1

1 +max{x
2 ,

y
2}

≥ 1

1 + max{x, y}
= F (x, y, t).

In the case x = y it is trivial. As a result, the contractivity condition is verified. Also, all the assumptions made
in Theorem 3.1 are satisfied and hence, it guarantees that T has a unique fixed point (which is x = 0).

By weakening the continuity property of a map T in Theorem 3.1, we have the following result.

Theorem 3.3. In Theorem 3.1 let X has the property that, for every nondecreasing sequence {xn} with {xn} → x,
we have xn ⪯ x for all n ∈ N, i.e., x = sup xn. Then a non-continuous map T has a fixed point in X.

Proof . From Theorem 3.1 we take the same sequence {xn} in X such that x0 ⪯ x1 ⪯ x2 ⪯ ... ⪯ xn ⪯ xn+1 ⪯ ...,
i.e., the sequence {xn} is nondecreasing and converges to some x in X. Thus, from hypotheses we have x = sup xn.
Next, we prove that x is a fixed point of T , that is Tx = x. From (3.1) we have

h(F (xn+1, Tx, ϕ(ct))) = h(F (Txn, Tx, ϕ(ct))) ≤ ψ(h(M(xn, x))), (3.10)

for all t > 0 and n ∈ N, where

M(xn, x) = max

{
F (xn, x, ϕ(t)),

F (xn, Txn, ϕ(t)) ∗ F (x, Tx, ϕ(t))
1 + F (Txn, Tx, ϕ(t))

}
= max

{
F (xn, x, ϕ(t)),

F (xn, xn+1, ϕ(t)) ∗ F (x, Tx, ϕ(t))
1 + F (xn+1, Tx, ϕ(t))

}
.

By Lemma 2.10, F is a continuous function on X2 × (0,∞). Letting n→ ∞ and since lim
n→∞

xn = x we get

lim
n→∞

M(xn, x) = max

{
F (x, x, ϕ(t)),

F (x, x, ϕ(t)) ∗ F (x, Tx, ϕ(t))
1 + F (x, Tx, ϕ(t))

}
= 1.

From (H1), lim
n→∞

h(M(xn, x)) = 0 and since ψ is continuous at t = 0, we have

lim
n→∞

ψ(h(M(xn, x))) = 0.

Then by (3.10) we deduce
lim

n→∞
h(F (xn+1, Tx, ϕ(ct))) = 0,

which by (H1) yields lim
n→∞

F (xn+1, Tx, ϕ(ct)) = 1 for all t > 0. Easily, we conclude that lim
n→∞

F (xn+1, Tx, t) = 1 for

all t > 0, which means x = limn→∞ xn+1 = Tx and T has a fixed point x in X. □

The uniqueness of an existing fixed point in Theorems 3.1 and 3.3, can be obtained, if the set of fixed pints of T ,
Fix(T ), is well-ordered.

Theorem 3.4. If in Theorems 3.1 and 3.3, Fix(T ), is well-ordered and lim
t→∞

F (x, y, t) = 1 for all x, y ∈ Fix(T ) and

also h ∈ H is decreasing, then T has a unique fixed point in X.
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Proof . Assume that T has two different fixed points x∗ and y∗, such that x∗ ⪯ y∗. It follows from (3.1) that

h(F (x∗, y∗, ϕ(ct))) = h(F (Tx∗, Ty∗, ϕ(ct))) ≤ ψ(h(M(x∗, y∗))) (3.11)

for all t > 0 and

M(x∗, y∗) = max

{
F (x∗, y∗, ϕ(t)),

F (x∗, Tx∗, ϕ(t)) ∗ F (y∗, T y∗, ϕ(t))
1 + F (Tx∗, Ty∗, ϕ(t))

}
= max

{
F (x∗, y∗, ϕ(t)),

1

1 + F (x∗, y∗, ϕ(t))

}
.

(3.12)

Since h is decreasing, from (3.11) and (3.12) we get

h(F (x∗, y∗, ϕ(ct))) ≤ ψ(h(F (x∗, y∗, ϕ(t)))),

for all t > 0. Therefore

h(F (x∗, y∗, ϕ(t))) ≤ ψ(h(F (x∗, y∗, ϕ(
t

c
)))).

Repeating this argument, since ψ is nondecreasing, we deduce that

h(F (x∗, y∗, ϕ(t))) ≤ ψ(h(F (x∗, y∗, ϕ(
t

c
))))

≤ ψ2(h(F (x∗, y∗, ϕ(
t

c2
))))

...

≤ ψn(h(F (x∗, y∗, ϕ(
t

cn
)))),

(3.13)

for all t > 0. On the other hand, from the hypotheses, we have limn→∞
t
cn = ∞. Hence, limn→∞ ϕ( t

cn ) = ∞. Then
limn→∞ F (x∗, y∗, ϕ( t

cn )) = 1. This implies that

lim
n→∞

h(F (x∗, y∗, ϕ(
t

cn
))) = 0.

Thus, limn→∞ ψ(h(F (x∗, y∗, ϕ( t
cn )))) = 0, for all t > 0. Then by (3.13) we get lim

n→∞
h(F (x∗, y∗, ϕ(t))) = 0 and

hence lim
n→∞

F (x∗, y∗, ϕ(t)) = 1 for all t > 0. Therefore, we conclude that lim
n→∞

F (x∗, y∗, t) = 1, for all t > 0, which

means that x∗ = y∗ by virtue of (FM-2). Thus, T can only have one fixed point in X. □

We have the following results, which are the generalizations of Theorems 3.1 and 3.3 in the partially ordered
non-Archimedean fuzzy metric spaces.

Theorem 3.5. Let (X,F, ∗,⪯) be a partially ordered non-Archimedean fuzzy metric space and suppose T, S : X → X
are continuous mappings such that
(i) for some c ∈ (0, 1), ϕ ∈ Φ, ψ ∈ Ψ, and h ∈ H with

h(F (Tx, Ty, ϕ(ct))) ≤ ψ(h(MS(x, y))) (3.14)

for all x, y ∈ X with Sx ⪯ Sy and all t > 0 and

MS(x, y) = max

{
F (Sx, Sy, ϕ(t)),

F (Sx, Tx, ϕ(t)) ∗ F (Sy, Ty, ϕ(t))
1 + F (Tx, Ty, ϕ(t))

}
(3.15)

(ii) TX ⊆ SX and SX is a G-complete subspace of X,
(iii) T is a monotone S-nondecreasing mapping,
(iv) T and S are compatible.

If there exists x0 ∈ X such that Sx0 ⪯ Tx0 and lim
t→∞

F (Sx0, Tx0, t) = 1, then T and S have a coincidence point

in X.
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Proof . Suppose that there exists x0 ∈ X such that Sx0 ⪯ Tx0. Define Sx0 = y0 and Tx0 = y1. Using the
assumption TX ⊆ SX, there exists some x1 ∈ X such that Sx1 = y1. Construct sequences {xn} and {yn} in
X such that Txn = yn+1 = Sxn+1 for all n ∈ N ∪ {0}. Since T is a monotone S-nondecreasing mapping, from
Sx0 ⪯ Tx0 = Sx1, we have Tx0 ⪯ Tx1 and so, Sx1 ⪯ Sx2. Using mathematical induction, we get the following

y0 ⪯ y1 ⪯ y2 ⪯ ... .

Since yn are comparable for all n ∈ N ∪ {0}, we can use inequality (3.14) to write

h(F (yn, yn+1, ϕ(ct))) = h(F (Txn−1, Txn, ϕ(ct))) ≤ ψ(h(MS(xn−1, xn)))

for all n ∈ N and all t > 0 and by (3.15)

MS(xn−1, xn) = max

{
F (Sxn−1, Sxn, ϕ(t)),

F (Sxn−1, Txn−1, ϕ(t)) ∗ F (Sxn, Txn, ϕ(t))
1 + F (Txn−1, Txn, ϕ(t))

}
= max

{
F (yn−1, yn, ϕ(t)),

F (yn−1, yn, ϕ(t)) ∗ F (yn, yn+1, ϕ(t))

1 + F (yn, yn+1, ϕ(t))

}
= F (yn−1, yn, ϕ(t)).

Therefore,
h(F (yn, yn+1, ϕ(ct))) ≤ ψ(h(F (yn−1, yn, ϕ(t)))),

for all n ∈ N and all t > 0. Using the same argument given in the proof of Theorem 3.1, we can prove that
lim
n→∞

F (yn, yn+1, t) = 1, for all t > 0. Lemma 15 in [16] guarantees that {yn = Sxn} is a G-Cauchy sequence in SX.

As SX is G-complete, there exists z ∈ SX, such that {Sxn} → z as n → ∞. We will prove that Tz = Sz. Since
lim
n→∞

Txn = lim
n→∞

Sxn+1 = z, by compatibility of T and S we have

lim
n→∞

F (TSxn, STxn, t) = 1

for all t > 0. Furthermore, by use of continuity of T and S and by (FM-4),

F (Tz, Sz, t) ≥ F (Tz, TSxn, t) ∗ F (TSxn, STxn, t) ∗ F (STxn, Sz, t),

for all n ∈ N and all t > 0. Finally, letting n → ∞, we get F (Tz, Sz, t) = 1 for all t > 0, which means that z is a
coincidence point for T and S in X. □

Replacing the condition of being weakly compatible instead of compatibility in Theorem 3.5, we obtain the following
result.

Corollary 3.6. Assume in Theorem 3.5, lim
t→∞

F (Tx, Ty, t) = 1 for all coincidence points of T and S and h ∈ H is

decreasing. If X has the property that for every nondecreasing sequence {Sxn} in X such that lim
n→∞

Sxn = Sx implies

that Sxn ⪯ Sx for all n ∈ N, that is Sx = sup Sxn. If T and S are weakly compatible for every coincidence point ν
of T and S with Sν ⪯ S(Sν), then T and S have common fixed point in X. Furthermore, the set of common fixed
point of T and S is well-ordered if and only if T and S have one common fixed point in X.

Proof . From Theorem 3.5 we conclude that there exists ν ∈ X such that lim
n→∞

Txn = lim
n→∞

Sxn+1 = Sν. By

hypotheses and (3.14) we have Sxn ⪯ Sν and

h(F (Txn, Tν, ϕ(ct))) ≤ ψ(h(MS(xn, ν))),

for all n ∈ N and all t > 0 and by (3.15)

MS(xn, ν) = max

{
F (Sxn, Sν, ϕ(t)),

F (Sν, Tν, ϕ(t)) ∗ F (Sxn, Txn, ϕ(t))
1 + F (Txn, T ν, ϕ(t))

}
.

Since lim
n→∞

Txn = lim
n→∞

Sxn+1 = Sν, we get

lim
n→∞

MS(xn, ν) = 1,
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which yields lim
n→∞

h(F (Txn, T ν, ϕ(ct))) = 0, for all t > 0. Therefore, lim
n→∞

F (Txn, T ν, ϕ(ct)) = 1, for all t > 0 and we

conclude that Tν = Sν. Hence, ν is coincidence point of T and S. Next, assume that Sν ⪯ S(Sν) and T and S are
weakly compatible. Let Tν = Sν = µ, then Sµ = STν = TSν = Tµ. By using the assumption Sν ⪯ S(Sν), and
(3.14) we have

h(F (Tν, Tµ, ϕ(ct))) ≤ ψ(h(MS(ν, µ))),

for all t > 0 and by (3.15)

MS(ν, µ) = max

{
F (Sν, Sµ, ϕ(t)),

F (Sν, Tν, ϕ(t)) ∗ F (Sµ, Tµ, ϕ(t))
1 + F (Tν, Tµ, ϕ(t))

}
= max

{
F (Tν, Tµ, ϕ(t)),

1

1 + F (Tν, Tµ, ϕ(t))

}
.

By the hypotheses, as in the proof of Theorem 3.4, we obtain F (Tν, Tµ, t) = 1 for all t > 0 and so, µ = Sν =
Tν = Tµ = Sµ. Therefore, µ is a common fixed point of T and S. Eventually, by following Theorem 3.4 we deduce
that T and S have one and only one common fixed point if and only if the set of common fixed points of T and S is
well-ordered. □

In 2010, Altunet al. [2] contributed in this field by defining notion of weakly increasing mappings. In addition,
by using implicit relations, they derived some results (both for weakly increasing and nondecreasing operators) in a
partially ordered metric space. Their results are of considerable interest for others related to these areas.

Definition 3.7. [2] Suppose E is a non-empty set and ⪯ is a partially ordered relation on set E. Then maps
T, S : E → E are weakly increasing if for all x ∈ E, Tx ⪯ STx and Sx ⪯ TSx.

Theorem 3.8. Let (X,F, ∗,⪯) be a partially ordered G-complete non-Archimedean fuzzy metric space and suppose
T, S : X → X are weakly increasing mappings such that
(i) for some c ∈ (0, 1), ϕ ∈ Φ, ψ ∈ Ψ, and h ∈ H with

h(F (Tx, Sy, ϕ(ct))) ≤ ψ(h(M(x, y)))

and

M(x, y) = max

{
F (x, y, ϕ(t)),

F (x, Tx, ϕ(t)) ∗ F (y, Sy, ϕ(t))
1 + F (Tx, Sy, ϕ(t))

}
.

for every comparable pair x, y ∈ X and all t > 0,
(ii) there exists x0 ∈ X, with Tx0 ⪯ STx0 and lim

t→∞
F (Tx0, STx0, t) = 1,

(iii) for every nondecreasing sequence {νn} ⊂ X whit νn → ν, we have νn ⪯ ν for all n ∈ N, i.e., ν = sup νn.

Then T and S have at least one common fixed point in X.

Proof . Let x0 ∈ X be the point such that Tx0 ⪯ STx0 and lim
t→∞

F (Tx0, STx0, t) = 1. Define Tx0 = x1 and

Sx1 = x2. Construct sequences {xn} and {yn} in X such that,

x2n+1 = Tx2n = y2n (3.16)

and
x2n+2 = Sx2n+1 = y2n+1 (3.17)

for all n ∈ N. Since T and S are weakly increasing functions,

y0 = x1 = Tx0 ⪯ STx0 = Sx1 = x2 = y1,

and
y1 = Sx1 ⪯ TSx1 = Tx2 = x3 = y2.

Continuing this process, we obtain

y0 ⪯ y1 ⪯ y2 ⪯ ... ⪯ y2n ⪯ y2n+1 ⪯ ... .
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If there exists some n0 ∈ N, such that y2n0
= y2n0+1 then it implies by (3.16) and (3.17) that Sx2n0+1 = x2n0+1.

Thus, if z = x2n0+1 we have Sz = z. Furthermore, we assert that z ∈ X whit Sz = z implies that Tz = z. To get
this, setting x = y = z in condition (i), we obtain

h(F (Tz, Sz, ϕ(ct))) ≤ ψ(h(M(z, z)))

for all t > 0 and

M(z, z) = max

{
F (z, z, ϕ(t)),

F (z, Tz, ϕ(t)) ∗ F (z, Sz, ϕ(t))
1 + F (Tz, Sz, ϕ(t))

}
= 1.

Hence, F (Tz, Sz, ϕ(ct)) = 1 for all t > 0 and by the same argument given in the proof of Theorem 3.1,
F (Tz, Sz, t) = 1 for all t > 0 and then Tz = Sz. From (FM-4) we have

F (Tz, z, t) ≥ F (Tz, Sz, t) ∗ F (Sz, z, t),

for all t > 0 which yields F (Tz, z, t) = 1. Hence we get Tz = Sz = z and the existence part of the proof is finished.
On the contrary case, assume that y2n ̸= y2n+1, for all n ∈ N. Applying the contractivity condition (i), x = y2n and
y = y2n+1, it follows that

h(F (y2n, y2n+1, ϕ(ct))) = h(F (Tx2n, Sx2n+1, ϕ(ct)))

≤ ψ(h(M(x2n, x2n+1))),

for all t > 0 and

M(x2n, x2n+1) = max

{
F (x2n, x2n+1, ϕ(t)),

F (x2n, Tx2n, ϕ(t)) ∗ F (x2n+1, Sx2n+1, ϕ(t))

1 + F (Tx2n, Sx2n+1, ϕ(t))

}
= F (x2n, x2n+1, ϕ(t))

= F (y2n−1, y2n, ϕ(t)).

Hence,
h(F (y2n, y2n+1, ϕ(ct))) ≤ ψ(h(F (y2n−1, y2n, ϕ(t)))), (3.18)

for all t > 0 and all n ∈ N. Therefore, by the same argument given in the proof of Theorem 3.1 we observe that
lim
n→∞

F (y2n, y2n+1, t) = 1 for all t > 0, which means that {yn} is a G-Cauchy sequence in X by lemma [16]. As X is

G-complete, there exists z ∈ X such that {yn} → z. We claim that z is a common fixed point of T and S. To prove
it, observe that for all t > 0 and n ∈ N,

F (Sz, z, t) ≥ F (Sz, y2n, t) ∗ F (y2n, z, t). (3.19)

It is clear that lim
n→∞

F (y2n, z, t) = 1 for all t > 0. Let us to show that the first factor in (3.19) converges to 1,

whenever n→ ∞. By condition (iii) and applying the contractivity (i) for x = x2n and y = z we have

h(F (y2n, Sz, ϕ(ct))) = h(F (Tx2n, Sz, ϕ(ct))) ≤ ψ(h(M(x2n, z))), (3.20)

for all t > 0 and

M(x2n, z) = max

{
F (x2n, z, ϕ(t)),

F (x2n, Tx2n, ϕ(t)) ∗ F (z, Sz, ϕ(t))
1 + F (Tx2n, Sz, ϕ(t))

}
. (3.21)

Letting n→ ∞ in (3.21) and from lim
n→∞

x2n = lim
n→∞

y2n1
= z we get

lim
n→∞

M(x2n, z) = 1,

and by (3.20) we deduce that lim
n→∞

F (y2n, Sz, ϕ(ct)) = 1, for all t > 0. Thus, lim
n→∞

F (y2n, Sz, t) = 1 for all t > 0 and

then, by letting n→ ∞ in (3.19) we have F (Sz, z, t) = 1 for all t > 0. By applying the condition (i) it is easy to prove
that Tz = Sz = z and hence z is a common fixed point of T and S in X and the proof is completed. □

Theorem 3.9. Assume in Theorem 3.8, h is a decreasing function, and also assume that the set of common fixed
points of T and S is well-ordered and for all pair (ν, µ) from the common fixed points of T and S, lim

t→∞
F (ν, µ, t) = 1.

Then T and S have a unique common fixed point.
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Proof . Suppose ν and µ are common fixed points of T and S. Applying the contractivity condition (i) in Theorem
3.8, we get

h(F (Tν, Sµ, ϕ(ct))) ≤ ψ(h(M(ν, µ))),

for all t > 0 and since h is decreasing function,

M(ν, µ) = max

{
F (ν, µ, ϕ(t)),

F (ν, Tν, ϕ(t)) ∗ F (µ, Sµ, ϕ(t))
1 + F (Tν, Sµ, ϕ(t))

}
≤ F (ν, µ, ϕ(t)).

Hence,
h(F (ν, µ, ϕ(ct))) ≤ ψ(h(F (ν, µ, ϕ(t)))),

for all t > 0. Thus, by the same argument given in the proof of Theorem 3.4 we deduce that F (ν, µ, t) = 1 for all
t > 0. This proves that T and S have a unique common fixed point in X. □

Example 3.10. Let (X,F, ∗) be the complete partially ordered non-Archimedean fuzzy metric space introduced in
Example 3.2. Let T, S : X → X defined by T (x) = x and S(x) =

√
x. Then clearly T and S are weakly increasing

mappings, but not nondecreasing (see [2]). Assume that ψ(t) = ϕ(t) = t for all t ∈ [0,∞) and let h : (0, 1] → [0,∞) be
whatever strictly decreasing bijection between (0, 1] and [0,∞) such that h and h−1 are continuous. In this context,
the contractivity condition (i) in Theorem 3.8 is equivalent to h(F (Tx, Sy, ϕ(ct))) ≤ ψ(h(M(x, y))) if and only if
h(F (Tx, Sy, ct)) ≤ h(M(x, y)) if and only if F (Tx, Sy, ct) ≥ M(x, y) ≥ F (x, y, t), for all c ∈ (0, 1) and x, y ∈ X whit
x ̸= y and for all t > 0,

F (Tx, Sy, ct) = F (x,
√
y, ct)

=
1

1 +max{x,√y}

≥ 1

1 + max{x, y}
= F (x, y, t).

In the case x = y it is trivial. As a result, the contractivity condition is verified. Also, all the assumptions made
in Theorem 3.8 or 3.9 are satisfied and hence, it guarantees that T and S have a unique common fixed point (which
is x = 0).
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[12] J.J. Nieto and R.R. Loṕez, Contractive mapping theorems in partially ordered sets and applications to ordinary
differential equations, Order 22 (2005), 223–239.

[13] B. Patir, N. Goswami and L. N. Mishra, Fixed point theorems in fuzzy metric spaces for mappings with some
contractive type conditions, Korean J. Math. 26 (2018), no. 2, 307–326.

[14] A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix
equations, Proc. Amer. Math. Soc. 132 (2004), 1435–1443.

[15] A. Roldán, J. Martinez-Moreno and C. Roldán, On interrelationships between fuzzy metric structures, Iran. J.
Fuzzy Syst. 10 (2013), 133–150.
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